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Summary

Nonisothermal flows of viscoelastic fluids:
Thermodynamics, analysis and numerical simulation.

Peter Wapperom

Dependent on the time scale of the flow, viscoelastic materials mainly show viscous or elastic
behaviour. In recent years much progress has been made with the numerical simulation of flows
of viscoelastic materials. For example, it has become possible to calculate stationary flows with
high Deborah numbers. Mostly this was restricted to isothermal flows. However, in practice
many flows are nonisothermal. On the one hand due to the external cooling or heating, on the
other hand due the internal production of heat, for example by the dissipation of mechanical
energy.

Besides the usual balances of mass, linear momentum, angular momentum and energy, some
equations are needed to describe the specific behaviour of the polymeric material. These so-
called constitutive equations are necessary for the stress, the heat flux and the internal energy.
General equations for these quantities will be derived from the thermodynamics, where inter-
nal (tensor) variables will be used to describe the relaxation phenomena. These internal tensor
variables are a measure for the elastic deformation of a polymeric fluid. The resulting equations
include the differential models for the stress that are commonly used in the literature. The
resulting equation for the heat flux is an extension of the well-known Fourier law. The heat
conduction tensor may depend on the (elastic) deformation of the material. With this depen-
dence the experimentally observed anisotropy of the heat conduction tensor may be described,
i.e. an increasing thermal conductivity in the direction of orientation and a decreasing thermal
conductivity in the direction perpendicular to the orientation. Finally the balance of internal
energy may be written as a temperature equation with the help of the thermodynamics. For
this, it is important to distinguish the irreversible (dissipative) and reversible processes. This
is possible with the help of the balance of entropy. Particularly, the temperature dependence
of the density and the shear modulus appear to be important. Although these coefficients are
relatively weak functions of the temperature, they do have a large influence on the reversible
processes in the temperature equation. The temperature dependence of the density results in
a cooling during expansion and a heating during compression. The temperature dependence
of the shear modulus determines whether the reversible energy is stored as internal energy
(energy elastic) or as entropy (entropy elastic). If the storage of energy is entropy elastic, a
part of the temperature changes are reversible. If the free energy, or equivalently the stress
model, of a viscoelastic fluid is known, it is possible to relate all thermodynamic coefficients in
the temperature equation to experimental data in equilibrium, for example the thermal expan-
sion coefficient and the heat capacity at constant pressure. The consequences for viscoelastic
materials will be elucidated by means of the ‘neo-Hookean’ model, which is often used in the
literature. On the basis of experimental data from the literature the order of magnitude of
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the temperature dependences of the thermodynamic coefficients will be reviewed. Further-
more, an overview of nonisothermal rheological experiments will be included which indicate
that the temperature history is important. Through dimensional analysis it will be checked
which temperature effects may be important in shear flows.

It is too difficult to solve the complete, coupled system of equations analytically. When the
coefficients are independent of the temperature, however, analysis of the equations is possible
for steady flows. In a shear flow and a uniaxial elongation flow the behaviour of some well-
known differential models will be worked out for high deformation rates. With these results the
consequences will be examined for a simple model, with constant coefficients, for the anisotropy
of the heat conduction tensor. The simple model does not give a qualitative agreement with
the experimental data for all stress models. Only if the stress model has a second normal stress
difference, the decrease of the thermal conductivity perpendicular to the flow can be described.
If the coefficients are assumed to depend on the invariants the qualitative agreement is still
possible for the other stress models.

The system of nonisothermal equations has been implemented in a computer program for
isothermal flows of viscoelastic fluids. The equations of motion and the temperature equation
have been solved by using a finite element method. The stresses have been calculated by a
streamline integration method. For the numerical solution process a number of problems arise.
For the temperature equation a standard upwind method (SUPG) has been used to avoid
too much grid refinement for convection-dominated flows. Another problem arises when the
mechanical dissipation has to be calculated. For this, the inverse of the internal deformation
tensor is needed. Although theoretically the internal deformation tensors are positive definite,
they may become indefinite due to numerical errors. To avoid large numerical errors in the
mechanical dissipation, a positive lower bound of the determinant of the internal deformation
tensor is needed then. A method has been developed to determine the theoretical lower bound
of the determinant. For many models a positive lower bound can be obtained. The outflow
boundary condition also requires some extra attention. In convection-dominated flows it is
often necessary to prescribe an approximation of the normal stress due to the normal stress
differences of viscoelastic fluids. A Dirichlet boundary condition or a constant pressure at the
outflow does not work then.

For the numerical calculations two different polymer melts will be taken: a polyethylene
(LDPE) and a polystyrene (PS 678E) melt. These fluids show a different behaviour for the
same type of flow. The viscosity of the polystyrene melt is a much stronger function of the
temperature than for the polyethylene melt. On the other hand the anisotropy of the heat
conduction tensor of polystyrene is much smaller than for polyethylene. For the numerical
calculations the influence of the mechanical dissipation, the anisotropy of the heat conduction
tensor, the cooling due to the thermal expansion and the temperature dependence of the shear
modulus will be examined in more detail. Firstly the simple case of a fully developed axisym-
metrical pipe flow will be discussed. Except the mechanical dissipation, the cooling due to
the thermal expansion and the anisotropy of the heat conduction tensor, may be important,
particularly for high flow rates (Brinkman numbers). For LDPE the decrease of the thermal
conductivity perpendicular to the flow may cause a considerable increase of the temperature.
Next a Graetz–Nusselt problem, with a temperature jump on the wall, will be examined. Due
to the dominance of the convection, the mechanical dissipation and the cooling due to the
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thermal expansion are less important. The solution is mainly determined by convection and
diffusion. For LDPE the anisotropy of the heat conduction tensor may become very large. This
is mainly caused by the large values of the thermal conductivity parallel to the flow. Finally
the flow through a 4:1 contraction will be considered. For this problem a vortex may arise
in the entry corner. For LDPE the internal production of heat is not very important (due
to the dominance of the convection). For PS, however, the internal heat production may be
important, particularly for the vortex intensity. If the wall is cooled from the contraction, the
magnitude of the vortex also changes, particularly for PS. Although the difference between the
mechanical dissipation and the stress work are large near the contraction, the influence on the
temperature distribution is relatively small due to the dominance of the convection. For LDPE
the anisotropy of the heat conduction tensor also appears to be important. Besides a decrease
in the direction to the flow, the thermal conductivity perpendicular to the flow may become
very large.



Samenvatting

De niet-isotherme stroming van visco-elastische vloeistoffen:
Thermodynamica, analyse en numerieke simulatie.

Peter Wapperom

Visco-elastische materialen vertonen, afhankelijk van de tijdschaal van de stroming, voor-
namelijk viskeus of elastisch gedrag. De laatste jaren is er veel vooruitgang geboekt op het
gebied van de numerieke simulatie van stromingen van deze materialen. Zo is het mogelijk
geworden stationaire stromingen voor hoge Deborah getallen te berekenen. Dit beperkte zich
veelal tot isotherme stromingen. In de praktijk zijn veel stromingen echter niet isotherm. Enerz-
ijds vanwege koeling of verwarming van buitenaf, anderzijds vanwege interne warmteproduktie
door bijvoorbeeld dissipatie van mechanische energie.

Naast de gebruikelijke balansvergelijkingen voor massa, impuls, impulsmoment en energie,
zijn nog een aantal vergelijkingen nodig om het specifieke materiaalgedrag van polymeren
te beschrijven. Deze zogenaamde constitutieve vergelijkingen zijn nodig voor de spanning,
de warmteflux en de interne energie. Algemene vergelijkingen voor deze grootheden worden
afgeleid vanuit de thermodynamica, waarbij inwendige (tensor)variabelen worden gebruikt om
de relaxatieverschijnselen te beschrijven. Deze inwendige tensorvariabelen zijn een maat voor
de elastische deformatie van het materiaal. De resulterende vergelijkingen omvatten de in de lit-
eratuur veel gebruikte differentiaalmodellen voor de spanning. Voor niet-isotherme stromingen
is vooral de sterke temperatuurafhankelijkheid van de materiaalfuncties, zoals de viscositeit en
de normaalspanningscoëfficiënten van belang. De resulterende vergelijking voor de warmteflux
is een uitbreiding van de bekende wet van Fourier. De warmtegeleidingstensor kan afhangen
van de (elastische) deformatie van het materiaal. Hiermee kan de experimenteel waargenomen
anisotropie van de warmtegeleidingstensor worden beschreven: een toename van de warmtegelei-
ding in de richting van de deformatie en een afname in de richting loodrecht daarop. Tenslotte
kan de interne-energiebalans met behulp van de thermodynamica worden omgeschreven in een
temperatuurvergelijking. Hierbij is het van belang de irreversibele (dissipatieve) en reversibele
processen te onderscheiden. Dit kan met behulp van de entropievergelijking. Vooral de temper-
atuurafhankelijkheid van de dichtheid en de afschuifmodulus blijken belangrijk te zijn. Hoewel
deze coëfficiënten niet zo sterk van de temperatuur afhangen, hebben ze toch een grote invloed
op de reversibele processen in de temperatuurvergelijking. Zo veroorzaakt de temperatuu-
rafhankelijkheid van de dichtheid de koeling bij expansie en opwarming bij compressie. De
temperatuurafhankelijkheid van de modulus bepaalt of de reversibele energie wordt opgesla-
gen als interne energie (energie-elastisch) of als entropie (entropie-elastisch). Indien de opslag
entropie-elastisch is, is een gedeelte van de temperatuurverandering reversibel. Indien de vrije
energie, dan wel het spanningsmodel, voor een visco-elastische vloeistof bekend is, kunnen alle
thermodynamische coëfficiënten in de temperatuurvergelijking gerelateerd worden aan experi-
mentele data in evenwicht, zoals de thermische-expansiecöefficïent en de warmtecapaciteit bij

x
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constante druk. De consequenties worden toegelicht aan de hand van het ‘neo-Hookean’ model,
dat vaak gebruikt wordt in de literatuur. Aan de hand van experimentele gegevens uit de
literatuur wordt voor polymeren een overzicht gegeven van de orden van grootte van de tem-
peratuurafhankelijkheden van alle coëfficïenten. Tevens is hierbij inbegrepen een overzicht van
niet-isotherme reologische experimenten, welke aangeven dat de temperatuurgeschiedenis van
belang is. Via dimensieanalyse wordt nagegaan welke temperatuureffecten belangrijk zijn in
afschuifstromingen.

Het analytisch oplossen van het volledige, gekoppelde, stelsel niet-isotherme vergelijkin-
gen is te moeilijk. Voor de stationaire vergelijkingen, met cöefficïenten onafhankelijk van de
temperatuur, is een analyse van de vergelijkingen echter wel mogelijk. In een afschuif- en
elongatiestroming wordt nagegaan hoe veelgebruikte visco-elastische modellen zich voor grote
deformatiesnelheden gedragen. Hiermee zal worden onderzocht wat de consequenties voor een
simpel model met constante coëfficiënten zijn voor de anisotropie van de warmtegeleidingsten-
sor. Niet voor alle spanningsmodellen geeft dit simpele model een kwalitatieve overeenkomst
met de experimentele data. Alleen indien het spanningsmodel een tweede normaalspanningsver-
schil bezit, wordt de afname van de warmtegeleiding in loodrechte richting voorspeld. Door de
coëfficiënten van de invarianten te laten afhangen wordt dit voor de andere spannningsmodellen
ook mogelijk.

Het stelsel niet-isotherme vergelijkingen is gëımplementeerd in een computerprogramma
voor isotherme stromingen van visco-elastische materialen. Voor de bewegingsvergelijkingen en
de temperatuurvergelijking zijn eindige elementen methoden gebruikt. De spanning wordt via
stroomlijnintegratie berekend. Bij het numeriek oplossen van de vergelijkingen ontstaan een
aantal problemen. Voor de temperatuurvergelijking is een standaard upwind methode (SUPG)
gebruikt, om te veel roosterverfijning voor convectie-gedomineerde stromingen te voorkomen.
Een ander probleem doet zich voor bij de berekening van de dissipatie, waarvoor de inverse
van de interne-deformatietensor nodig is. Hoewel de interne-deformatietensoren theoretisch
gezien positief definiet zijn, kunnen ze door numerieke fouten indefiniet worden. Om grote
numerieke fouten in de dissipatie te voorkomen, is dan een positieve ondergrens van de deter-
minant van de interne-deformatietensor nodig. Hiervoor is een methode ontwikkeld waarmee
de theoretische ondergrens van de determinant kan worden bepaald. Voor veel modellen kan
een positieve ondergrens worden gevonden. Speciale aandacht vergt ook de uitstroomrandvoor-
waarde. Vanwege de normaalspanningsverschillen bij visco-elastische vloeistoffen, is het in een
door convectie gedomineerde stroming vaak noodzakelijk aan de uitstroomrand een benadering
van de normaalspanningen op te leggen. Een Dirichlet of randvoorwaarde of een constante druk
op de uitstroomrand werken dan niet.

Voor de berekeningen worden twee verschillende polymeersmelten genomen: een polyethyleen
(LDPE) en een polystyreen (PS 678E) smelt. Deze vloeistoffen vertonen namelijk een ver-
schillend gedrag in een zelfde type stromingen. De viscositeit van polystyreen hangt veel
sterker van de temperatuur af dan voor polyethyleen. Daarentegen is de anisotropie van
de warmtegeleidingstensor van polystyrene veel kleiner dan die voor polyethyleen. Bij de
berekeningen wordt nader onderzocht wat de invloed van de dissipatie, de anisotropie van
de warmtegeleidingstensor, de koeling door de thermische-expansieterm en de temperatuur
afhankelijkheid van de afschuifmodulus zijn. Allereerst wordt het eenvoudige geval van een
volledig ontwikkelde axisymmetrische pijpstroming besproken. Behalve de dissipatie kunnen
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ook de koeling door de thermische-expansieterm en de anisotropie van de warmtegeleiding van
belang zijn, voornamelijk voor hoge debieten (Brinkman getallen). Voor LDPE kan de verlaging
van de warmtegeleiding loodrecht op de stroming ook een aanzienlijke temperatuurverhoging
veroorzaken. Vervolgens wordt een Graetz–Nusselt probleem, met een temperatuursprong op
de wand, onderzocht. Door de dominantie van de convectie, blijken de dissipatie en de koeling
door thermische expansie van minder belang. De oplossing wordt vooral bepaald door convectie
en diffusie. Voor LDPE blijkt de anisotropie va de warmtegeleiding erg groot te kunnen worden.
Deze wordt voornamelijk veroorzaakt door de grote warmtegeleiding parallel aan de stroming.
Tenslotte wordt de stroming door een 4:1 contractie behandeld, waarbij een vortex in de hoek in
de contractie kan ontstaan. Voor LDPE blijkt de interne warmteproduktie niet erg belangrijk
te zijn (door de dominantie van de convectie). Voor PS kan de interne warmteproduktie wel
belangrijk zijn, vooral voor de vortexintensiteit. Indien de wand vanaf de contractie gekoeld
wordt, wordt naast de vortexintensiteit ook de grootte van de vortex sterk bëınvloed, vooral
voor PS. Hoewel het verschil tussen de dissipatie en de spanningsarbeid groot is in de buurt
van de contractie, is de invloed op de temperatuurverdeling relatief gering door de dominantie
van de convectie. Voor LDPE blijkt ook de anisotropie van de warmtegeleiding van belang te
zijn voor de temperatuurverdeling. Naast een afname loodrecht op de stroming, wordt vooral
de warmtegeleiding in de stromingsrichting zeer groot.
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Chapter 1

Introduction

In virtual all products of modern industry polymers are applied as a construction material.
The processing of polymers essentially consists of three steps. Firstly the polymer is heated
to a temperature above its glass transition in order to facilitate its plastic deformation. Next
the polymer is shaped into a product. Finally, the product is cooled back to room temperature
and solidified into its final shape. Well-known examples of polymer processing are injection
moulding, extrusion and fibre spinning.

In polymer processing both the temperature and the deformation are important. First a short
overview will be given of the behaviour of polymeric materials during deformation. Then the
extension to nonisothermal flows will be made. The introduction will be ended with the aims
and the framework of this thesis.

1.1 Non-Newtonian fluid behaviour

Since macromolecules can be considered as long and thin objects they are oriented in a flowing
polymer melt or solution. So deformation of a polymeric fluid causes molecular orientation and
thus a degree of anisotropy of the material properties. For this reason the behaviour of these
fluids can no longer be described by the simple models that are valid for low molecular weight
fluids having a purely viscous behaviour. The main difference between low molecular weight
viscous fluids and macromolecular fluids is that the latter possess a material time scale, i.e. a
time scale necessary to relax from a deformed state into a stress-free state. Dependent on the
ratio of the time scale of the deformation and the material time scale a so-called viscoelastic
fluid may behave more or less like a viscous fluid (slow deformations) or on the other side of the
spectrum like an elastic material (very fast deformations). The ratio between the material time
scale and the time scale of the flow is indicated by a non-dimensional number: the Deborah or
the Weissenberg number.

Viscoelastic fluids show unexpected behaviour if ones intuition is based on experiences with
viscous fluids. Some well-known examples are rod-climbing (a polymeric fluid climbs up a
rotating rod) and die swell (the diameter of a polymeric fluid that exits from a capillary into
air grows). For a comprehensive overview of typical viscoelastic phenomena refer to Barnes et
al. (1989) or Bird et al. (1987a). Some properties of viscoelastic fluids such as the behaviour of
the shear viscosity and the normal stress differences in steady shear flows and the elongational
viscosity will be discussed briefly. Of course a lot of different polymeric fluids exist, with
different kinds of behaviour. In the following summary only the global trends of the material
properties will be indicated. For a comprehensive overview of the viscoelastic properties of
polymeric fluids and the used experimental methods refer to Ferry (1980).

1
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• Polymeric fluids have a non-constant shear viscosity. The shear viscosity η is defined by

η =
σ

γ̇
, (1.1)

where σ is the shear stress and γ̇ the shear rate. The shear viscosity may be a strong
function of the shear rate and the temperature. In figure 1.1 the generic behaviour of the
shear viscosity has been depicted. The shear viscosity curve, at some fixed temperature,

Figure 1.1: Model predictions of the shear viscos-
ity η (dashed line) and first normal stress coef-
ficient Ψ1 (solid line) for an LDPE melt versus
the shear rate. The model predictions are of the
eight-mode Giesekus model described in chapter
5.

Figure 1.2: Model prediction of the elongational
viscosity ηE for an LDPE melt versus elongation
rate at different temperatures. The model pre-
diction is of the eight-mode Giesekus model de-
scribed in chapter 5.

of polymer melts and polymer solutions may be divided into three regions. For low shear
rates, compared to the time scale of the fluid, the viscosity is approximately constant. It
then equals the so-called zero-shear-rate viscosity η0. Next, the viscosity decreases rapidly
with increasing shear rate. This behaviour is called shear thinning. For high shear rates
the viscosity often approximates a constant value again.

To describe shear flows of polymeric fluids it is sometimes sufficient to model the be-
haviour of the shear viscosity in a certain interval of the shear rate. The shear thinning
can be described with a generalised Newtonian model, where the viscosity is modelled as a
decreasing function of the shear rate. Examples of these viscous models are the power-law
and the Carreau model. The advantage of these models is that, even for non-trivial ge-
ometries, the solution of the system of equations is relatively easy. However, the drawback
of these models is that the elastic (memory) effects are not taken into account and these
models have no normal stress differences (i.e. rod-climbing, die-swell and other typical
viscoelastic phenomena can not be described by these models). Therefore these viscous
models will not be considered in more detail in this thesis. For a more comprehensive
description of the purely viscous models refer to Bird et al. (1987a).



1.1 Non-Newtonian fluid behaviour 3

To take the elastic effects into account more difficult models have to be considered. In the
literature several integral and differential equations that relate the stress to the deforma-
tion history have been proposed. Dependent on the type of flow these models are more or
less able to describe the elastic effects. However, instead of a relatively simple algebraic
equation for the viscosity one or more extra equations have to be solved for the stresses
then. Not only the extra computing time is a problem, but the system of equations is
also much more difficult to solve.

• Polymeric fluids show normal stress differences in steady shear flows. The first normal
stress difference N1 is defined as

N1 = σ11 − σ22, (1.2)

where σ11 is the normal stress component in the streamwise direction and σ22 the normal
stress in the gradient direction. For polymeric materials N1 is positive. The second
normal stress difference N2 is defined as

N2 = σ22 − σ33, (1.3)

where σ33 is the normal stress component in the indifferent direction. The magnitude of
N2 is in general much smaller than N1 and its sign is usually negative. Often not the
first normal stress difference N1 is given, but a related quantity: the first normal stress
coefficient Ψ1. This coefficient is defined by

Ψ1 =
N1

γ̇2
(1.4)

and decreases with increasing shear rate. The typical behaviour of the first normal stress
coefficient has been depicted in figure 1.1.

• Polymeric fluids show a non-constant elongational viscosity in steady and unsteady elon-
gational flow. The elongational viscosity ηE defined for a steady elongational flow is
defined as

ηE =
σE

ε̇
, (1.5)

where the normal stress difference is σE = σ11 − σ22 and ε̇ the elongation rate. The
stress σ11 is in the direction of the elongation and σ22 in a direction perpendicular to the
elongation.

In figure 1.2 the typical behaviour of the elongation viscosity has been depicted. The
elongation viscosity of polymer melts and polymer solutions may be divided into three
regions. For small elongation rates the elongational viscosity is approximately constant
and equals ηE = 3η0, just as for a Newtonian fluid. For somewhat larger elongation
rates the elongational viscosity increases with increasing elongation rate until a maximum
value has been reached. Dependent on the type of fluid this increase is large, as for low
density polyethylene, or small, as for high density polyethylene. If the elongation rate
is increased once more the elongational viscosity decreases again for polymer melts. For
polymer solutions this situation is unclear, see Tirtaatmadja & Sridhar (1993).
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A number of models that have been developed are able to describe (some) of the viscoelastic
properties, see for example Larson (1988) or Tanner (1985). Dependent on the type of flow,
some models give better results than others.

In the last fifteen years much attention has been paid to the numerical simulation of isother-
mal flows of viscoelastic fluids. Much attention has been paid to the flow through a contraction,
die-swell and the flow past a cylinder or a sphere. For recent reviews of numerical simulation
methods for the flow of viscoelastic fluids refer to Crochet (1989) or Keunings (1989). For
steady flows the use of streamline integration methods made it possible to solve the equations
for high Deborah numbers (O(102)). For the computation of unsteady flows there are still dif-
ficulties for high Deborah (or Weissenberg) numbers. However, industrial flows are often flows
with high Deborah numbers. Furthermore the influence of various aspects of the nonisothermal
behaviour, such as mechanical dissipation and anisotropic heat conduction, will be small for
most flows of polymeric fluids if the Deborah number is small. Therefore this thesis will be
restricted to steady flows.

1.2 Nonisothermal polymer flows

In the first section of this introductory chapter a short overview has been given of the isothermal
rheological behaviour of polymeric fluids. Another effect of great importance on the material
properties, and thus on the flow, is the temperature of the fluid. For polymeric fluids the shear
and elongation viscosity are strong decaying functions of the temperature. Especially near the
phase change from the liquid to the solid state, this temperature dependence may be extremely
large.

Roughly the temperature of polymeric fluids is influenced in two ways. On the one hand the
temperature of a polymeric material in industrial processes is influenced by external heating (at
the start of the production process) or cooling (at the end of the production process). However,
during the deforming of polymeric fluids the temperature changes due to the internal energy
production are also important. Due to the high viscosity and the small thermal conductivity
of polymer melts and concentrated polymeric solutions the internal heat production is often
not negligible. In this introduction the important effects will only be indicated to obtain an
overview of the situation. They will be discussed in more detail in chapter 2.

A first cause of internal heat production is the dissipation of mechanical energy. Here an
interesting problem arises: what exactly is the mechanical dissipation of a viscoelastic fluid?
For viscous fluids it simply equals the stress work and in elastic materials there is no mechanical
dissipation since all stress work is stored reversibly. For viscoelastic fluids, however, it depends
on the flow whether the fluid behaves more viscous or more elastic and thus which part of the
mechanical energy is dissipated (irreversible) and which part is stored reversibly. The next
question is of course: how is the mechanical energy stored? There are two possibilities. It can
be stored in the form of internal energy (energy elastic) or in the form of entropy (entropy
elastic). The energy elastic storage of energy does not contribute to the temperature change,
but the entropy elastic storage of energy does. The effect of energy elasticity is well-known for
springs. The effect of entropy elasticity is well-known for elastic materials: a rubber band heats
up during the stretching and cools down during the recoil.

The temperature may also be influenced by compression or expansion of the fluid. This
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effect is well-known for gases, but also for polymeric fluids it is often not negligible. During
compression the temperature of the material rises (similar to the considerable increase of the
temperature of the valve during the pumping of a bicycle tyre) and it drops during expansion
(similar to the decreases of the temperature of your finger when you use a spray). Especially
for injection moulding, where the pressure is increased by a few hundred bars in a short time,
the temperature rise due to compression effects plays an important role, see Flaman & Veltman
(1988).

Another topic of interest is the anisotropy of the heat conduction when the polymeric mate-
rial is deformed and the polymer chains have a preferential direction. Experiments of Hellwege
et al. (1963) already showed that with increasing orientation of the polymer fluid the thermal
conductivity in the direction of orientation increases and perpendicular to the orientation the
thermal conductivity decreases. For some polymeric materials the thermal conductivity in the
direction of orientation may become a few tens times larger, while perpendicular to the direction
of orientation the conductivity may become a few times smaller than the thermal conductivity
in equilibrium.

As for isothermal flows, viscous models are also frequently used to describe the nonisothermal
flow of polymeric fluids. For a review refer to Pearson (1978). Except the drawbacks mentioned
earlier for the isothermal flows, the separation of the reversible and the irreversible parts and
the anisotropy of the heat conduction can not be described with these models. As will be shown
in chapter 2 this is possible for more advanced models.

Contrary to the isothermal viscoelastic flow, however, relatively small numbers of publi-
cations have appeared on nonisothermal flows of viscoelastic fluids, especially not for high
Deborah numbers. However, recently some articles have been published which include both
the viscoelasticity and the influence of the temperature. Sugeng et al. (1987) and McClel-
land & Finlayson (1988), for example, studied the influence of the temperature on die swell.
A hydrodynamically and thermally developing flow has been examined by Nikoleris & Darby
(1989). The injection molding process has been simulated numerically by Goyal et al. (1988)
and Baaijens (1991). However, these numerical simulations are restricted to temperature de-
pendent relaxation times and viscosities and a relatively simple temperature equation, without
paying attention to the storage and release of reversible energy, the effect of compression and
extension and the anisotropy of the heat conduction. Braun & Friedrich (1989) have taken into
account the storage of elastic energy for a purely energy elastic fluid, without paying attention
to the other effects. They compared the entirely energy elastic and the entirely entropy elastic
case for the thermal start-up due to the step-function-shear-rate experiment. A comprehensive
overview of the latest developments on the nonisothermal flow of viscoelastic fluids can be found
in the proceedings of the IUTAM symposium on numerical simulation of nonisothermal flow of
viscoelastic liquids (Dijksman & Kuiken 1995).

1.3 Objective and outline of this thesis

The first objective of this thesis is the derivation of nonisothermal equations for isotropic
viscoelastic materials with the help of the thermodynamics. Because the description of all phe-
nomena would be too ambitious for one thesis, the area of investigation has to be restricted.
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Therefore degradation of the material and phase changes, which have there own specific prob-
lems, will not be discussed. In fact the temperature range is then limited to the fluid phase
below the temperature at which degradation takes place. Except the well-known stress differ-
ential equations from the literature, the temperature equation do have to include the effects
mentioned in section 1.2: the anisotropy of the heat conduction, the temperature changes due
to compression and expansion, and the separation of reversible and dissipative processes.

The second objective is the development of a numerical code for the simulation of the ob-
tained equations for the nonisothermal flow of viscoelastic fluids. Of course it would be nice
to have a time dependent, three-dimensional code for nonisothermal viscoelastic fluid flows.
However, this would be asking too much. Not the temperature equation would be the problem,
but the stress equations as has been explained in 1.1. Therefore the computer code for steady
and isothermal flows described by Hulsen (1990a) will be extended. On the one hand the com-
putations are then restricted to steady, 2D Cartesian or axisymmetrical, flows. On the other
hand, however, with this code it is possible to calculate flows with high Deborah numbers.
This gives the opportunity to examine the anisotropy of the heat conduction and the different
contributions of the internal energy production. For too low Deborah numbers these effects are
small for most of the fluids.

The objectives sketched above will be realised as follows. In chapter 2 the equations describing
the nonisothermal flow of viscoelastic fluids are derived from the thermodynamics of viscoelastic
fluids. The derived equations include the well-known differential stress models described in the
literature. The emphasis, however, is on the derivation of the temperature equation from the
balance of energy. The typical contributions of viscoelastic fluids to the temperature equation
will be argued extensively. The treatment of the constitutive equation of the heat flux will be
focused on the experimentally observed anisotropy of the heat conduction, and how this effect
can be modelled in the thermodynamic derivation. Next the theoretical results will be related
to experimental results: an overview will be given of the influence of the temperature on the
coefficients appearing in the derived system of equations and the results of nonisothermal rhe-
ology. Finally the obtained system of equations will be simplified with the help of dimensional
analysis.

Chapter 3 contains the analysis of the system of equations. The behaviour of the stress
models for high deformation rates will be calculated for steady simple shear and uniaxial elon-
gational flow. With these results it will be checked which stress models are able to describe the
experimentally observed anisotropy for a simple model of the heat conduction tensor and how
this simple model may be extended for the other stress models. Furthermore a method to cal-
culate the lower bounds for the invariants of the internal deformation tensor will be given. This
lower bound can be used in the numerical calculations for the correction of the mechanical dis-
sipation. From the obtained results the most appropriate models for the numerical calculations
will be selected.

Chapter 4 contains a description of the numerical method that has been used to solve the
system of equations derived in chapter 2. In the equations of motion and the constitutive
equation for the stress the emphasis will be on the implementation of the nonisothermal effects.
The implementation of the temperature equation will be discussed in more detail, including
the use of upwind methods for convection-dominated flows. Furthermore the outflow boundary
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conditions need extra attention.
In chapter 5 some calculations will be performed for a polystyrene and a polyethylene melt

to show the (possible) influence of the various terms in the temperature equation. These
calculations will be restricted to relatively simple geometries. Three flow geometries will be
argued. Firstly two introductory examples will be discussed: the fully developed pipe flow and
a Graetz–Nusselt problem. Then the flow through a 4:1 contraction, a standard test geometry
for isothermal flows, with and without cooling of the downstream boundary will be discussed.

Finally in chapter 6 the concluding remarks will be made.



Chapter 2

Governing equations

In this chapter the governing equations that can be used to describe the nonisothermal flow
of a viscoelastic fluid are considered. Firstly the balance equations are given in section 2.1.
In the balance equations some material dependent quantities appear, like the stress tensor.
To obtain a complete set of equations, these quantities have to be specified by a constitutive
equation, describing the typical behaviour of the material. The next three sections contain
these constitutive equations. To gain insight, first the stress equations will be given in section
2.2. Then, in section 2.3, the temperature equation will be derived with the help of the ther-
modynamics from the balance of energy. From the thermodynamics also general constitutive
equations for the stress and the heat flux will be derived, which include the equations that
are commonly used in the literature. In section 2.4 the heat flux constitutive equation and
the observed experimental results will be discussed. The obtained constitutive equations still
contain coefficients (viscosity, relaxation time etc.) that may, among other things, depend on
the temperature. The temperature dependence is the topic of section 2.5, which includes an
overview of nonisothermal rheological measurements (a simultaneous temperature change and
deformation) and the theories which have been proposed to describe these experiments. Finally,
in section 2.6, the dimensionless forms of the balance equations and constitutive equations are
given, which will be used to neglect the minor effects.

2.1 The balance equations

In this section a short description will be given of the four balance equations describing the
nonisothermal flow of a nonpolar fluid. A more detailed derivation from continuum mechanics
can for example be found in Bird et al. (1960). In a fixed bounded space Ω the balance equations
for a system with a constant total mass are:

• The conservation of mass
ρ̇ = −ρ∇ · v

¯
, (2.1)

where ρ is the fluid density and v
¯

the velocity. As usual a ∇ denotes the gradient operator
and a (˙) denotes the material derivative of a quantity.

If the density is a function of the pressure and the temperature: ρ = ρ(p, T ), the mass
balance can be written as

ρ̇

ρ
=

1

ρ

∂ρ

∂p
ṗ+

1

ρ

∂ρ

∂T
Ṫ = −∇ · v

¯
. (2.2)

For polymeric fluids the density is only a weak function of the pressure. The compression
modulus (the inverse of the compressibility) of polymeric liquids is much higher than the

8
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shear modulus, so that under normal pressures a constant density is a good approximation.
Under some conditions of high pressures this may not be true. For nonisothermal flows
the density may also vary due to temperature variations. For polymeric fluids the density
depends only weakly on the temperature. See section 2.5.1 for more details about the
pressure and temperature dependence.

In section 2.6, where the dimensionless equations are discussed, it will be shown when
the incompressibility condition

∇ · v
¯

= 0 (2.3)

is a good approximation of the equation for the conservation of mass.

• The balance of linear momentum

ρv̇
¯

= ∇ · σ
¯̄

+ ρf
¯
, (2.4)

in which σ
¯̄

is the total stress and f
¯

a body force per unit of mass. For fluids the total
stress tensor can be decomposed in a pressure part −pI

¯̄
and an extra-stress tensor τ

¯̄

σ
¯̄

= −pI
¯̄

+ τ
¯̄
, (2.5)

where I
¯̄

is the unit tensor. The (thermodynamic) pressure may depend on the density
and the temperature. In equilibrium the pressure reduces to the hydrostatic pressure and
the extra-stress tensor τ

¯̄
vanishes.

An example of a body force is gravitation f
¯

= g
¯
, with g

¯
the acceleration due to gravity.

The gravity term can be split in a reference value ρrefg
¯

and a deviatoric part (ρ− ρref)g
¯
.

Then (2.4) becomes
ρv̇
¯

= −∇pm + ∇ · τ
¯̄

+ (ρ− ρref)g
¯
, (2.6)

where the modified pressure is defined as pm = p − ρrefgz, with z the coordinate in the
direction of the acceleration due to gravity. The density differences in the flow result in
a buoyant force (ρ− ρref)g

¯
. Linearization of the density with respect to the temperature,

(ρ− ρref) = ρrefαρ (T − Tref) gives an approximation of the buoyant force. If furthermore
the density differences in the convective term are neglected, ρv̇

¯
' ρref v̇

¯
, the well-known

Boussinesq approximation, which is often used for low viscous Newtonian fluids, is ob-
tained:

ρref v̇
¯

= −∇pm + ∇ · τ
¯̄

+ ρrefαρ(T − Tref)g
¯
, (2.7)

where αρ is the linear expansion coefficient and T the absolute temperature. The sub-
script ref denotes a quantity at reference temperature. For polymeric liquids the linear
dependence of the density on the temperature is often a good approximation, see sec-
tion 2.5.1. In section 2.6 it will be shown under which circumstances this term may be
important for shear flows of viscoelastic fluids.

• The balance of angular momentum
σ
¯̄

= σ
¯̄
T , (2.8)

due to the assumption of nonpolar fluids.
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• The balance of energy

ρė = ∇ · (σ
¯̄
· v
¯
) + ρf

¯
· v
¯
−∇ · φ

¯
q + ρr, (2.9)

where φ
¯
q is the heat flux vector and r an external heat source per unit of mass, for example

due to radiation. The external heat source will be neglected henceforth. The total energy
per unit of mass e = u + 1

2
v
¯
· v
¯

is the sum of the internal energy per unit of mass u and
the kinetic energy. With the help of the balance of linear momentum (2.4) this equation
reduces to the balance equation for the internal energy:

ρu̇ = σ
¯̄

: d
¯̄
−∇ · φ

¯
q, (2.10)

where use has been made of the symmetry of the total stress tensor σ
¯̄
. Then σ

¯̄
: (∇v

¯
)T =

σ
¯̄

: d
¯̄
, where the Euler rate-of-deformation tensor is defined as d

¯̄
= (L

¯̄
+ L

¯̄
T )/2, with the

velocity gradient L
¯̄
T = ∇v

¯
.

To obtain a complete set of equations, the extra-stress tensor τ
¯̄
, the heat flux φ

¯
q and the

internal energy u have to be specified by constitutive equations that describe these quantities
for a specific material. In the following three sections of this chapter an overview will be given
of some specific constitutive equations for polymeric liquids and how these equations can be
obtained from the thermodynamics.

The discussion in the following sections is focused on the constitutive equations of isotropic
viscoelastic fluids. However, the more common equations for viscous fluids and elastic materials
will be given for comparison. Firstly an overview will be given of the stress models. Next the
thermodynamics will be described that can be used to obtain a temperature equation from the
energy equation for these models. From the thermodynamics also general equations may be
obtained for the stress and the heat flux. These equations include the commonly used models
for the stress and the heat flux. The equations for the heat flux will be treated in more detail
after the thermodynamics.

2.2 Stress constitutive equations

In this section the constitutive equations for the stress, which are used in the literature, are
summarised for isotropic viscoelastic materials. In this section only the general form of these
stress models will be discussed. Some specific examples can be found in appendix A. However,
first the stress equations for viscous fluids and elastic solids will be discussed shortly for com-
parison.

Viscous fluids

The extra stress of an isotropic viscous fluid τ
¯̄

can be described by a simple algebraic relation
of the form (Bird et al. 1960)

τ
¯̄

= 2ηd
¯̄

+ (ηv − 2
3η)∇ · v

¯
I
¯̄
, (2.11)

where η is the shear viscosity and ηv the bulk viscosity. For shear flows the shear viscosity
is important, for compression flows the bulk viscosity. In a Newtonian fluid model the shear
viscosity η is independent of the velocity gradient. For other models, such as the power-law
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model and the Carreau model, the viscosity is a function of the velocity gradient. With these
models the shear thinning behaviour of a fluid can be described: a decrease of the viscosity
with increasing shear rate. A comprehensive overview of these models has been given by Bird
et al. (1987a). In addition to the dependence on the velocity gradient, the viscosity depends
on the pressure and temperature.

Elastic materials

The stress of an isotropic elastic material can be described by the Finger tensor b
¯̄
1. The Finger

tensor will be given explicitly in section 2.3. In this section it is only important that the
Finger tensor is a measure for the deformation. For a neo-Hookean elastic material, which is
incompressible (the determinant of the Finger tensor is det b

¯̄
= 1), the stress can be described

by a simple algebraic relation

σ
¯̄

= −pI
¯̄

+ τ
¯̄

= −pI
¯̄

+G(b
¯̄
− I

¯̄
), (2.12)

where G is the shear modulus of the elastic material. The extra stress τ
¯̄

has been chosen
such that it vanishes for b

¯̄
= I

¯̄
, i.e. in the undeformed state. The pressure p is rheologically

undetermined. It can only be determined by solving a complete problem including the boundary
conditions. The Finger tensor satisfies a differential equation of the form2

b
¯̄

5
= 0

¯̄
, (2.13)

where (
5
) is the upper-convected derivative

(
5
) = (˙) − L

¯̄
· ( ) − ( ) · L

¯̄
T . (2.14)

The deformation of an elastic material is completely reversible. When all external forces are
removed, the elastic material returns to the original state. An extensive description of elastic
materials can for example be found in Treloar (1975). A recent overview of constitutive equa-
tions for compressible and incompressible elastic materials has been given by Beatty (1987).

Viscoelastic fluids

Viscoelastic fluids show both viscous and elastic behaviour when they are deformed. When all
external forces are removed, the fluid relaxes to a hydrostatic stress state. In contrast with the
elastic material, however, the hydrostatic stress state is not the original state. The viscous part
of the deformation is irreversible.

Polymer melts and solutions consist of (macro)molecules of high molecular weights. There-
fore it is often necessary to distinguish different contributions (modes) to the extra-stress tensor.
In this thesis it is assumed that the extra-stress tensor τ

¯̄
consists of a Newtonian (solvent) con-

tribution and the polymer contributions, which are determined by the deformation history of
a fluid particle

τ
¯̄

= 2ηsd
¯̄

+ (ηs,v − 2
3ηs)∇ · v

¯
I
¯̄

+
K∑
k=1

τ
¯̄
k, (2.15)

1In the literature the Finger tensor is often denoted by c
¯̄
. In this thesis, however, the usual notation from

the continuum mechanics will be used, where c
¯̄

or C
¯̄

is reserved for the left Cauchy–Green tensor and b
¯̄

or B
¯̄for the right Cauchy–Green (or Finger) tensor.

2In the literature on elastic materials this equation is unusual. However, it only expresses the observability
of the Finger tensor. It has only been mentioned to stress the analogy with the constitutive equations of
viscoelastic materials, which will be described next.
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in which ηs is the Newtonian shear viscosity, ηs,v the Newtonian bulk viscosity andK the number
of modes. The Newtonian stress can be a contribution of the solvent, or an approximation of
the modes with very small relaxation times for a melt. A modal stress τ

¯̄
k can be specified by

a differential or an integral model. In this thesis only differential models will be used.

The internal deformation tensor.

Most of the (sub)stress models have been derived from an internal deformation tensor3: b
¯̄
k.

The internal deformation tensor b
¯̄
k describes the elastic deformation of a viscoelastic fluid, the

deformation relative to the stress state that would be obtained after relaxation from the current
state4. Compare the elastic materials, where the Finger tensor b

¯̄
describes the total (elastic)

deformation of an elastic material, relative to the original state.
The internal deformation tensor b

¯̄
k has to be positive definite to guarantee well-posedness

of the system of equations (van der Zanden & Hulsen 1988). The positive definiteness is a
pleasant property for numerical calculations. It is then possible to correct for numerical errors,
which can cause indefinite internal deformation tensors.

For multi-mode models it is customary to assume that different modes do not couple. Then
the most general (isothermal) model for a modal stress τ

¯̄
k of an isotropic viscoelastic fluid is

an isotropic tensor function of the internal deformation tensor b
¯̄
k

τ
¯̄
k = c0,kI

¯̄
+ c1,kb

¯̄
k + c2,kb

¯̄
2
k, (2.16)

where the scalars c0,k, c1,k and c2,k are functions of the invariants of the kth mode of the internal
deformation tensor

I1,k = tr b
¯̄
k,

I2,k =
1

2

(
I2
1,k − tr b

¯̄
2
k

)
= I3,k tr b

¯̄
−1
k ,

I3,k = det b
¯̄
k. (2.17)

From the Cayley–Hamilton relation, which reads for b
¯̄
k

b
¯̄
3
k − I1,kb

¯̄
2
k + I2,kb

¯̄
k − I3,kI

¯̄
= 0

¯̄
, (2.18)

it follows that it is sufficient to consider three different powers of b
¯̄
k. All other powers of b

¯̄
k can

be expressed in these three tensors and the invariants of b
¯̄
k.

For all well-known differential models, described in appendix A, the viscoelastic (sub)stress
can be found from the internal deformation tensor with the help of a simple algebraic relation
(see Larson 1988):

τ
¯̄
k =

Gk

1 − ξk
(Bkb

¯̄
k − I

¯̄
) ,

Gk =
ηk
λk
, (2.19)

3b
¯̄k

is also called the conformation tensor or the configuration tensor.
4The recoverable or elastic strain of a one-mode model can be obtained in a thought experiment for an

infinitesimal small element of the fluid that has been cut from the material. The recoverable deformation is
then the difference between the deformation before and after relaxation of the material. For multi-mode models
it is more complicated. Then all the modes have to be separated and the recoverable deformation can be
obtained for each mode.
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where Gk is the shear modulus, λk the relaxation time and ηk the viscosity of the kth mode.
The parameter ξk will be explained shortly. If Bk = 1, as for most of the models in appendix
A, and ξk = 0 the relation between the stress and the internal deformation tensor is essentially
the same as the relation for the neo-Hookean elastic material (2.12). For the Larson model Bk
is function of the first invariant.

In the following sections the derivatives of the invariants with respect to the symmetric
tensor b

¯̄
k are also needed. For the symmetric tensor b

¯̄
k they are given by

∂I1,k
∂b
¯̄
k

= I
¯̄
,

∂I2,k
∂b
¯̄
k

= I1,kI
¯̄
− b

¯̄
k,

∂I3,k
∂b
¯̄
k

= I3,kb
¯̄
−1
k = I2,kI

¯̄
− I1,kb

¯̄
k + b

¯̄
2
k. (2.20)

The last equality in (2.20)3 follows from the Cayley–Hamilton relation (2.18). Multiplication
of this equation with b

¯̄
−1
k gives the obtained result.

General differential model for the internal deformation tensor.

Following Leonov (1976, 1987) the internal deformation tensor is supposed to satisfy a differ-
ential equation of the form

b
¯̄

5
k = −b

¯̄
k · d

¯̄
irr,k − d

¯̄
irr,k · b

¯̄
k, (2.21)

where d
¯̄

irr,k is the irreversible rate-of-deformation tensor, which has to be specified by a con-
stitutive relation. The generic equation for d

¯̄
irr,k will be derived from the thermodynamics in

section 2.3, where it will be shown how d
¯̄

irr,k may depend on the deformation tensor d
¯̄

and the
internal deformation tensor b

¯̄
k.

The stress models of appendix A are only a subset of equation (2.21), and have the generic
form

λkb
¯̄

2

k + g
¯̄
k = 0

¯̄
, (2.22)

in which g
¯̄
k is an isotropic tensor function (in general non-linear) of the internal deformation

tensor of the kth mode, b
¯̄
k. The mixed (or Gordon–Schowalter) convected derivative of a tensor

(
2

) is defined by

(
2

) = (˙) − L̂
¯̄
· ( ) − ( ) · L̂

¯̄
T ,

L̂
¯̄

= L
¯̄
− ξkd

¯̄
, (2.23)

in which ξk is a parameter for which holds 0 ≤ ξk ≤ 2. The values 0 < ξk < 2 represent a
sort of frictionless slip of the internal microstructure with respect to the macroscopic flow. In
section 2.3, where the thermodynamics of viscoelastic fluids is given, it will be shown that the

slip is indeed frictionless or non-dissipative. The upper-convected derivative (
5
) is a special case

of the mixed convected derivative:
(
5
) = (

2

)ξk=0. (2.24)

For a zero Newtonian viscosity ηs = 0, only the values for the upper-convected derivative,
ξk = 0, and the lower convected derivative, ξk = 2, can be used. Other values may cause
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unphysical instabilities, so-called Hadamard instabilities. See for example Leonov (1992). The
addition of a Newtonian viscosity ηs stabilises the system of equations in that case.

The model (2.22) corresponds to an irreversible rate-of-deformation tensor

d
¯̄

irr,k = ξkd
¯̄

+
1

2λk
b
¯̄
−1
k · g

¯̄
k (2.25)

in the equation (2.21) given by Leonov. The specific form of the tensor g
¯̄
k for some viscoelastic

stress models can be found in appendix A. It is good to keep in mind that for polymeric
fluids there is not one equation that is able to describe the stress under all types of flow, even
isothermally. For specific types of flow, however, some models give good results. See for example
Tanner (1985) or Larson (1988) for the predictions of different stress models for various flow
types.

As usual for multi-mode models it has been assumed that different modes have no direct
interaction with each other, so there are K decoupled equations for the modal stresses. From
the Cayley–Hamilton relation it follows that it is sufficient to consider functions g

¯̄
k that only

depend on three different powers of b
¯̄
k, for example I

¯̄
, b
¯̄
k and b

¯̄
2
k. With the help of (2.18) all

other powers of b
¯̄
k can be expressed in these three tensors and the invariants of b

¯̄
k.

In appendix A a short overview is given of some well-known isothermal differential stress equa-
tions, i.e. the specific form of g

¯̄
k in (2.22) and Bk in (2.19). A first extension to nonisothermal

models are temperature dependent coefficients, such as the relaxation times and the viscosities.
This temperature dependence will be the subject of section 2.5.1.

2.3 Thermodynamics of isotropic materials

In this section the nonequilibrium thermodynamics of isotropic materials5 will be discussed
extensively. The thermodynamics are necessary to calculate a temperature equation from the
balance of internal energy for the stress models discussed in section 2.2. The emphasis is on the
thermodynamics of viscoelastic fluids. However, all the time the more easy thermodynamics
of viscous fluids and elastic materials will be discussed shortly as well for comparison. The
discussion will be restricted to rheologically simple materials. This means that the principle of
local action holds: the response of a material in a material point is determined by the processes
found in the infinitesimal material surroundings. Practically all constitutive equations are based
on the principle of local action.

The starting point of the thermodynamics is the usual Gibbs equation for a material in
equilibrium. The reader, who is not familiar with thermodynamics, is referred to Callen (1960),
Pippard (1966) or Kuiken (1994). The equilibrium Gibbs equation will first be extended to
non-equilibrium situations. Then internal variables will be introduced to describe the relaxation
phenomena. Combination of the resulting Gibbs equation with the balance of internal energy
gives the balance of entropy. The balance of entropy of a viscoelastic fluid has a similarity to
both viscous fluids and elastic solids. A viscous fluid can only dissipate energy and an elastic
material is only able to store and release elastic energy. A viscoelastic fluid can both dissipate

5For an isotropic material all anisotropy is a consequence of the anisotropy in the deformation history. The
relation between some quantity and the deformation history has to be an isotropic relation.
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and store or release the energy. Analogously to Leonov (1976, 1987) the balance of entropy of
viscoelastic fluids will be used to separate the reversible and the irreversible part of the stress
and the rate-of-deformation. The resulting general constitutive equations for the irreversible
stress and the irreversible rate-of-deformation tensor contain the stress models in appendix A.
The details about the constitutive equation for the heat flux are postponed until section 2.4.
Finally the temperature equation will be derived from the balance of entropy. The emphasis
is on the usage of the heat capacity, the energy and entropy elasticity and the temperature
changes due to compression and expansion. As an example the theory will be applied to the
neo-Hookean stress model.

2.3.1 The Gibbs equation

For a rheologically simple material at rest, a fluid or a solid, the entropy per unit of mass s
is a function of the internal energy per unit of mass u and the deformation of the material:
s = s(u, F

¯̄
), where F

¯̄
= ∂x

¯
/∂X

¯
is the deformation gradient tensor which describes the de-

formation with respect to a reference configuration described by the position vector X
¯

. For
a comprehensive introduction of deformation tensors see Truesdell & Noll (1965) or Tanner
(1985). If the material is isotropic the deformation is fully described by the Finger tensor
b
¯̄

= F
¯̄
· F

¯̄
T . Then the entropy is a function of the Finger tensor and the internal energy:

s = s(u, b
¯̄
) = s(u, tr b

¯̄
, tr b

¯̄
−1, det b

¯̄
). The change of the entropy can be described by the Gibbs

equation

du = Tds+ P
¯̄

: db
¯̄
, (2.26)

where P
¯̄

is the conjugated force of the Finger tensor. An isotropic fluid does not have any
preferential configuration. Then the entropy reduces to s = s(u, det b

¯̄
) = s(u, ρ). For a fluid in

equilibrium the Gibbs equation reduces to

du = Tds− pdρ−1 = Tds+
p

ρ2
dρ, (2.27)

where p is the thermodynamic pressure.

For non-homogeneous systems the principle of local and instantaneous equilibrium is as-
sumed to hold. The assumption is that, although the total system is not in equilibrium, the
system consists of small volume elements for which the local entropy s is the same function
as in real equilibrium. The length and time scale of such an element are infinitesimally small
from a macroscopic point of view and large from a molecular point of view. This means that
the thermodynamic equations are still valid if the differentials d( ) are replaced by the mate-

rial derivatives ˙( ). For a comprehensive discussion of the principle of local and instantaneous
equilibrium refer to Kuiken (1994).

The relaxation phenomena of viscoelastic fluids can not be described with the Gibbs equa-
tion (2.27) together with the principle of local and instantaneous equilibrium. In the ther-
modynamics of irreversible processes the relaxation phenomena are characterised by internal
processes. These internal processes can be described by so-called internal variables, which ap-
pear in the Gibbs equation and the equations of state. For a comprehensive description of the
introduction of internal variables refer to Kuiken (1994).

With the principle of local and instantaneous equilibrium and the introduction of internal
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variables the Gibbs equation then becomes

u̇ = T ṡ+
N∑
n=1

Pnżn, (2.28)

where zn are the mechanical state variables (the Finger tensor or the density and the internal
variables) and Pn the conjugate forces. Note that s and zn are the independent state variables.

For the thermodynamics of elastic materials and viscous or viscoelastic fluids it is sometimes
more advantageous to use the Helmholtz free energy ψ, which is defined as

ψ = u− Ts. (2.29)

Combination with the Gibbs equation (2.28) gives an expression for the change of the free
energy per unit of mass

ψ̇ = −sṪ +
N∑
n=1

Pnżn. (2.30)

Note that now the independent state variables are T and zn. The equations of state for the
entropy and the conjugate forces are then

s = − ∂ψ

∂T

∣∣∣∣∣
z

, Pn =
∂ψ

∂zn

∣∣∣∣∣
T,z′n

, (2.31)

where a |x means a quantity at constant x. In the notation in (2.31) a |z is used if all mechanical
state variables are constant and a |z′n if all state variables are constant except the nth mechanical
state variable.

Viscous fluids

For a viscous fluid the only mechanical state variable is the density. The Gibbs equation then
becomes

u̇ = T ṡ+
p

ρ2
ρ̇, (2.32)

and the equations of state

s = − ∂ψ

∂T

∣∣∣∣∣
ρ

, p = ρ2∂ψ

∂ρ

∣∣∣∣∣
T

, (2.33)

where p is the thermodynamic pressure.

It will be useful to introduce the following definitions for the thermodynamic coefficients of
viscous fluids

cp = T
∂s

∂T

∣∣∣∣∣
p

, cv = T
∂s

∂T

∣∣∣∣∣
ρ

,

−α
ρ

=
∂s

∂p

∣∣∣∣∣
T

=
1

ρ2

∂ρ

∂T

∣∣∣∣∣
p

, κT =
1

ρ

∂ρ

∂p

∣∣∣∣∣
T

, (2.34)
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where cp is the heat capacity at constant pressure, cv the heat capacity at constant density, α
the coefficient of thermal expansion and κT the isothermal compressibility. The second equality
in (2.34)3 follows from (2.32) as follows

ġ = −sṪ + ρ−1ṗ, (2.35)

where g is the free enthalpy g = u− Ts− p/ρ. From the compatibility relation

∂

∂T

(
∂g

∂p

∣∣∣∣∣
T

)∣∣∣∣∣
p

=
∂

∂p


 ∂g

∂T

∣∣∣∣∣
p



∣∣∣∣∣∣
T

(2.36)

the second equality in (2.34)3 can easily be derived.

Elastic materials

For an isotropic elastic material the only mechanical state variable is the Finger tensor. The
Gibbs equation then becomes

u̇ = T ṡ+ P
¯̄

: ḃ
¯̄
, (2.37)

and the equations of state

s = − ∂ψ

∂T

∣∣∣∣∣
b
¯̄

, P
¯̄

=
∂ψ

∂b
¯̄

∣∣∣∣∣
T

. (2.38)

It will be useful to introduce the following definitions for the heat capacities of elastic
materials

cσ = T
∂s

∂T

∣∣∣∣∣
σ
¯̄

, cb = T
∂s

∂T

∣∣∣∣∣
b
¯̄

, (2.39)

where cσ is the heat capacity at constant stress σ
¯̄

and cb is the heat capacity at constant Finger
tensor b

¯̄
.

Viscoelastic fluids

For an isotropic viscoelastic fluid the mechanical state variables will be taken the density and
the K internal deformation tensors. So possible scalar internal variables describing the volume
relaxation or internal vector variables describing the relaxation of the heat flux will not be
taken into account. The Gibbs equation then becomes

u̇ = T ṡ+
p

ρ2
ρ̇ +

K∑
k=1

P
¯̄
k : ḃ

¯̄k
, (2.40)

and the equations of state

s = − ∂ψ

∂T

∣∣∣∣∣
ρ,b
¯̄

, p = ρ2∂ψ

∂ρ

∣∣∣∣∣
T,b
¯̄

, P
¯̄
k =

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,b
¯̄
′
k

, (2.41)

where p is the thermodynamic pressure and P
¯̄
k the conjugate force of the kth internal deforma-

tion tensor b
¯̄
k. A |b

¯̄
means that all K internal deformation tensors b

¯̄
k are constant. A |b

¯̄
′
k

will

be used if all K internal deformation tensors b
¯̄
k except the kth internal deformation tensor.
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Furthermore it will be useful to introduce the following definitions for the thermodynamic
coefficients of viscoelastic fluids

cp,τe = T
∂s

∂T

∣∣∣∣∣
p,τ
¯̄

e

, cp,b = T
∂s

∂T

∣∣∣∣∣
p,b
¯̄

,

−αT ,b

ρ
=

∂s

∂p

∣∣∣∣∣
T,b
¯̄

=
1

ρ2

∂ρ

∂T

∣∣∣∣∣
p,b
¯̄

, κT ,b =
1

ρ

∂ρ

∂p

∣∣∣∣∣
T,b
¯̄

, (2.42)

where cp,τe is the heat capacity at constant pressure and elastic stress τ
¯̄
e, cp,b is the heat

capacity at constant pressure and internal deformation tensors b
¯̄
k, αT ,b the coefficient of thermal

expansion at constant internal deformation and κT ,b the isothermal compressibility at constant
internal deformation. The second equality in (2.42)3 follows from (2.40), analogously to the
derivation for viscous fluids.

2.3.2 The balance of entropy

Combination of the balance of internal energy (2.10) and the Gibbs equation (2.28) gives the
balance of entropy

ρT ṡ = −∇ · φ
¯
q + σ

¯̄
: d
¯̄
− ρ

N∑
n=1

Pnżn, (2.43)

or in the local balance form

ρṡ = −∇ · J
¯
s + Πs,

J
¯
s =

1

T
φ
¯
q,

TΠs = −T−1φ
¯
q · ∇T + σ

¯̄
: d
¯̄
− ρ

N∑
n=1

Pnżn, (2.44)

where J
¯
s is the entropy flux and Πs the entropy production. The second law of thermodynamics

states that the entropy production must be non-negative: Πs ≥ 0.
In the next part of this section the specific equations for the entropy production of viscous

fluids, elastic materials and viscoelastic fluids will be given.

Viscous fluids

For viscous fluids the two independent state variables are the temperature T and the density
ρ. Thus the viscous entropy production Πv

s is simply

TΠv
s = −T−1φ

¯
q · ∇T + σ

¯̄
: d
¯̄
− p

ρ
ρ̇ = T−1φ

¯
q · ∇T + 2ηd

¯̄
: d
¯̄

+ (ηv − 2
3
η) (∇ · v

¯
)2, (2.45)

where the pressure term has been eliminated with the help of the balance of mass (2.1) and
(2.11) has been used for the viscous stress. From the restriction that the entropy production
has to be non-negative for independent ∇T , d

¯̄
− (∇ · v

¯
/3)I

¯̄
and ∇ · v

¯
it follows that the shear

viscosity η and the bulk viscosity ηv are non-negative.

Elastic materials

For an isotropic elastic material the independent state variables are the temperature T and
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the Finger tensor b
¯̄
. Note that the density ρ is not an independent state variable for elastic

materials. From the continuum mechanics it follows that ρ0/ρ = detF
¯̄

=
√

det b
¯̄
, where ρ0 is

the density in the reference state. This result can again be found after multiplication of (2.13)
scalarly with b

¯̄
−1. Combination of the result with the mass balance (2.1) gives the following

relation between the Finger tensor b
¯̄

and the density: ρ
√

det b
¯̄

= ρ0.

With (2.38) the entropy production for an elastic material Πe
s becomes

TΠe
s = −T−1φ

¯
q · ∇T + σ

¯̄
: d
¯̄
− ρ

∂ψ

∂b
¯̄

∣∣∣∣∣
T

: ḃ
¯̄
. (2.46)

Combination with (2.13) gives

TΠe
s = −T−1φ

¯
q · ∇T +

(
σ
¯̄
− ρ

(
b
¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

+
∂ψ

∂b
¯̄

∣∣∣∣∣
T

· b
¯̄

))
: d
¯̄

+

ρ

(
−b

¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

+
∂ψ

∂b
¯̄

∣∣∣∣∣
T

· b
¯̄

)
: w

¯̄
, (2.47)

where the vorticity tensor is defined as w
¯̄

= 1/2(L
¯̄
− L

¯̄
T ). From the assumption that the

material is isotropic, it follows that

b
¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

=
∂ψ

∂b
¯̄

∣∣∣∣∣
T

· b
¯̄
,

TΠe
s = −T−1φ

¯
q · ∇T +

(
σ
¯̄
− 2ρb

¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

)
: d
¯̄
. (2.48)

For an ideal elastic material it is assumed that no energy is dissipated due to mechanical
work. Because the mechanical entropy production has to vanish for any d

¯̄
, (2.48) gives a relation

between the stress and the free energy of an elastic material:

σ
¯̄

= 2ρb
¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

. (2.49)

The elastic entropy production now becomes

TΠe
s = −T−1φ

¯
q · ∇T. (2.50)

The constitutive equation for the heat flux will not be examined in this section. This will be
postponed until section 2.4.

For an incompressible material (ρ = ρ0, the density in the reference state, and det b
¯̄

= 1)
the isotropic part remains rheologically undetermined. The stress may then be written as

σ
¯̄

= −pI
¯̄

+ τ
¯̄

= −(p + c)I
¯̄

+ 2ρ0b
¯̄
· ∂ψ
∂b
¯̄

∣∣∣∣∣
T

, (2.51)

where c is chosen such that in equilibrium, i.e. b
¯̄

= I
¯̄
, this equation reduces to σ

¯̄
= −pI

¯̄
.

The free energy for an incompressible material is then ψ = ψ(tr b
¯̄
, tr b

¯̄
−1, T ). Comparison with
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(2.12) and using (2.20) gives an expression for the free energy of an incompressible neo-Hookean
elastic material. Then the constant c equals the shear modulus. The shear modulus G is then
only a function of the temperature and the integration with respect to b

¯̄
of (2.51) can easily be

performed:

ψ =
G

2ρ0
(tr b

¯̄
− 3) + ψ(T ), (2.52)

where ψ is an arbitrary function of the temperature, which vanishes in equilibrium. The
constant in the first term on the right-hand side has been added to make the free energy vanish
in equilibrium6.

Viscoelastic fluids

For an isotropic viscoelastic fluid the independent state variables are the temperature T , the
density ρ and the K internal deformation tensors b

¯̄
k. With (2.41) the entropy production for a

viscoelastic fluid Πve
s becomes

TΠve
s = −T−1φ

¯
q · ∇T + σ

¯̄
: d
¯̄
− ρ

K∑
k=1

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

: ḃ
¯̄k

− ρ
∂ψ

∂ρ

∣∣∣∣∣
T,b
¯̄

ρ̇. (2.53)

For models of the form (2.21) this results in

TΠve
s = −T−1φ

¯
q · ∇T +


σ

¯̄
−

K∑
k=1

2ρb
¯̄
k ·

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

− ρ2 ∂ψ

∂ρ

∣∣∣∣∣
T,b
¯̄

I
¯̄


 : d

¯̄
+

2ρ
K∑
k=1


 ∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

: d
¯̄

irr,k


 , (2.54)

where the isotropy of the material has been used to eliminate the vorticity tensor, analogously
to the derivation of the entropy production for elastic materials. The material derivative of the
density has been eliminated with the mass balance (2.1).

Leonov (1976) assumes that the high-elasticity state is a local equilibrium state, which can
be characterised by the internal deformation tensors b

¯̄
k. This means that, besides the usual

local state variables ρ and T , all coefficients may depend on the internal deformation tensors b
¯̄
k,

or invariants of them, as well. The mechanical entropy production is caused by small deviations
from this equilibrium. It will be assumed that the high-elasticity state can be described by K
internal deformation tensors. Analogously to the elastic case, (2.49), a mode of the equilibrium
stress τ

¯̄
e,k is defined by

τ
¯̄
e,k = 2ρb

¯̄
k ·

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

. (2.55)

The total elastic stress is the sum over the K modes, τ
¯̄
e =

∑K
k=1 τ¯̄

e,k.
With the definitions of the elastic stresses (2.55), the entropy production of a viscoelastic

fluid can be written as

TΠve
s = −T−1φ

¯
q · ∇T + τ

¯̄
irr : d

¯̄
+

K∑
k=1

d
¯̄

irr,k : τ
¯̄
e,k, (2.56)

6In section 3.2.1 it will be shown that for det b
¯̄

= 1 holds tr b
¯̄
≥ 3 and thus ψ ≥ 0.
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where the definition of the thermodynamic pressure (2.41) has been used to eliminate the free
energy derivative with respect to the density. The irreversible stress is defined as

τ
¯̄

irr = σ
¯̄
− τ

¯̄
e + pI

¯̄
= τ

¯̄
− τ

¯̄
e, (2.57)

where the last equality follows from (2.5). The terms contributing to the entropy production
(2.56) consist of the product of a thermodynamic flux and its conjugate force. The fluxes are
the heat flux φ

¯
q, the irreversible stress τ

¯̄
irr and the irreversible deformation tensors d

¯̄
irr,k. The

conjugate forces are the temperature gradient T−1∇T , the rate-of-deformation tensor d
¯̄

and
the elastic stresses τ

¯̄
e,k.

The irreversible stress τ
¯̄

irr, the irreversible rate-of-deformation tensors d
¯̄

irr,k and the heat
flux φ

¯
q still have to be specified by phenomenological relations. In the thermodynamics of

irreversible processes it is assumed that the thermodynamic fluxes can be described by a linear
combination of the forces. Then the general form of the phenomenological equations is

φ
¯
q = T−1Λ

¯̄
qq · ∇T + Λ

˜̄
qd : d

¯̄
+

K∑
l=1

Λ
˜̄
qτe,l

: τ
¯̄
e,l,

τ
¯̄

irr = T−1Λ
˜̄
dq · ∇T + Λ

˜̃
dd : d

¯̄
+

K∑
l=1

Λ
˜̃
dτe,l

: τ
¯̄
e,l,

d
¯̄

irr,k = T−1Λ
˜̄
τe,kq · ∇T + Λ

˜̃
τe,kd : d

¯̄
+

K∑
l=1

Λ
˜̃
τe,kτe,l

: τ
¯̄
e,l, (2.58)

where a (
˜̄
) denotes a third order tensor and a (

˜̃
) a fourth order tensor. For the linear phe-

nomenological relations of isotropic materials two restrictions on the phenomenological coeffi-
cients can be derived, based on the symmetry properties. The first restriction is the Onsager–
Casimir reciprocal relation. The reciprocal relation for a coefficient Λαβ, of certain tensorial
order can be obtained by considering the time reversal of the variables α and β (i.e. a rever-
sion of the velocity). This means that Λαβ = −Λβα if α is even and β is odd with respect
to the time reversal, or vice versa. Λαβ = Λβα if α and β are both even or odd with respect
to the time reversal. In equation (2.58) this gives Λ

˜̃
τe,kd = −Λ

˜̃
dτe,k

. The second restriction is
the Curie principle. In an isotropic system the coefficients do not change under an arbitrary
rotation. Then thermodynamic fluxes and forces of different tensorial order are not coupled, so
Λ
˜̄
τe,kq = Λ

˜̄
qτe,k

= 0
˜̄

and Λ
˜̄
dq = Λ

˜̄
qd = 0

˜̄
in equation (2.58). This so-called Curie principle follows

from spatial symmetry considerations. A proof of both properties can for example be found in
de Groot & Mazur (1984) or Kuiken (1994).

Equation (2.58) has now been simplified considerably. The phenomenological equation for
the heat flux, which has been reduced to φ

¯
q = T−1Λ

¯̄
qq · ∇T with application of the Curie

principle, will not be examined in this section. It will be postponed until section 2.4. In the
remainder of this subsection only the linear relations (2.58) for the irreversible stress and the
irreversible rate-of-deformation tensor, will be treated. They become after application of the
Onsager–Casimir reciprocal relations and the Curie principle

τ
¯̄

irr = Λ
˜̃
dd : d

¯̄
−

K∑
l=1

Λ
˜̃
dτe,l

: τ
¯̄
e,l,

d
¯̄

irr,k = Λ
˜̃
dτe,k

: d
¯̄

+
K∑
l=1

Λ
˜̃
τe,kτe,l

: τ
¯̄
e,l, (2.59)
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where the fourth order tensors Λ
˜̃

may depend on the local state variables ρ, T and b
¯̄
k. In the

following it will be assumed that the irreversible rate-of-deformation tensor d
¯̄

irr,k only depends
on the kth internal deformation tensor b

¯̄
k, i.e. Λ

˜̃
τe,kτe,l

= 0
˜̃

for k 6= l, so that (2.59)2 becomes

d
¯̄

irr,k = Λ
˜̃
dτe,k

: d
¯̄

+ Λ
˜̃
τe,kτe,k

: τ
¯̄
e,k. (2.60)

This is the same assumption as for the multi-mode models in section 2.2. Substitution of (2.60)
in the viscoelastic entropy production (2.56) gives

TΠve
s = −T−1φ

¯
q · ∇T + d

¯̄
: Λ

˜̃
dd : d

¯̄
+

K∑
k=1

τ
¯̄
e,k : Λ

˜̃
τe,kτe,k

: τ
¯̄
e,k. (2.61)

Due to the restriction that the entropy production has to be non-negative for independent ∇T ,
d
¯̄

and τ
¯̄
e,k the tensors Λ

˜̃
dd and Λ

˜̃
τe,kτe,k

have to be positive definite. The cross terms with Λ
˜̃
dτe,k

are non-dissipative, so the entropy production does not give any restriction on these tensors.
Comparing the equations for the irreversible rate-of-strain tensor (2.60) and (2.25) for the

models (2.22) leads to

Λ
˜̃
dτe,k

= ξkI
˜̃
, Λ

˜̃
τe,kτe,k

: τ
¯̄
e,k =

1

2λk
b
¯̄
−1
k · g

¯̄
k, (2.62)

which shows that the frictionless slip in the mixed convected derivative, represented by the pa-
rameter ξk, is indeed non-dissipative. Comparing the constitutive equations for the irreversible
stress (2.59)1, (2.57) and (2.15) then gives

Λ
˜̃
dd = 2ηsI

˜̃
+ (ηs,v − 2

3ηs) I¯̄
I
¯̄
, τ

¯̄
e,k =

1

1 − ξk
τ
¯̄
k. (2.63)

The entropy production (2.61) can then be written as

TΠve
s = −T−1φ

¯
q · ∇T + 2ηsd

¯̄
: d
¯̄

+ (ηs,v − 2
3
ηs) (∇ · v

¯
)2 +

K∑
k=1

1

2λk(1 − ξk)

(
τ
¯̄
k · b

¯̄
−1
k

)
: g
¯̄
k. (2.64)

The entropy production consists of three separate parts. The first term represents the entropy
production due to heat conduction. The second and third term are the contributions of the
Newtonian part, which is the same as the viscous mechanical entropy production in (2.45).
From the restriction that the entropy production has to be non-negative it follows that ηs ≥ 0
and ηs,v ≥ 0. The last term is the viscoelastic contribution, which depends on the specific stress
model. The expressions for the multi-mode part of the dissipation TΠve

s and the restrictions
for the coefficients of the specific stress models of appendix A are given in appendix B.

For the models of appendix A the relation between the stress and the internal deformation
tensor is given by (2.19). It then follows from (2.55) and (2.63)2 that the derivative of the free
energy with respect to an internal deformation tensor b

¯̄
k equals

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

=
Gk

2ρ(1 − ξk)2

(
BkI

¯̄
− b

¯̄
−1
k

)
, (2.65)
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where Gk may depend on the temperature and the density. With the help of (2.20) equation
(2.65) can easily be integrated for the stress models of appendix A. For the models with Bk = 1
it becomes7:

ψ =
K∑
k=1

Gk

2ρ(1 − ξk)2
(I1,k − ln I3,k − 3) + ψ(ρ, T ), (2.66)

and for the Larson model with Bk = (1 + βk(I1,k − 3)/3)−1 the free energy is given by

ψ = −
K∑
k=1

Gk

2ρ

(
3

βk
lnBk + ln I3,k

)
+ ψ(ρ, T ), (2.67)

when βk 6= 08. With a Taylor expansion around βk = 0 it is easy to show that in the limit
βk → 0 the free energy (2.66) is obtained. The part of the free energy that is independent
of the internal deformation tensor, ψ, is an arbitrary function of the other independent state
variables, the temperature and the density. Note that when ψ vanishes in equilibrium, both
expressions for the internal energy vanish in equilibrium.

2.3.3 The temperature equation

With the help of the balance of entropy (2.44) it is now possible to obtain a temperature
equation. Except the heat flux, the right-hand side of (2.44) has been elaborated. The heat
flux will be the topic of section 2.4. In the following part of this section the left-hand side of
(2.44), the material derivative of the entropy, will be worked out. This results in the temperature
equation for viscoelastic fluids. However, for comparison the temperature equations for viscous
fluids and elastic materials will be given first.

Viscous fluids

The change of the entropy, which is considered as a function of the temperature and pressure
s = s(T, p), can be written as

ṡ =
∂s

∂p

∣∣∣∣∣
T

ṗ+
∂s

∂T

∣∣∣∣∣
p

Ṫ = −α
ρ
ṗ+

cp
T
Ṫ , (2.68)

where α is the coefficient of thermal expansion and cp the heat capacity at constant pressure.
These coefficients may depend on the state variables p and T . In the derivation use has been
made of the definitions of the heat capacity and the coefficient of thermal expansion (2.34)1,3.
Substitution of (2.68) in the local entropy balance (2.44) with the viscous entropy production
(2.45), gives the temperature equation

ρcpṪ − Tαṗ = TΠv
s − T∇ · J

¯
s = Dv

m −∇ · φ
¯
q,

Dv
m = TΠv

s |∇T=0
¯

= τ
¯̄

: d
¯̄

= 2ηd
¯̄

: d
¯̄

+ (ηv − 2
3
η) (∇ · v

¯
)2, (2.69)

7It is essential to take the ln I3,k term into account in the neo-Hookean and Larson free energies. This
term results in the isotropic term in (2.19). The ln I3,k term represents the free energy of noninteracting
macromolecules (Carreau & Grmela 1991). Other free energies of some micro-rheological models, such as the
FENE free energy and the free energy in an entangled network, have been discussed by Carreau & Grmela
(1991).

8Note that ψ − ψ is non-negative for both the neo-Hookean and the Larson free energy. This result simply
follows after a decomposition on the principal axes. The resulting functions x − lnx − 1 for the neo-Hookean
free energy and 1/βk ln (1 + βk(x− 1)) − lnx for the Larson free energy are both non-negative for x > 0.
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where Dv
m is the viscous mechanical dissipation which equals the total amount of work, or stress

power, τ
¯̄

: d
¯̄
. In the remaining part the thermal expansion coefficient α and the heat capacity

cp will shortly be discussed.

The thermal expansion coefficient α.

In computations the thermal expansion is often not taken into account. For the mass balance
it is sufficient that |α∆T | � 1 to neglect the thermal expansion term. This will be clarified in
section 2.6. However, this condition is not sufficient to neglect the thermal expansion term in the
temperature equation. For shear flows the pressure gradient scales the same as the mechanical
dissipation, see also section 2.6. When the mechanical dissipation term in the temperature
equation is important Tα � 1 must hold to neglect the influence of thermal expansion in the
temperature equation. For normal processing temperatures this condition is much more severe
then the condition for the mass balance.

The heat capacity cp.

The heat capacity at constant pressure is related to the heat capacity at constant volume (2.34)2
by

cp = T
∂s

∂T

∣∣∣∣∣
p

= T
∂s

∂T

∣∣∣∣∣
ρ

+ T
∂s

∂ρ−1

∣∣∣∣∣
T

∂ρ−1

∂T

∣∣∣∣∣
p

= cv +
Tα2

ρκT

. (2.70)

The last equality follows from (2.34), the compatibility relation

∂s

∂ρ−1

∣∣∣∣∣
T

=
∂

∂ρ−1


 ∂ψ
∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
T

=
∂

∂T

(
∂ψ

∂ρ−1

∣∣∣∣∣
T

)∣∣∣∣∣
ρ

=
∂p

∂T

∣∣∣∣∣
ρ

(2.71)

and

0 =
∂p

∂T

∣∣∣∣∣
p

=
∂p

∂T

∣∣∣∣∣
ρ

+
∂p

∂ρ−1

∣∣∣∣∣
T

∂ρ−1

∂T

∣∣∣∣∣
p

. (2.72)

Thus only for incompressible viscous fluids the heat capacity at constant pressure would equal
the heat capacity at constant volume, otherwise cp is larger than cv.

Elastic materials

For isotropic elastic materials the change of the entropy, which is considered as a function of
the temperature and the Finger tensor s = s(T, b

¯̄
), can be written as

ṡ =
∂s

∂T

∣∣∣∣∣
b
¯̄

Ṫ +
∂s

∂b
¯̄

∣∣∣∣∣
T

: ḃ
¯̄

=
cb
T
Ṫ + ∆se

b, (2.73)

which defines the isothermal entropy change ∆seb for an elastic material. For the heat capacity
cb the definition (2.39)2 has been used. Substitution in the local entropy balance (2.44), with the
elastic entropy production (2.50), gives a temperature equation without mechanical dissipation:

ρcbṪ + ρT∆seb = −∇ · φ
¯
q,

De
m = TΠe

s|∇T=0
¯

= 0. (2.74)

Note that when the free energy is known as a function of b
¯̄

and T , it is possible to calculate
cb and the entropy derivative in ∆seb. These two quantities will be elaborated in the remaining
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part.

The entropy difference ∆se
b.

If the free energy function ψ is known, the entropy can be calculated with the help of the
equation of state (2.38)1. Differentiation with respect to the Finger tensor b

¯̄
then gives the

entropy difference ∆seb. Next, this entropy difference will be calculated for various forms of the
free energy function.

If the free energy can be written as ψ = ψT (T ) + ψb(b
¯̄
) the entropy does not depend on b

¯̄and the derivative of the entropy in ∆seb, and thus ∆seb itself, vanishes. In this case the entropy
is a function of the temperature only (u(b

¯̄
, T ) = ψ(b

¯̄
, T ) + Ts(T )) and the reversible part of

the energy will be stored as internal energy. Then the material is called energy elastic and the
polymer chains act like springs. An example is the neo-Hookean free energy (2.52) where the
shear modulus G does not depend on the temperature.

If the free energy consists of products of functions of the temperature and functions of the
invariants of the Finger tensor the derivative of the entropy does not vanish. For the example
that the free energy can be written ψ = ψT (T ) + Tψb(b

¯̄
) the derivative of the entropy becomes

with (2.38)1

ρ0T∆se
b = ρ0T

∂s

∂b
¯̄

∣∣∣∣∣
T

: ḃ
¯̄

= −ρ0
∂ψ

∂b
¯̄

∣∣∣∣∣
T

: ḃ
¯̄
, (2.75)

which equals exactly minus the stress work for elastic materials (see the derivation of the
mechanical dissipation for elastic materials in section 2.3.2). In this case the internal energy
is a function of the temperature only (u(T ) = ψ(b

¯̄
, T ) + Ts(b

¯̄
, T )) and the reversible part of

the energy will then be stored as entropy. Then the material is called entropy elastic and the
polymer chains act like rods which can not be stretched, but are oriented in a preferential
direction when they are deformed. An example is the neo-Hookean model (det b

¯̄
= 1 thus

ρ = ρ0), with a linear dependence on the temperature of G = TGref/Tref . Thus for a constant
shear modulus the work of the fluid is stored as internal energy (without a temperature change)
and when the modulus scales linearly with the temperature all the work of the elastic material
is stored as entropy which is attended with a (reversible) temperature rise as can be seen from
(2.74).

If the free energy is not known ∂s/∂b
¯̄
|T may be obtained from experimental results of the

temperature dependence of the stress τ
¯̄
. From the equation of state for the entropy (2.38) and

the relation (2.51) between the stress τ
¯̄

and the free energy of an incompressible fluid, it follows
that

∂s

∂b
¯̄

∣∣∣∣∣
T

= − ∂

∂b
¯̄


 ∂ψ
∂T

∣∣∣∣∣
b
¯̄



∣∣∣∣∣∣
T

= − ∂

∂T

(
∂ψ

∂b
¯̄

∣∣∣∣∣
T

)∣∣∣∣∣
b
¯̄

= − 1

2ρ0
b
¯̄
−1 · ∂τ¯̄

∂T

∣∣∣∣∣
b
¯̄

. (2.76)

Thus when some measurements of the temperature dependence of the stress are available,
∂s/∂b

¯̄
|T may be calculated from them.

The heat capacity cb.

In principle, the heat capacity can be calculated from the free energy. However, the free energy
is in general not completely known for a material, especially ψ in (2.52) and the temperature and
density dependence of the shear modulus are generally not known. Therefore the heat capacity
at constant deformation cb has to be related to a measurable quantity: the heat capacity at
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constant stress cσ or the value of the latter in equilibrium, denoted by c0σ. The heat capacity
at constant stress cσ is related to cb by

cσ = T
∂s

∂T

∣∣∣∣∣
σ
¯̄

= cb + ∆c = T
∂s

∂T

∣∣∣∣∣
b
¯̄

+ T
∂s

∂b
¯̄

∣∣∣∣∣
T

:
∂b
¯̄

∂T

∣∣∣∣∣
σ
¯̄

, (2.77)

where the definitions of the heat capacities in (2.39) have been used. If the free energy ψ(b
¯̄
, T )

is known ∆c, the difference between cσ and cb can be calculated. In the remaining part cb will
be related to cσ and c0σ for the example of a neo-Hookean material.

For the neo-Hookean free energy (2.52), where the shear modulus G depends only on the
temperature, ∆c can be calculated analytically. With the thermodynamic relation between the
entropy and the free energy (2.38) and the expression for the free energy of neo-Hookean elastic
materials (2.52) the entropy can be calculated:

s = − ∂ψ

∂T

∣∣∣∣∣
b
¯̄

= − 1

2ρ0

dG

dT
(tr b

¯̄
− 3) +

dψ

dT
. (2.78)

Differentiation of this equation with respect to the Finger tensor at constant temperature gives

∂s

∂b
¯̄

∣∣∣∣∣
T

= − 1

2ρ0

dG

dT
I
¯̄
. (2.79)

The last term on the right-hand side of (2.77) follows after differentiation of (2.12) with respect
to the temperature at constant stress:

0
¯̄

=
∂σ
¯̄

∂T

∣∣∣∣∣
σ
¯̄

= − ∂p +G

∂T

∣∣∣∣∣
σ
¯̄

I
¯̄

+
∂Gb

¯̄
∂T

∣∣∣∣∣
σ
¯̄

. (2.80)

The derivative of the pressure may be calculated as follows. From (2.12) it follows that the
determinant of the stress tensor equals

det σ
¯̄

= −(p +G) +G det b
¯̄

= −p. (2.81)

Differentiation with respect to the temperature at constant stress then gives

− ∂p

∂T

∣∣∣∣∣
σ
¯̄

= 0, (2.82)

for an incompressible material. Combination with (2.80) then gives9

∂b
¯̄

∂T

∣∣∣∣∣
σ
¯̄

= − 1

G

dG

dT
(b
¯̄
− I

¯̄
). (2.83)

9A non-vanishing derivative of G in (2.83) also implicates that the thermal expansion is anisotropic. This
topic will be discussed in more detail in section 2.5.1 about the temperature dependence of the shear modulus.
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Combination of (2.77), (2.79) and (2.83) gives an expression for ∆c, the difference between the
heat capacity at constant stress and the heat capacity at constant deformation

∆c = cσ − cb =
T

2Gρ0

(
dG

dT

)2

(tr b
¯̄
− 3). (2.84)

Note that if the shear modulus G does not depend on the temperature, the heat capacity at
constant stress equals the heat capacity at constant deformation. If G does depend on the
temperature a distinction has to be made between cσ and cb. For an incompressible elastic
material, det b

¯̄
= 1, it is possible to prove that tr b

¯̄
≥ 3. The proof will be given in section 3.2.1.

Thus except when tr b
¯̄

= 3, the heat capacity at constant stress is larger then the heat capacity
at constant volume cσ > cb (compare the result of viscous fluids cp > cv).

When cσ is measured (as function of the stress and temperature) the heat capacity that is
needed in (2.74) may be calculated from cb = cσ − ∆c. However, it is also possible to relate cb
to the heat capacity cσ in equilibrium. For a neo-Hookean material from (2.78):

cb
T

=
∂s

∂T

∣∣∣∣∣
b
¯̄

= − 1

2ρ0

d2G

dT 2
(tr b

¯̄
− 3) +

d2ψ

dT 2
. (2.85)

From this equation it follows that the arbitrary function of the temperature ψ in the neo-
Hookean free energy (2.52) can be related to the heat capacity c0b , which is the heat capacity
cb in the reference state b

¯̄
= I

¯̄
. If the shear modulus is constant or scales linearly with the

temperature the second derivative of G vanishes, so then holds cb = c0b for all b
¯̄
. The heat

capacity cb only depends on the temperature then. Otherwise, the dependence on the Finger
tensor is completely determined by the dependence on the Finger tensor of the neo-Hookean
free energy (2.52). It also follows from (2.85) and (2.84) that in equilibrium the heat capacity
at constant stress is equal to the heat capacity at constant deformation

c0σ = cσ|b
¯̄
=I
¯̄

= cb|b
¯̄
=I
¯̄

= c0b , (2.86)

where c0σ = d2ψ/dT 2 is only a function of the temperature. The heat capacity at constant
deformation cb, which is needed in (2.74), may then also be written as

cb = c0σ − ∆c0 = c0σ −
1

2ρ0

d2G

dT 2
(tr b

¯̄
− 3). (2.87)

If the temperature dependence of the shear modulus is known, it only remains to determine the
heat capacity c0σ = c0b as a function of the temperature. With the help of some measurements
of cσ it is then possible to check whether the model for the free energy is appropriate. Note
that when the shear modulus G scales linearly with the temperature the second term on the
right-hand side of (2.87) cancels and cb = c0σ for all possible deformations.

In terms of c0σ the temperature equation for an incompressible neo-Hookean material finally
becomes

ρ0(c
0
σ − ∆c0)Ṫ + ρ0T∆se

b = −∇ · φ
¯
q,

∆se
b =

∂s

∂b
¯̄

∣∣∣∣∣
T

: ḃ
¯̄
,

∆c0 =
1

2ρ0

d2G

dT 2
(tr b

¯̄
− 3), (2.88)



28 Chapter 2: Governing equations

which follows from (2.74) and (2.87).

Viscoelastic fluids

For a viscoelastic fluid the change of the entropy, which is considered as a function of the
temperature, the thermodynamic pressure and the internal deformation tensors s = s(T, p, b

¯̄
k),

can be written as

ṡ =
∂s

∂T

∣∣∣∣∣
p,b
¯̄

Ṫ +
∂s

∂p

∣∣∣∣∣
T,b
¯̄

ṗ+
K∑
k=1

∂s

∂b
¯̄
k

∣∣∣∣∣
p,T,b

¯̄
′
k

: ḃ
¯̄k

=
cp,b
T
Ṫ − αT ,b

ρ
ṗ + ∆sve

b , (2.89)

which defines the entropy difference ∆sveb for a viscoelastic fluid. For the last equality the
definitions of the heat capacity and the thermal expansion coefficient (2.42)2,3 have been used.
The coefficients in (2.89) may still depend on the state variables p, T and the invariants of
b
¯̄
k. More details about the entropy difference and typical values for polymers of the thermal

expansion coefficient and the heat capacity in equilibrium can be found in section 2.5.1.
Substitution of the entropy change (2.89) in the local entropy balance (2.44) with the vis-

coelastic entropy production (2.53), gives a temperature equation for viscoelastic fluids10

ρcp,bṪ − TαT ,bṗ+ ρT∆sve
b = TΠve

s − T∇ · J
¯
s = Dve

m −∇ · φ
¯
q,

Dve
m = TΠve

s |∇T=0
¯

= τ
¯̄

: d
¯̄
− ρ

K∑
k=1

∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,ρ,b

¯̄
′
k

: ḃ
¯̄k
. (2.90)

The viscoelastic mechanical dissipation, the production of irreversible heat, equals the stress
work minus the isothermal change of the free energy. If the product of the derivatives in the
second term on the right-hand side of (2.90)2 is positive the mechanical dissipation is smaller
than the stress work and (elastic) energy is stored. If it is negative the stored (elastic) energy
is dissipated and the mechanical dissipation is larger than the stress work. With the help
of (2.55) the derivatives of the free energy in the mechanical dissipation may be eliminated
(compare section 2.3.2). The material derivatives of b

¯̄
k may be eliminated with the constitutive

differential equations of appendix A. The resulting expressions for the various stress models
are summarised in appendix B. Note that for steady homogeneous flows and fully developed
channel or pipe flows the material derivatives of b

¯̄
k in (2.90)2 vanish and that the viscoelastic

mechanical dissipation Dve
m then equals the stress work τ

¯̄
: d
¯̄
.

If the free energy ψ(T, ρ, b
¯̄
k) is known completely, the stress, the mechanical dissipation and

the entropy derivatives in (2.90) may be calculated. Figure 2.1 gives an overview through which
derivatives these quantities are related to the free energy ψ. The entropy can be calculated
from the free energy with the equation of state (2.41)1. Differentiation of the entropy, with
respect to the concerned quantity, then gives the heat capacity cp,b, the thermal expansion

10In a similar way a temperature equation has been derived by Flaman (1990), Akkerman (1993) and Peters
(1995). By analogy with the theory for elastic materials the free energy (or entropy) has been split into two
parts in the first two articles. The first part only depends on a reduced internal deformation tensor (Flaman uses
b
¯̄
r
k = I

1/3
3,k b¯̄

and Akkerman b
¯̄
r
k = b

¯̄
−I1/3

3,k I¯̄
) and the second part only depends on the density and the temperature.

For viscoelastic materials this is rather strange, because the density and the internal deformation tensors are
independent variables. Peters only considers incompressible viscoelastic materials, where the free energy may
depend on both the temperature and the internal deformation tensors: ψ = ψ(b

¯̄k
, T ). For the models with an

upper-convected derivative his results for the mechanical dissipation are in error.
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Figure 2.1: Overview of the derivatives through which the thermodynamic quantities are related to the free
energy ψ and the entropy s.

coefficient αT ,b and the entropy change ∆sveb . Unfortunately there are no measurements of the
free energy, so that ψ is often specified by a theoretical model. Therefore it is necessary to
express the coefficients in (2.90) in measurable quantities. In the remaining part of this section
the entropy difference ∆sve

b , the heat capacity cp,b and the thermal expansion coefficient αT ,b

will be related to quantities which have been measured or are more easily to measure. As an
example the coefficients will be elaborated for the neo-Hookean model. In the literature review
in section 2.5.1 the scaling of the moduli with the temperature and the density will be discussed,
which mainly determines the resulting coefficients. For these dependences all coefficients will
be calculated explicitly.

The entropy difference ∆sve
b .

If the free energy is not known ∂s/∂b
¯̄
k|p,T,b

¯̄
′
k

may be related to the temperature dependence of
the corresponding mode of the elastic stress τ

¯̄
e,k. From the equation of state for the entropy

(2.41) and the relation (2.55) between the elastic modal stress τ
¯̄
e,k and the free energy, it follows

that

∂s

∂b
¯̄
k

∣∣∣∣∣
T,p,b

¯̄
′
k

= − ∂

∂b
¯̄
k


 ∂ψ
∂T

∣∣∣∣∣
ρ,b
¯̄

k
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T,p,b

¯̄
′
k

= − ∂

∂T


 ∂ψ

∂b
¯̄
k

∣∣∣∣∣
T,p,b

¯̄
′
k
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ρ,b
¯̄

k

= − 1

2ρ
b
¯̄
−1
k · ∂τ¯̄k

+ ∆
¯̄
ψ

∂T

∣∣∣∣∣
ρ,b
¯̄

,

∆
¯̄
ψ =

∂ψ

∂ρ−1

∣∣∣∣∣
T,b
¯̄

∂ρ−1

∂b
¯̄
k

∣∣∣∣∣
p,T,b

¯̄
′
k

. (2.91)

The ∆
¯̄
ψ term vanishes if ρ = ρ(p, T ). Then the entropy derivative ∂s/∂b

¯̄
k|p,T,b

¯̄
′
k
is directly related

to the stress derivative, as for the relation for elastic materials (2.76). Thus then the entropy
derivative ∂s/∂b

¯̄
k|p,T,b

¯̄
′
k

may be calculated from experimental data, when some measurements
of the temperature dependence of the stress are available.

If the free energy is known, the entropy may be calculated from the equation of state for
the entropy (2.41). Differentiation of the entropy with respect to the internal deformation
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tensor b
¯̄
k then gives the entropy derivative in ∆sveb . The calculation will be performed for the

neo-Hookean and the Larson free energies, with various choices of the shear modulus G(ρ, T ).

Examples: ∆sve
b for the neo-Hookean and Larson free energies.

Successively the entropy difference will be calculated explicitly for the free energies with
constant moduli, moduli that depend linearly on the temperature and moduli that depend
linearly on the temperature and the density.

• If the free energy can be written as ψ(ρ, b
¯̄
k, T ) = ψρ(ρ, T )+ψbk(b¯̄

k), and if it is assumed
that ρ = ρ(p, T ), the entropy does not depend on b

¯̄
k and in ∆sve

b the derivatives of
the entropy with respect to the internal deformation tensor in (2.90) vanish. In this
case the entropy is a function of the temperature and the density or pressure only
(u(ρ, b

¯̄
k, T ) = ψ(ρ, b

¯̄
k, T ) + Ts(ρ, T )) and the reversible part of the energy is stored as

internal energy. The fluid is then called entirely energy elastic and the polymer chains
act like springs. The temperature equation (2.90) becomes

ρcp,bṪ − TαT ,bṗ = Dve
m −∇ · φ

¯
q,

Dve
m = 2ηsd

¯̄
: d
¯̄

+ (ηs,v − 2
3
ηs) (∇ · v

¯
)2 +

K∑
k=1

1

2λk(1 − ξk)

(
τ
¯̄
k · b

¯̄
−1
k

)
: g
¯̄
k, (2.92)

where the expression (2.64) has been used for the viscoelastic entropy production11.
Examples of the energy elasticity are the viscoelastic neo-Hookean free energy (2.66)
and the Larson free energy (2.67) where the shear moduli Gk, and the parameters βk
for the Larson free energy, do not depend on the temperature.

• If the free energy consists of products of functions of the temperature and functions of
the invariants of the internal deformation tensor, ψ(ρ, b

¯̄
k, T ) = ψρ(ρ, T )+ψbk(b¯̄

k, T ), the
derivatives of the entropy in ∆sveb do not vanish. If, for example, the free energy can
be written as ψ(ρ, b

¯̄
k, T ) = ψρ(ρ, T ) + Tψbk(b¯̄

k), the entropy difference ∆sveb becomes

∆sve
b =

K∑
k=1

∂s

∂b
¯̄
k

∣∣∣∣∣
p,T,b

¯̄
′
k

: ḃ
¯̄k

= −
K∑
k=1

1

T

∂ψ

∂b
¯̄
k

∣∣∣∣∣
p,T,b

¯̄
′
k

: ḃ
¯̄k

= −
K∑
k=1

1

T

∂ψ

∂b
¯̄
k

∣∣∣∣∣
ρ,T,b

¯̄
′
k

: ḃ
¯̄k
, (2.93)

where the equation of state for the entropy (2.41)1 has been used for the first and
ρ = ρ(p, T ) for the last equality. In this case the internal energy is a function of the
temperature and density or pressure only (u(ρ, T ) = ψ(ρ, b

¯̄
k, T ) + Ts(ρ, b

¯̄
k, T )) and the

reversible part of the energy is stored as entropy. Then the material is called entropy
elastic and the polymer chains act like rods, which are not stretched, but oriented in a
preferential direction when they are deformed. Examples of the entropy elasticity are
the neo-Hookean free energy (2.66) and the Larson free energy (2.67) where the shear
moduli depend linearly on the temperature Gk = TGk,ref/Tref and ρ = ρ(p, T ). For the
Larson model βk has to be independent of the temperature as well.
Substitution of ∆sve

b in(2.90)1 and comparison with the right-hand side of the mechan-
ical dissipation (2.90)2 shows that both terms cancel out. The temperature equation
for viscoelastic fluids then reduces to

ρcp,bṪ − TαT ,bṗ = τ
¯̄

: d
¯̄
−∇ · φ

¯
q. (2.94)

11Due to the condition ρ = ρ(p, T ) the derivative of the ψρ-term with respect to b
¯̄k

vanishes.
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Thus for a linear temperature dependence of the moduli Gk and ρ = ρ(p, T ) the stress
work contributes completely to the temperature change of the fluid. Contrary to the
case where Gk does not depend on the temperature, no elastic energy will be stored now.
However, a part of the heat, viz. τ

¯̄
: d
¯̄
−Dve

m , is reversible heat. This result is analogous
to the elastic case (2.75), except that then the whole stress work was converted into
reversible heat.

• If the free energy can be written as ψ(ρ, b
¯̄
k, T ) = ψρ(ρ, T ) + ρTψbk(b¯̄

k), the equality
(2.93) still holds. Thus the temperature equation is given by (2.94) as well. Examples
are the neo-Hookean and Larson free energies where the moduli are given by Gk =
ρTGk,ref/ρrefTref and ρ = ρ(p, T ). For the Larson model βk has to be independent of
the density and the temperature as well.

Experiments indicating whether a viscoelastic fluid is entropy, energy elastic or something
in between, will be discussed in the section about the temperature dependence of the shear
modulus in 2.5.1.

The heat capacity cp,b.

In principle, the heat capacity cp,b can be calculated from the free energy. However, the elastic
energy is in general not completely known for viscoelastic fluids, especially the ψ and the
temperature and density dependence of the shear moduli in the free energies (2.66) or (2.67) is
not known. Furthermore it is doubtful whether both free energies are still good approximations
for large deformation rates. Therefore the heat capacity at constant pressure and internal
deformation cp,b has to be related to a measurable quantity. This could be the heat capacity
at constant pressure and constant elastic stress or the value of the latter in equilibrium. The
heat capacity at a constant pressure and elastic stress cp,τe is related to cp,b by

cp,τe = T
∂s

∂T

∣∣∣∣∣
p,τ
¯̄

e

= cp,b + ∆c = T
∂s

∂T

∣∣∣∣∣
p,b
¯̄

+ T
K∑
k=1

∂s

∂b
¯̄
k

∣∣∣∣∣
T,p,b

¯̄
′
k

:
∂b
¯̄
k

∂T

∣∣∣∣∣
p,b
¯̄
′
k
,τ
¯̄

e,k

, (2.95)

where the definitions of the heat capacities (2.42) have been used. If the free energy ψ(b
¯̄
k, ρ, T )

is known ∆c, the difference between cp,τe and cp,b, can be calculated. For the neo-Hookean
model, with the free energy (2.66), this can be done analytically. For the Larson model it
is also possible to calculate the difference analytically. However, the ∂b

¯̄
k/∂T |p,b

¯̄
′
k
,τ
¯̄

e,k
is more

difficult to elaborate due to the nonlinear relation between the extra-stress and the internal
deformation. Therefore, only the expressions for the neo-Hookean model will be given.

Example: cp,b for the neo-Hookean free energy.

For the neo-Hookean model, with the free energy (2.66), the moduli are given by Gk =
Gk(ρ, T ). With the help of the thermodynamic relation between the entropy and the free
energy (2.41) the entropy may then be calculated by differentiation of ψ

s = − ∂ψ

∂T

∣∣∣∣∣
ρ,b
¯̄

= −
K∑
k=1

1

2ρ(1 − ξk)2

∂Gk

∂T

∣∣∣∣∣
ρ

(I1,k − ln I3,k − 3) +
∂ψ

∂T

∣∣∣∣∣
ρ

. (2.96)

Differentiation of this equation with respect to the kth internal deformation tensor at constant
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temperature, pressure and b
¯̄
l for all l except l = k gives

∂s

∂b
¯̄
k

∣∣∣∣∣
T,p,b

¯̄
′
k

= − 1

2ρ(1 − ξk)2

∂Gk

∂T

∣∣∣∣∣
ρ

(I
¯̄
− b

¯̄
−1
k ), (2.97)

where the assumption that ρ = ρ(p, T ) has been used. The last term on the right-hand side
of (2.95) may be calculated from (2.19) and (2.63). Differentiation of the elastic modal stress
τ
¯̄
e,k with respect to the temperature gives

0
¯̄

=
∂τ
¯̄
e,k

∂T

∣∣∣∣∣
p,b
¯̄
′
k
,τ
¯̄

e,k

=
Gk

(1 − ξk)2

∂b
¯̄
k

∂T
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p,b
¯̄
′
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e,k

+
1

(1 − ξk)2
(b
¯̄
k − I

¯̄
)
∂Gk

∂T
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p,b
¯̄
′
k
,τ
¯̄

e,k

. (2.98)

After rearrangement of this equation the expression for the last term on the right-hand side
of (2.95) becomes12

∂b
¯̄
k

∂T

∣∣∣∣∣
p,b
¯̄
′
k
,τ
¯̄

e,k

= − 1

Gk

∂Gk

∂T

∣∣∣∣∣
p

(b
¯̄
k − I

¯̄
). (2.99)

Combination of (2.95), (2.97) and (2.99) gives an expression for the heat capacity dif-
ference ∆c

∆c = cp,τe − cp,b =
K∑
k=1

T

2(1 − ξk)2ρGk

∂Gk

∂T

∣∣∣∣∣
p

∂Gk

∂T

∣∣∣∣∣
ρ

(I1,k + tr b
¯̄
−1
k − 6). (2.100)

Thus when cp,τe is measured the heat capacity cp,b that is needed in (2.90) may be calculated
from cp,b = cp,τe − ∆c, where ∆c is obtained from a viscoelastic model.

The term with the invariants in (2.100) vanishes in equilibrium and is always positive
out of equilibrium. A decomposition on the principle axes immediately proves this result,
because the function x+ 1/x− 2 has a local minimum at x = 1. So dependent on the signs
of the temperature derivatives of the moduli ∆c is positive or negative. It is illustrative to
distinguish the following examples.

• If Gk does not depend on the temperature, the heat capacity at constant pressure and
elastic stress equals the heat capacity at constant pressure and internal deformation.

• If Gk = Gk,refT/Tref is taken ∆c is positive. This is analogous to the viscous example,
where cp > cv, and the elastic example, where cσ > cb.

• If Gk = Gk,refρT/ρrefTref is taken, and ρ = ρ(p, T ), ∆c will still be positive, because
the temperature dependence of the density is weak. Then ∂Gk/∂T |p = (1− αT )Gk/T ,
which is positive (the thermal expansion coefficient in equilibrium is αTg ' 0.16 for
polymers, see section 2.5.1) in the temperature region where the scaling of the moduli
is valid.
For the neo-Hookean model it is also possible to relate cp,b to the heat capacity in

equilibrium. Differentiation of the entropy (2.96) gives an expression for cp,b

cp,b
T

=
∂s

∂T

∣∣∣∣∣
p,b
¯̄

= −
K∑
k=1

1

2(1 − ξk)2

∂

∂T


1

ρ

∂Gk

∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
p

(I1,k − ln I3,k − 3) +
∂

∂T


 ∂ψ
∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
p

. (2.101)

12A non-vanishing derivative of Gk in (2.99) also implicates that the thermal expansion is anisotropic. This
topic will be discussed in more detail in section 2.5.1 about the temperature dependence of the moduli Gk.
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From (2.101) it follows that the arbitrary function of the temperature and density ψ can be
related to the heat capacity in equilibrium ceqp,b = cp,b(b

¯̄
k = I

¯̄
). The heat capacity ceqp,b only

depends on the pressure and the temperature.
In equilibrium, where b

¯̄
k = I

¯̄
for all modes k = 1, ..., K, the heat capacity at constant

pressure and elastic stress equals ceqp,b:

ceqp,τe = cp,τe|b
¯̄

k=I
¯̄

= cp,b|b
¯̄

k=I
¯̄

= ceqp,b. (2.102)

Thus ceqp,τe also corresponds to the derivative of ψ in (2.101), which is only a function of
the pressure and the temperature. The heat capacity at constant pressure and internal
deformation is then

cp,b = ceqp,τe − ∆ceq = ceqp,τe −
K∑
k=1

T

2(1 − ξk)2

∂

∂T


ρ−1 ∂Gk

∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
p

(I1,k − ln I3,k − 3). (2.103)

If the temperature dependence of the shear modulus and the density are known, it only
remains to determine (measure) the heat capacity ceqp,τe = ceqp,b as a function of the pressure
and the temperature. The heat capacity difference ∆ceq is given by the (viscoelastic) model.

The term with the invariants in (2.103) vanishes in equilibrium and is positive out of
equilibrium. A decomposition on the principle axes immediately proves this result, because
the function x + ln x − 1 has a local minimum at x = 1. So, dependent on the sign of the
temperature derivative in (2.103), ∆ceq is positive or negative. It is illustrative to distinguish
the following examples.

• If Gk does not depend on the temperature the temperature derivative vanishes and
cp,b = ceqp,τe then. So cp,b can directly be obtained from published experimental data of
the heat capacity at constant pressure.

• If Gk = Gk,refT/Tref , the heat capacity difference ∆ceq becomes

∆ceq =
K∑
k=1

αT ,bGk

2ρ(1 − ξk)2
((I1,k − ln I3,k − 3)) , (2.104)

where the definition for the thermal expansion (2.42) has been used. Then the difference
∆ceq is positive, thus cp,b decreases when the material is deformed.

• If the shear modulus scales with Gk = Gk,refρT/ρrefTref the temperature derivative
in (2.103) vanishes. Then holds again that cp,b = ceqp,τe for all types of deformations.
So again cp,b can directly be obtained from published experimental data of the heat
capacity at constant pressure.

The thermal expansion coefficient αT ,b.

In nonisothermal computations of viscoelastic fluids the thermal expansion is often not taken
into account, due to the assumption of incompressible fluids. Even in shear flows this is not
always justified, as will be shown with a non-dimensional analysis in section 2.6: when the
mechanical dissipation term in the temperature equation is important αT ,bT � 1 should hold
to neglect the influence of thermal expansion term in the temperature equation. Although
the thermal expansion coefficient is relatively small, for normal processing temperatures this
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condition is not fulfilled for polymers. Refer to section 2.5.1 for the order of magnitude of the
thermal expansion coefficient.

When the free energy, or the entropy, is known the thermal expansion coefficient may be
calculated. For a neo-Hookean material the entropy is given by (2.96) and αT ,b can simply be
found by differentiation of the entropy.

Example: αT ,b for the neo-Hookean free energy.

For the neo-Hookean model, with the free energy (2.66), the moduli are given by Gk =
Gk(ρ, T ). It is illustrative to distinguish the following examples.

• If the density is constant and Gk = Gk(T ) only ψ may depend on the pressure and the
thermal expansion coefficient becomes

∂s

∂p

∣∣∣∣∣
T,b
¯̄

=
∂

∂p


 ∂ψ
∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
T

= α, (2.105)

where α equals the thermal expansion coefficient in equilibrium, which may still depend
on the temperature and the pressure.

• If ρ = ρ(p, T ) and Gk = Gk(T ) the thermal expansion coefficient becomes

∂s

∂p

∣∣∣∣∣
T,b
¯̄
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K∑
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1
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T,b
¯̄

dGk

dT
(I1,k − ln I3,k − 3) , (2.106)

which is approximately equal to α, because the isothermal compressibility κT , defined
by (2.42), is small for polymeric fluids.

• If ρ = ρ(p, T ) and Gk = ρGk(T )/ρref the thermal expansion coefficient becomes

∂s

∂p

∣∣∣∣∣
T,b
¯̄

= α. (2.107)

For these examples the thermal expansion coefficient in equilibrium α seems to be a good
approximation of αT ,b.

In terms of ceqp,τe and α the temperature equation for a viscoelastic fluid finally becomes

ρ
(
ceqp,τe − ∆ceq

)
Ṫ − Tαṗ+ ρT∆sveb = Dve

m −∇ · φ
¯
q,

Dve
m = 2ηsd

¯̄
: d
¯̄

+ (ηs,v − 2
3
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¯
)2 +
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1

2λk(1 − ξk)

(
τ
¯̄
k · b

¯̄
−1
k

)
: g
¯̄
k, (2.108)

where (2.64) has been used for the viscoelastic mechanical dissipation. For neo-Hookean models
the difference between the heat capacities ∆ceq is given by (2.103).

2.4 Heat flux constitutive equations

In this section the constitutive equation for the heat flux, which is still needed in the temperature
equation (2.90) or (2.108) will be discussed. Firstly a brief description will be given for viscous
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fluids and elastic materials. Then the heat flux constitutive equation for viscoelastic fluids
will be discussed more extensively. The discussion will be focused on a general form of the
well-known Fourier law, where the anisotropy caused by orientation of the polymer chains can
be taken into account.

Viscous fluids

For viscous fluids a widely used constitutive equation is Fourier’s law with an isotropic heat
conduction:

φ
¯
q = −κ∇T, (2.109)

where κ is the heat conduction coefficient. It may be a function of the state variables T and p.
In the literature of thermodynamics, another equation for the heat flux is proposed. It is

obtained when an internal vector process is introduced, similar to the internal tensor process for
the description of viscoelastic fluids (see Kuiken 1994). For one internal process and constant
coefficients the internal variable can be eliminated. With the upper-convected derivative as the
frame invariant derivative the following equation is obtained

λφφ
¯

5
q + φ

¯
q = −κ

(
∇T + λT∇T

5 )
,

φ
¯

5
q = φ̇

¯
q
− L

¯̄
· φ
¯
q, (2.110)

where (
5
) is the upper-convected derivative for a vector. A line below the convected derivative

denotes that the derivative works on the complete overlined quantity. If λT = 0 (2.110) reduces
to the Vernotte–Cattaneo equation. Then the term with the derivative of the heat flux avoids
that the heat propagates with an infinite velocity through the fluid. For a small relaxation
time λφ compared to the time scale of the flow, Fourier’s law is a good approximation of this
equation.

Elastic materials

For an isotropic elastic material the Fourier law for the heat flux can be described by

φ
¯
q = −κ

¯̄
· ∇T, (2.111)

where the heat conduction tensor κ
¯̄

may depend on the state variables, the temperature and
the Finger tensor b

¯̄
. For isotropic elastic materials κ

¯̄
is an isotropic tensor function of the Finger

tensor. Therefore the heat conduction tensor is symmetric, just as the Finger tensor.
The effect of orientation on the thermal conductivity of elastic rubbers has, among others,

been measured by Hands (1980). In his experiments thin sheets have been elongated biaxially
to a certain elongation ratio. Then the thermal conductivity perpendicular to the stretching
direction has been measured. The measurements show that the perpendicular conductivity
decreases when the elongation ratio is increased. The effect is considerable. The conductivity
perpendicular to the elongation at an elongation ratio ε = L/Leq = 1.8, where L is the length
of the sample in the direction of elongation, is only 25 % of the thermal conductivity at rest.
Van den Brule & O’Brien (1990) were able to fit the data of Hands (1980) with the model
κ
¯̄

= (1 − c)I
¯̄

+ cb
¯̄
, with c = 0.25
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.

Viscoelastic fluids

For an isotropic viscoelastic fluid the Fourier law for the heat flux has the general form

φ
¯
q = −κ

¯̄
· ∇T, (2.112)

where the heat conduction tensor κ
¯̄

corresponds to the tensor T−1Λ
¯̄
qq in the phenomenological

equation (2.58). In section 2.3 it has been shown that this was the most general expression if
the internal deformation tensors were the only internal variables. The heat conduction tensor
may still depend on the state variables: the internal deformation tensors b

¯̄
k, the density or

pressure, and the temperature. Mostly the thermal conductivity is a weak function of the
temperature, see section 2.5.1. For polymeric fluids no data could be found in the literature
about the pressure dependence. For an isotropic material the heat conduction tensor has to be
an isotropic tensor function of the internal deformation tensors. Due to the symmetry of b

¯̄
k the

heat conduction tensor will be symmetric as well.
Possible internal vector variables, as used by Kuiken (1994), have not be taken into account

in (2.112). For a viscous fluid the introduction of an internal vector variable led to (2.110).
Both equation (2.110) and (2.112) describe the relaxation of the heat flux. The internal vector
variables describe the relaxation of the heat flux due to the change of the temperature gradient.
The dependence of the heat conduction tensor on the internal deformation tensor describes the
relaxation due to the change of the velocity gradient. When the relaxation of the heat flux due
to the change of the temperature gradient is significant, internal vector variables, which fulfil a
certain frame invariant differential equation, may be added to the heat flux equation (2.112).
Then extra equations for the internal vector variables have to be solved and extra parameters,
such as relaxation times, have to be determined. Due to lack of experimental evidence the
internal vector variables will not be taken into account.

For nonisothermal simulations of viscoelastic fluids, following the standard practice of viscous
fluids, it is generally assumed that the heat conduction tensor is isotropic. Measurements show
however that this is not always correct. For most of the polymeric materials for which the
anisotropy has been measured the thermal conductivity parallel to the orientation increases
monotonically with increasing orientation. The thermal conductivity perpendicular to the
orientation decreases until a minimum value has been reached. Then it remains constant.

Before discussing the model for the anisotropic heat conduction, a short overview will be
given of some measurements of the anisotropy of the heat conduction tensor for various poly-
mers.

The effect of orientation on the thermal conductivity for the amorphous polymers poly-
methylmethacrylate (PMMA) and polystyrene (PS) has been measured by Washo & Hansen
(1969). The samples have first been stretched uniaxially to a certain elongation ratio. Next
they were cooled to room temperature and the thermal conductivities parallel and perpen-
dicular to the stretching direction have been measured. The elongation rate and the cooling
rate have not been reported, although this may be important in connection with the ratio of
the reversible and irreversible deformation and the possible relaxation after the elongation.

They found an increase of the heat conduction in the direction of orientation and a
decrease in the directions perpendicular to it, see figure 2.2. The effect is smaller than for
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the rubber experiments of Hands (1980). For an elongation ratio of ε = 4, κ⊥/κeq ' 0.85
and κ‖/κeq ' 1.4 for the most isotropic fluid. However, no asymptotic value for κ⊥ has been
reached then. There is also a temperature effect in the experiments of Washo & Hansen
(1969). The polymers are stretched at a temperature in the range of 373− 433 K and then
cooled to a temperature of 313 K at which the thermal conductivities are measured. The
increasing stretching temperature causes a decrease of the orientation and consequently a
decrease of the anisotropy.

Hellwege et al. (1963) have measured the anisotropy in a uniaxial elongation of PMMA,
polyvinylchloride (PVC), polycarbonate (PC) and polystyrol (PST). The stretching has
been performed in the liquid state. Then the samples were cooled down below the glass
transition temperature after which the anisotropy was measured. The deformations of the
polymer fluids could be considered as completely elastic, because compared to a reference
sample no dimensional changes were observed after relaxation in the liquid state. For PST
the anisotropy was relatively small, changes of less than 10 % for κ⊥ and κ‖ for ε = 5. For PC
the anisotropy was the largest, changes of about 25 % for κ⊥ and 40 % for κ‖ for an elongation
ratio smaller than one. For the PVC melt the influence on κ⊥ and κ‖ of the temperature has
been measured. For the equilibrium and the perpendicular thermal conductivity no measur-
able changes could be found. For the parallel thermal conductivity, however, a week linear
increase with the temperature was observed. With increasing elongation the slope ∂κ‖/∂T
becomes larger.

Picot et al. (1982) measured the perpendicular thermal conductivity for a polyethylene melt.
For shear rates of about 50 s−1 they found a small increase of the thermal conductivity of
about 2 %. Then κ⊥ decreased until the highest shear rate of 400 s−1. At the highest shear
rate the decrease of the perpendicular thermal conductivity was about 10 %. An asymptotic
value has not been reached then.

Wallace et al. (1985) measured the perpendicular thermal conductivity for two high density
polyethylene melts (HDPE) with different molecular weights in a Couette flow, between two
concentric cylinders. The measurements were done at a temperature of 433 K and a shear
rate up to 400 s−1. For the lower molecular weight polyethylene, κ⊥ decreased until it was
40 % of the equilibrium conductivity at 150 s−1. Then it remained constant up to the highest
shear rate. After shearing at 400 s−1, approximately 90 minutes were required to recover
the equilibrium thermal conductivity. For the higher molecular weight polyethylene κ⊥ de-
creased, until it was 30 % of the equilibrium conductivity at 50 s−1. Then it increased again
until 10 % above κeq at a shear rate of 300 s−1. They gave a rather speculative explanation,
without paying attention to degradation and heat production due to dissipation.

Choy et al. (1978, 1981) measured the parallel and perpendicular conductivity for semicrys-
talline polymers with a different amount of crystallinity, one of it was HDPE. The tempera-
ture was between the glass transition temperature and the melting temperature. They found
that for the amorphous polymer the effect of the stretching is relatively small compared to
semicrystalline polymers. For amorphous polymers the ratio of the thermal conductivities
parallel and perpendicular to the direction of elongation can be κ‖/κ⊥ ' 2 for an elonga-
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tion ratio of ε = 4 (Godovsky 1992). For semicrystalline polymers it can be much more:
κ‖/κ⊥ ' 10 for HDPE. See figure 2.3.

Figure 2.2: Thermal conductivities in the direction of
orientation and perpendicular to the orientation for
various amorphous polymers. A 2 denotes data of
polystyrene and a ◦ data of plexiglas PMMA. From
Washo & Hansen (1969).
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Figure 2.3: Thermal conductivities in the direction
of orientation and perpendicular to the orientation
for various polymer melts as function of the elonga-
tion. The anisotropy increases with the amount of
crystallinity of the polymer. From Choy et al. (1981).

The physical idea behind the anisotropy of the heat conduction is that energy can be trans-
ported more easily along the backbone of polymer chains than from one chain to another. The
interaction between two neighbouring molecules is determined by relatively weak van der Waals
interactions, while the interactions between two adjacent segments in a molecule are determined
by relatively strong chemical bonds. Due to their short range the van der Waals interactions
are about the same in all directions and can be modelled with an isotropic term. In equilibrium
there is no preferential direction for the polymer chains, thus the heat conduction is isotropic
then. A deformation causes preferential directions in a viscoelastic fluid. The orientation is
stronger if the deformation is larger. This energy transport through the polymer chains can be
modelled with the internal deformation tensor, which is a measure for the elastic deformation.

In the remaining part of this section only the dependence on the internal deformation tensor
will be considered. The dependence on the temperature of the heat conduction tensor will be
given in section 2.5.1.

Dependence on the internal deformation tensor.

Analogously to the multi-mode stress constitutive equations in section 2.2, the usual assumption
to handle multi-mode models, will be made for the heat conduction tensor as well. This means
that the anisotropic contribution can be written as a sum over K isotropic tensor functions,
where the kth function only depends on the kth internal deformation tensor. Then it follows
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from the Cayley–Hamilton relation (2.18) that the most general model that can be obtained
for the heat conduction tensor for the multi-mode models described in section 2.2, is

κ
¯̄

= κ0I
¯̄

+
K∑
k=1

(
κ1,kb

¯̄
k + κ2,kb

¯̄
2
k

)
, (2.113)

where the scalars κ0, κ1,k and κ2,k may be functions of the density, the temperature and the
invariants of b

¯̄
k. For incompressible stress models such as the Leonov models (A.4) and (A.5)

the third invariant equals I3,k = 1, so the scalars κ0, κ1,k and κ2,k ‘only’ depend on the density,
the temperature and the first and second invariants. In chapter 3 it will be examined which
stress models are capable of describing the increase of the thermal conductivity in the parallel
direction and the decrease in the perpendicular direction.

In the equilibrium state the internal deformation tensor equals b
¯̄
k = I

¯̄
and the heat conduc-

tion tensor reduces to

κ
¯̄

= κeqI
¯̄
,

κeq = κ0 +
K∑
k=1

(κ1,k + κ2,k) , (2.114)

where κeq is the heat conduction coefficient that would be measured in the equilibrium state.
For a one-mode model where κ2,k = 0 is taken in (2.113), the heat conduction tensor reduces
to the one derived from microrheological considerations for a Hookean dumbbell by van den
Brule (1990). The stress of a Hookean dumbbell can be described by the Maxwell model, which
corresponds the Johnson–Segalman model (A.2) with ξk = 0.

Note that the temperature effect in the measurements of Washo & Hansen (1969), men-
tioned in the literature review earlier in this section, are in qualitative agreement with (2.113).
Elongation at a higher temperature gives a smaller relaxation time λk. A smaller relaxation
time implies a smaller deviation from equilibrium of the internal deformation tensor b

¯̄
k and

thus a smaller deviation from the equilibrium heat conduction.

Restrictions for the heat conduction tensor.

From the restriction that the entropy production Πs has to be positive for all possible processes,
it follows that each term in equation (2.44) has to be positive. For the heat flux term this gives
the restriction

∇T · κ
¯̄
· ∇T ≥ 0, (2.115)

which implies that κ
¯̄

has to be a positive definite tensor. Due to the positive definiteness of
the internal deformation tensors it follows that to fulfil the entropy inequality it is sufficient to
require that

κ0 ≥ 0,

κ1,k ≥ 0,
κ2,k ≥ 0,

}
k = 1, . . . , K, (2.116)

for the intervals of the internal deformation tensor, the temperature and the pressure where the
approximation is valid. Mathematically these conditions are too severe. Consider the example
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of constant coefficients κ0, κ1,k and κ2,k for all modes k and denote by bk a component of
the positive definite tensor b

¯̄
k in a principal direction. It is straightforward to show that the

minimum contribution of a mode k to the heat conduction tensor κ1,kbk+κ2,kb
2
k is then achieved

at
bmin
k = − κ1,k

2κ2,k

, (2.117)

for κ2,k > 0. The positive definiteness of the internal deformation tensor, 0 < bk < ∞, gives
that a local minimum only exists if κ1,k < 0. Furthermore the minimum value at the boundary
bk → 0 is the isotropic part of the heat conduction tensor, so that κ0 ≥ 0. The values of κ1,k

may then be negative. For the example that κ1,k = κ1 and κ2,k = κ2 for all modes k, the heat
conduction tensor is positive definite when the coefficient κ1 fulfils

κ1 ≥ −2

√
κ0κ2

K
. (2.118)

On the other hand, if κ2 = 0 there is no local minimum. To obtain a positive definite heat
conduction tensor, the coefficients have to fulfil

κ0 ≥ 0, κ1 ≥ 0, (2.119)

which simply follows from inspection of the boundary extrema at bk → 0 and bk → ∞.
If the temperature dependence is the same for the coefficients κ0, κ1 and κ2 and if they do

not depend on the invariants of the internal deformation tensors, relation (2.118) still holds. Of
course the temperature dependence of the coefficients must then be such that the coefficients
remain positive. Otherwise, if the coefficients κ0, κ1,k and κ2,k depend on the invariants of the
internal deformation tensors or if they depend differently on the temperature, it may become
very difficult to calculate the minimum value of κ1. However, if they fulfil equation (2.116) the
entropy condition is automatically fulfilled.

2.5 Temperature dependent behaviour

In this section the temperature dependent behaviour of viscoelastic fluids will be summarised.
In the first part the temperature dependence of the coefficients in the balance equations and
the constitutive equations will be discussed. These coefficients are measured in mechanical
equilibrium. In mechanical equilibrium the fluid is at rest. This state is reached after waiting
long enough so that all possible internal processes have relaxed. The second part contains an
overview of the small number of measurements with a varying temperature when the body
is deformed. It seems that the results can not be predicted with the normal temperature
dependence of the coefficients. Some theories to fit these data will be reviewed as well.

2.5.1 Temperature dependent coefficients

In general all the coefficients in the balance equations and the constitutive equations depend
on the temperature. For some coefficients such as the heat capacity, the thermal conductivity,
the density and the shear modulus this temperature dependence is relatively weak. Often
the effect of the temperature on these quantities are, and can be, neglected. The relaxation
time and related material properties like the viscosity, normal stress coefficients etc. strongly
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depend on the temperature, so in general this effect can not be neglected. Specific values of the
temperature dependencies for various polymers are given by van Krevelen & Hoftyzer (1976).
They also present some general rules that may be convenient to check whether a temperature
effect is negligible or not. These generalisations will be summarised below.

A characteristic temperature for the behaviour of polymeric materials is the glass transition
temperature Tg: the temperature at which the transition of the glassy state into a rubbery state
takes place. For temperatures above the glass transition the polymer behaviour is rubberlike,
viscoelastic or liquidlike, depending on temperature and molecular weight of the polymer. For
polymers this temperature can vary from less than 200 K to more than 400 K. In experiments
it turns out that the precise value of Tg depends on the cooling rate of the sample. Usually, it
is assumed that the sample is cooled slowly enough to ignore this effect. Matsumoto & Bogue
(1977) reported an increase of Tg by 10 K for cooling rates of the order of 1 K·s−1. A generic
picture of the influence of the temperature on the behaviour of amorphous polymeric systems
is presented in figure 2.4.

Figure 2.4: Temperature-molecular weight diagram with different phases for amorphous and semi-crystalline
polymers. The abbreviation d.t.z. denotes the diffuse transition zone. The line with a ◦ denotes the glass
transition, the line with a 4 the thermal decomposition and the line with a ∗ the melting point. From van
Krevelen & Hoftyzer (1976).

For semicrystalline polymers the melting temperature Tm > Tg is important as well. The
melting temperature is the highest temperature at which polymer crystallites can exist. Above
the melting point the material behaves as an amorphous material. Above the melting point
the semi-crystalline polymer is rubbery (elastic effects dominant), viscous or viscoelastic (the
diffuse transition zone where elastic and viscous effects are important), as for the amorphous
polymers. A generic picture of the influence of the temperature on the behaviour of semi-
crystalline polymeric systems is also presented in figure 2.4.

In this thesis polymer fluids will be considered only in the temperature region Tg < T < Tc,
where Tc is the temperature at which degrading of the polymer takes place. For this temperature
region the temperature dependences of the various coefficients will be given.
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Temperature dependence of the heat capacity.

For polymeric liquids above Tg the temperature dependence of the heat capacity can be de-
scribed by a linear relation, with a small positive slope

ceqp,τe(T ) = ceqp,τe(Tref) (1 + αc(T − Tref)) ,

αc =
1

ceqp,τe(Tref)

dceqp,τe
dT

' 1.2 · 10−3 K−1, (2.120)

with a reference temperature of Tref = 298 K. The mean deviation of αc for different polymers
is 30 % (van Krevelen & Hoftyzer 1976). For a temperature difference of 100 K the difference
in heat capacity is then of the order of 12 %.

Temperature dependence of the thermal conductivity.

For amorphous polymers the temperature dependence of the thermal conductivity is weak.
Above Tg it is a linear relation with a small negative slope:

κ(T ) = κ(Tg) (1 − ακ(T − Tg)) ,

ακ =
1

κ(Tg)

dκ

dT
' 0.2

Tg

, (2.121)

with small deviations for different polymers. For a temperature difference of 100 K the dif-
ference in heat conduction is smaller than about 10 % (van Krevelen & Hoftyzer 1976). For
the anisotropic heat conduction from section 2.4 one may take the same temperature depen-
dence for each heat conduction constant in (2.113), so that (2.114)2 is automatically fulfilled in
mechanical equilibrium.

Temperature dependence of the density.

The temperature dependence of the density is relatively small for polymeric liquids. Van
Krevelen & Hoftyzer give an empirical rule from Boyer & Spencer (1944) for polymeric liquids
above Tg

ρ(T ) = ρ(Tg) (1 − αρ(T − Tg)) ,

αρ = − 1

ρ(Tg)

dρ

dT
' 0.16

Tg
, (2.122)

where αρ is the linear coefficient of thermal expansion. The deviation of αρ for different polymers
is about 25 %. For a temperature difference of 100 K this means a difference in density of less
than 10 %.

The pressure dependence of the density is also weak for polymeric liquids. Usually the
compressibility κT is about 10−9 − 10−10 Pa−1 for polymers.

Temperature dependence of the relaxation time and viscosity.

For polymeric liquids the dependence of the relaxation time and the viscosity on the temperature
is relatively strong, in particular near the glass transition temperature. It can be described with
a shift factor aT , which is an exponential function of the temperature. Isothermal measurements
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at different temperatures of the viscosity or the relaxation time as a function of the shear rate
may be shifted onto a single ‘master curve’. This means that the viscosity and the relaxation
time are known at all temperatures as soon as the they are known at a reference temperature,
provided the shift factor aT is known. Figure 2.5 shows the viscosity at different temperatures
and the master curve that can be obtained when the axes are scaled with the shift factor aT .
This method is also known as time-temperature superposition. For a more detailed discussion

Figure 2.5: Steady shear viscosity of LDPE as function of the shear rate at different temperatures and the
master curve obtained after the time-temperature superposition. From Bird et al. (1987a).

about this subject see for example Ferry (1981) or Tanner (1985).
The temperature dependence of the viscosity and the relaxation time are almost equal.

The viscosity only contains a small extra temperature dependence. This dependence will be
discussed in the section about the temperature dependence of the shear modulus, which equals
the ratio of the viscosity and relaxation time. The temperature dependence will only be given
for the relaxation time, because the viscoelastic models in section 2.2 and appendix A are posed
in terms of the moduli Gk and the relaxation times λk.

Two commonly used shift factors for polymeric liquids are the Williams–Landel–Ferry
(WLF) and the Andrade or Arrhenius shift factor.

The WLF shift factor.

The WLF shift factor can be used for a lot of amorphous polymers in the range Tg < T <
Tg + 100 K, where the temperature dependence is extremely strong. The WLF shift factor
aT is defined as

10log

(
λk
λk,ref

)
=10 log aT =

−C1,k(T − Tref)

C2,k + (T − Tref)
, (2.123)

where λk,ref is the relaxation time at a reference temperature Tref . The parameters Tref , C1,k

and C2,k have to be determined by fitting of the experimental data. Usually it is assumed that
the shifts are the same for all modes, C1,k = C1 and C2,k = C2 for all k. If no experimental
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data are available, the ‘universal values’ C1 = 17.44, C2 = 51.6 K and Tref = Tg can be
used to give a first approximation. If some data are available one can take C1 = 8.86,
C2 = 101.6 K and choose Tref to give a best fit (Tanner 1985). For a temperature rise of
100 K from Tg, the ‘universal values’ predict a relaxation time that is 3 · 1011 times as small
as the relaxation time at Tg. However, because of the extremely large relaxation times near
Tg, the relaxation times may still be substantial then.

The Andrade shift factor.

For values of T larger than Tg +100 K or where Tg is irrelevant the Andrade shift factor can
be used. The temperature dependence is smaller than below Tg +100 K. The Andrade shift
factor is defined as

10log

(
λk
λk,ref

)
=10 log aT = C1,k

(
1

T
− 1

Tref

)
, (2.124)

where the shift constant C1,k and the reference temperature Tref have to be determined by
fitting of the experimental data. Usually it is assumed that the shifts are the same for all
modes, C1,k = C1 for all k. For most of the polymers C1 is in the range 1.0 ·103 to 5.0 ·103 K.
Taking a reference temperature of 500 K and C1 = 3 · 103 K the relaxation time at 600 K is
only 10 % of the relaxation time at 500 K.

For polymer solutions the temperature dependence of the Newtonian viscosity has to be
specified as well. The viscosity of a Newtonian fluid can also be described by an Andrade
shift factor

10log

(
ηs
ηs,ref

)
=10 log aT = C1

(
1

T
− 1

Tref

)
, (2.125)

where for water C1 ' 8.2 · 102 K.

For the Newtonian solvent the temperature dependence of the viscosity has an instantaneous
effect on the stress, just like the deformation. For viscoelastic models described in appendix
A, which are of the form (2.22), the ‘right-hand side’ g

¯̄
k does not depend on the temperature.

The temperature dependence is only due to the λk in front of the convected derivative. Besides
the dependence on the deformation history (via ‘the right-hand side’), the internal deformation
tensor depends on the temperature history (via the temperature dependence of λk).

The viscosities and relaxation times depend on the pressure as well. Compared to the
temperature dependence this dependence is often negligible. A doubling of the viscosity needs
a change of the pressure of the order of 107 − 108 Pa, depending on the temperature. Refer to
Ferry (1981) or Kadijk & van den Brule (1994) for more detailed information.

Temperature dependence of the shear modulus.

The viscosity and the relaxation time show almost the same behaviour for different tempera-
tures. Therefore the moduli Gk = ηk/λk are only a weak function of the temperature. From
the kinetic theory of elastic dumbbells (see Bird et al. 1987b), in which a polymer is described
on micro level as a bead-spring system, it follows that for a linear system the shear modulus
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has to be scaled by13

Gk(T ) =
ρT

ρrefTref
Gk,ref . (2.126)

Compared with the exponential shift of the relaxation time this is not a very important factor
for the viscosity and stresses. For a temperature increase of 100 K above Tref = 500 K the
difference in T/Tref is of the order of 20 %. Furthermore the effect of increasing temperature
is partly compensated by the density, which decreases with increasing temperature. Taking a
decrease of 10 % of the density, which has been found in an earlier part of this section, Gk/Gk,ref

is about 10 %.
For elastic materials a temperature dependence of the shear modulus G corresponds to the

Gough–Joule effect, as explained by Treloar (1975). This effect consists of the following two
observations: a rubber held in a stretched state, under a constant load, contracts on heating
and a rubber gives out heat when stretched. If the heat is not emitted but is retained, as in
an adiabatic extension, the energy supplied by the stretching causes a temperature rise. Both
effects are reversible. For a neo-Hookean material σ

¯̄
= −pI

¯̄
+G(b

¯̄
− I

¯̄
) the Gough–Joule effect

corresponds to a temperature dependent shear modulus with dG/dT > 0. The corresponding
‘Gough–Joule effect of viscoelastic fluids’ is that at constant elastic stress τ

¯̄
e,k the ‘internal

deformation tensor becomes smaller’ when the fluid is heated. This effect is obtained when
dG/dT > 0, which is fulfilled for (2.126). An indication whether the linear temperature scaling
is good or not may be obtained by measuring the entropy or energy elasticity (see section 2.3.3).

Experiments of Astarita & Sarti (1976) and Sarti & Esposito (1977/1978) indicate that
some polymers show purely entropic elasticity in shear and elongation. In the case of entirely
entropy elasticity the temperature rise under adiabatic conditions must equal the stress work,
when pressure effects may be neglected. Thus when the change in free energy due to changes
in the elastic deformation, the ∂ψ/∂b

¯̄
k terms in (2.90), is large compared to the mechanical

dissipation, measurement of the temperature rise and the stress work gives an indication of
the entropy or energy elasticity of the fluid. This condition should be ensured by the fact that
the total force on the sample is a strong increasing function of time. Astarita & Sarti (1976)
performed the experiment for polyisobutylene at room temperature, which is above the glass
transition. They obtained values of the heat capacity that are in good agreement with the liter-
ature. However, it is not completely clear whether the obtained values of the heat capacity are
in contradiction with the purely energy elasticity, or something in between. Sarti & Esposito
(1977/1978) performed adiabatic shear and elongational experiments, at various temperatures
above Tg, on polyisobutylene and polyvinylacetate with different molecular weights. The ma-
terials were deformed from equilibrium at a constant rate until a maximum deformation. Then
the deformation was stopped and the material relaxed adiabatically towards a stress-free state.
For a purely entropic elasticity the temperature has to remain constant during the relaxation
process (d

¯̄
= 0

¯̄
). For the polyisobutylene melts they found a vanishing temperature rise during

the adiabatic stress relaxation process. The heat capacity remained constant during deforma-
tion and relaxation. However, for the polyvinylacetate at 333 K, more than 20 K above Tg, the
temperature was not constant during the relaxation (it even decreased) and the heat capacity
was not constant during the elongation and relaxation. During elongation the heat capacity

13As stated by Bird (1979) the extrapolation of the results of an infinite-dilution theory, in particular the
scaling with the density in (2.126), to a melt is risky.
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decreased and during relaxation it increased.
Another method to obtain the temperature dependence of Gk is via the anisotropy of the

thermal expansion. For PMMA, PVC, PC and PST these measurements have been performed
by Hellwege et al. (1963) for uniaxially stretched samples. After cooling below the glass transi-
tion temperature they found that β⊥, the expansion perpendicular to the elongation, increased
compared to α and β‖, the expansion parallel to the elongation, decreased compared to α. For
a neo-Hookean material this effect corresponds to dG/dT > 0. This can be shown easily by
inspection of the equation for the temperature dependence of b

¯̄
at constant elastic stress (2.83).

For a uniaxial elongation then holds

∂b‖
∂T

∣∣∣∣∣
σ
¯̄

= − 1

G

∂G

∂T

(
b‖ − 1

)
< 0,

∂b⊥
∂T

∣∣∣∣∣
σ
¯̄

= − 1

G

∂G

∂T
(b⊥ − 1) = − 1

G

∂G

∂T


 1√

b‖
− 1


 > 0, (2.127)

where b‖ and b⊥ are the components of b
¯̄

parallel and perpendicular to the elongation. This
means that compared to the thermal expansion coefficient α, β‖ decreases and β⊥ increases in
a uniaxial elongation. Furthermore, the deviations in the parallel direction will be larger than
in the perpendicular direction. This has also been observed in the experiments.

With the help of equation (2.126) an equation for the stress can be derived which depends on
the temperature history. This has been done by Bird (1979) for the Maxwell model and by
Wiest (1989) for the Giesekus model14. Substitution of (2.126) and (2.19) in the stress equation
for the one-mode Maxwell model, (A.2) with ξk = 0, gives a stress equation that depends on
the temperature history

λτ
¯̄

5
+ τ

¯̄
(1 + λż1) = 2λGd

¯̄
,

z1 = ln
(
Gref

G

)
, (2.128)

where the subscript 1 for the mode number has been suppressed. Because the material derivative
of the temperature does not appear in the differential equation for the internal deformation
tensor, it is of course much easier to solve that equation instead of the stress equation. The
contribution of the temperature history to the stress is only due to the temperature dependence
of the shear modulus, which can then be accounted for in the simple algebraic relation (2.19).
Often the dependence of the shear modulus on the temperature is neglected, because the
temperature dependence of the modulus is small compared to the exponential temperature
dependence of the relaxation times. However, although this may be justified for the calculation
of the stress from (2.19), the term may be important in the calculation of the heat production
(see section 2.3.3).

14For convenience the derivation has been performed in the internal deformation tensor and the relaxation
time. The notation is equivalent with the notation for the dumbbell models used by Bird and Wiest with
λ = ζ tr〈R

¯
R
¯
〉eq/12kT , G = 3nkT/ tr〈R

¯
R
¯
〉eq, and b

¯̄
= 〈R

¯
R
¯
〉/(tr〈R

¯
R
¯
〉eq/3). ζ is the bead friction coefficient,

k the Boltzmann constant and tr〈R
¯
R
¯
〉 the mean square end-to-end distance of the chains. The bead friction

coefficient may strongly depend on the temperature, although this has not explicitly been taken into account
in the derivations of Bird and Wiest.
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Temperature dependence of nonlinear parameters.

The nonlinear viscoelastic differential models described in appendix A contain some extra
parameters. With these nonlinear parameters the viscoelastic behaviour of a fluid can be
fitted to experimental data of the shear and elongational viscosity. For nonisothermal flows
these quantities may be a function of the temperature. However, the temperature dependence
of these parameters has not been studied so far, experimentally or theoretically. Therefore it
will be assumed in this thesis that the nonlinear parameters do not depend on the temperature.

2.5.2 Nonisothermal rheology

In the previous subsection the influence of the temperature has been examined under isothermal
conditions at different temperatures. Another possibility is to vary the temperature while the
material is being deformed. This is called nonisothermal rheology. In this section firstly a
short overview will be given of nonisothermal rheological measurements. Then some theories
that have been developed to fit the rheological behaviour when the material is simultaneously
deformed and heated or cooled will be reviewed.

Nonisothermal rheological experiments.

Very little data are available on nonisothermal rheological experiments. Sridhar (1988) mea-
sured the shear stress of a dilute polyacrylamide solution in a rheogoniometer, while the sample
was heated. Matsui & Bogue (1977), Matsumoto & Bogue (1977) and Joshi & Bogue (1990)
tried to measure elongational stresses with a varying temperature in time. The polystyrene
samples used by Bogue et al. are oblong cylindrical rods with a diameter of about 1 mm. Al-
though the diameter of the samples is small, it is still problematic to attain a homogeneous, i.e.
spatially constant, temperature distribution. For comparison with theoretical models, however,
they assumed a homogeneous temperature. The stress model, which described the isothermal
data, was made temperature dependent by the introduction of a shift factor for the viscosity
and relaxation time. The shift factor was taken to be the same for all relaxation times.

Matsui & Bogue (1977) performed two nonisothermal experiments with a temperature jump
(cooling and heating) during retardation and elongation. The initial temperature was 25 K
above Tg for the heating experiments and more than 40 K above Tg for the cooling exper-
iments. The time needed to realise the temperature change was about 6 seconds for the
heating and 15 seconds for the cooling experiments.

In the first set of experiments, a polystyrene sample was stretched to an elongation ratio
between 1.45 and 2. The elongation ratio is defined as the ratio between the final length
and the initial length of the sample, ε = L/Leq. At various points during the retardation
process (once per sample), a temperature jump of 16−18 K was imposed. The agreement of
the measurements of the elongational stress and their theoretical model is reasonable.

In the second set of experiments, the temperature jump was performed during the
elongation process with constant pulling rate L̇. The pulling rates were about 2 mm·s−1

and 8 mm·s−1. In both cases the accommodation of the nonisothermal elongational stress
to the isothermal elongational stress at the new temperature is more quickly than time-
temperature superposition predicts, see figure 2.5.2 for the results of the heating experiment.
The cooling experiment also showed the quicker adjustment to the new temperature. For
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Figure 2.6: Isothermal and nonisothermal heating data for tensile pulling at a low rate L̇ = 2.1 mm·s−1 and
a high rate L̇ = 8.5 mm·s−1 (TC 3-30). The arrows show the points where a temperature jump has been
imposed. The lines are predictions from the theoretical model. The � and the 4 denote the isothermal data
at 392 K and 410 K. The ◦ and the 2 denote the nonisothermal data. The material seems to accommodate
itself more quickly to the new temperature than the time-temperature shifting predicts. Figure from Matsui
& Bogue (1977).

the high rate, however, the differences between the isothermal model predictions and the
measured isothermal data are relatively large as well.

Matsumoto & Bogue (1977) examined the influence of the cooling rate. The samples are
pulled at a constant elongation rate and are simultaneously cooled at a constant cooling rate
R. For the test runs at different constant temperatures and with different elongation rates,
they found that the agreement between the model predictions and the measurements of the
elongational stress was good. For the nonisothermal experiments the constant elongation
rate was about ε̇ = L̇/L = 5 · 10−2 s−1. The initial temperature of the sample was 433 K,
somewhat more than 60 K above Tg. The temperature at the end of the experiments was
about 10−20 K above Tg. For their nonisothermal model the temperature of the sample
is supposed to be given by T (t) = T0 − Rt, with T0 the initial temperature of the sample
and t the time. In their experiments the cooling rate varied from 0 to more than 2 K·s−1.
In the experiments the temperature distribution was not homogeneous. The difference in
temperature between the axis of symmetry and the outside of the sample was relatively
large, about 4 K after a cooling of 30 K at a cooling rate of 1.9 K·s−1.

The stress model with shift factors for the temperature dependence seems to underpre-
dict the elongational stresses. In other words: the experimental curves cross the isothermal
curves earlier than expected. This effect was also present in the experiments of Matsui &
Bogue (1977). The higher the cooling rates are, the larger the deviation between the elonga-
tional stress from the time-temperature superposition theory and the measured elongational
stress. This is illustrated in figure 2.5.2, where the elongational viscosity, defined by (1.5)
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and proportional to the elongational stress, has been depicted.

Figure 2.7: Comparison of theory with experiment for isothermal and nonisothermal stress development at
a constant elongation rate of about ε̇ = 5 · 10−2 s−1. The thin lines and the • and the ◦ are isothermal
model predictions and isothermal data at 393 K and 403 K. The model (with shift factors for the viscosity
and the relaxation time) seems to underpredict the elongational viscosity (and the elongational stress). As
the cooling rate increases the deviations between the model and the data seem to increase. Figure from
Matsumoto & Bogue (1977).

Joshi & Bogue (1990) have also done some nonisothermal experiments on polymers in the
neighbourhood of the glass transition temperature (Tg − 20 K < T < Tg + 20 K). The max-
imum cooling rate in their experiments was 4.0 K·s−1. The experiment consists of a sample
of constrained length in which the stress build-up due to density changes was measured.
As for the experiment of Matsumoto and Bogue (1977), the elongational stresses are again
underpredicted.

Sridhar (1988) presented a technique for measurements in a nonisothermal shear flow and
reported some preliminary data. A Weissenberg rheogoniometer has been put in a microwave
cavity to control the temperature of the sample. A sample thickness of 5 · 10−5 m should
ensure a constant temperature across the sample. The heating rates are up to 1.86 K · s−1

and the shear rates up to 8.9 s−1. Opposite to the experiments of Bogue et al. the measured
shear stresses are higher than their model predictions (the Maxwell model with a tempera-
ture dependent relaxation time). The differences increase at a higher heating rate or shear
rate.

Fitting models for the nonisothermal experiments.

A few attempts have been made to fit the nonisothermal experiments of Bogue et al. and
Sridhar, described in the first part of section 2.5.2. These fitting models will be summarised in
the remaining part of this section.
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As already noted in section 2.5.1 the glass transition temperature may vary with the cooling
rate. Although the experiments are above Tg it is assumed that the molecular properties
that determine the glass transition also determine part of the mechanical response above
Tg. Both Matsumoto & Bogue (1977) and Upadhyay & Isayev (1984) tried to incorporate
this effect by fitting the experiments of Matsumoto & Bogue (1977) with a glass transition
temperature that was about 10 K higher than the glass transition temperature determined
at a very low cooling rate. This increase of Tg results in a shift factor that is 103 times larger
than the shift factor used previously.

For cooling rates in the range of 0.5−4.5 K·s−1 the glass transition temperature increases
12−16 K. Upadhyay & Isayev took for all cooling rates a glass transition temperature, that
is 14 K higher than Tg at a zero cooling rate. They showed that the elongational stress data
can be fit better when the cooling rate dependent shift factor is used.

Joshi & Bogue (1990) showed that a cooling rate dependent WLF shift factor still under-
predicts the stress at high cooling rates. They tried an empirical formula where the shear
modulus depends on the cooling rate. The moduli were supposed to fulfil a linear differential
equation of the form

λG,k
dGk

dt
= −Gk +Gk,eq + P, (2.129)

where λG,k is the relaxation time of the shear modulus and P is an exponential function of
the cooling rate that goes to zero when the cooling rate approaches zero. The relaxation
times of the moduli were supposed to equal the relaxation times of the stress. With the
differential equation for the moduli they could obtain a better fit of the data of Matsumoto
& Bogue (1977) and Joshi & Bogue (1990).

From the dumbbell theory for Hookean dumbbells Bird (1979) derived a nonisothermal
constitutive equation when the spring force H is a function of the temperature. A Hookean
dumbbell consists of two spherical beads joined by a linear spring. The stress τ

¯̄
of elastic

dumbbells may be described by the Kramers expression and an equation of change for the
dyadic product b

¯̄
H = 〈R

¯
R
¯
〉, where R

¯
is the vector connecting the two beads of the dumbbell:

τ
¯̄

= G (Bb
¯̄
H − I

¯̄
) ,

b
¯̄

5
H = − 1

λH

(
b
¯̄
H − B−1I

¯̄

)
, (2.130)

where the parameters correspond to B = H/kT , G = nkT and λH = ζ/4H in the usual
notation for Hookean dumbbells. The spring constant H may be a function of the tem-
perature and the scaling of the shear modulus G corresponds to by (2.126). The internal
deformation tensor b

¯̄
= 〈R

¯
R
¯
〉/(tr〈R

¯
R
¯
〉eq/3) is related to b

¯̄
H by the simple algebraic relation:

b
¯̄

= Hb
¯̄
H/kT . Combining the two equations in (2.130), a stress equation that depends on

the temperature history can be obtained:

λHτ
¯̄

5
+ τ

¯̄
(1 + λH ż1) +B−1λHGż2I

¯̄
= 2B−1λHGd

¯̄
,

z1 = ln
(
GrefBref

GB

)
,

z2 = ln
(
Bref

B

)
. (2.131)
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Usually it is assumed that H is proportional to kT , i.e. B = Bref . Then z2 = 0 and (2.131)
reduces to (2.128). When B 6= Bref it is not advantageous to solve (2.131). However, contrary
to the case where B = Bref and G = G(ρ, T ), it is also inconvenient to solve an equation for
the internal deformation tensor. To avoid temperature derivatives the equation (2.130) for
b
¯̄
H has to solved. The stress τ

¯̄
and the internal deformation tensor b

¯̄
can easily be calculated

when b
¯̄
H is known.

Gupta & Metzner (1982) proposed a stronger dependence of B on the temperature. They
argued that B decreases with temperature, because it depends on the inverse of the mean
square end-to-end distance tr〈R

¯
R
¯
〉. When the temperature increases the mean square end-

to-end distance increases. Besides the exponential temperature dependence of ζ, they intro-
duced the following temperature dependence of B:

B(T ) = αh

(
Tref

T

)βh

Bref , (2.132)

where αh and βh are fit parameters. To obtain a qualitative agreement with the experiments
of Matsui & Bogue (1977) αh > 0 and βh > 0 have to be chosen. Only with very strong
dependences of B on the temperature, of the order of βh = 10, a better fit could be obtained
of the nonisothermal experiments.

The fitting parameters αh and βh were only matched to the nonisothermal data and
not to some measurements at isothermal conditions. Such a strong temperature dependence
must have a large effect on the time-temperature shift. A strong temperature dependence
of B causes a large extra vertical shift in a plot of the master curve (figure 2.5, where the
viscosity is plotted against the reduced shear rate aT γ̇). The correctness of this model seems
therefore doubtful.

Sridhar (1988) also used the model described by Gupta & Metzner, equations (2.130) and
(2.132), to fit his experimental data in a shear flow. Even with βh = 10 no reasonable fit
could be obtained with the experimental data.

The equations for the stress (2.19) and (2.22), with a temperature dependent shift factor and
shear modulus, cannot predict the quicker adjustment to the new temperature equation when
it is assumed that the temperature of the material can be described by T = T0 −Rt. However,
when a certain amount of heat is supplied to the material, and the temperature is measured at
a sample in equilibrium as Joshi & Bogue (1990) did, the temperature equation (2.108) may
predict a faster adjustment to the new temperature. For example, if the shear modulus depends
linearly on the temperature, Gk = Gk,refT/Tref , the following temperature equation is obtained
for a neo-Hookean material

ρ

(
ceqp,τe −

K∑
k=1

αGk

2ρ(1 − ξk)2
(I1,k − ln I3,k − 3)

)
Ṫ = τ

¯̄
: d
¯̄
−∇ · φ

¯
q + ρr, (2.133)

where the last term represents the amount of radiation heat that is supplied in the experiments
of Matsui & Bogue (1977) to cool or to heat the material. When the material is stretched
the temperature of the material changes more rapidly than in equilibrium, because the term
between the brackets is smaller than ceqp,τe for a uniaxial extension. Thus qualitatively the effect
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can then be predicted with the help of the thermodynamic model. It seems that the term with
I1,k is not negligible. Although α/ρ is small, the sum over k of GkI1,k may be large. However it
remains the question whether the effect is large enough. When the material relaxes the effect
diminishes, because the internal deformation tensors go to unity then. This is also in agreement
with the results of Matsui & Bogue (1977).

2.6 Non-dimensional equations for shear flows

In this section the dimensionless forms of the conservation laws and the constitutive equations,
described in sections 2.1, 2.2, 2.3.3 and 2.4 of this chapter, are considered. From these di-
mensionless formulations follow the characteristic numbers of a nonisothermal viscoelastic fluid
flow. Two different non-dimensional forms for steady shear flows will be considered. One is
useful for low, the other for high Deborah numbers. As an example for the stress constitutive
equation the Giesekus model will be taken, see appendix A. Furthermore the moduli Gk are
assumed to be constant, so that the fluid is energy elastic. Then the heat capacity difference
∆ceq and the entropy difference ∆sve

b vanish in (2.108).

2.6.1 Low Deborah numbers

For low Deborah numbers the dimensionless quantities, denoted by a ∗, can be introduced as
follows

v
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1

L
∇∗,

(2.134)

and T = ∆T T ∗ + T0 for the scaling of the temperature differences and T = T0T
∗ for the

scaling of the absolute temperature. For the characteristic velocity V the downstream mean
velocity can be taken and for the characteristic length L the downstream channel width. ∆T is
a characteristic temperature difference, for example between the two downstream boundaries.
The temperature T0 is a reference temperature, for example the temperature at one of the
downstream boundaries. The shear viscosity for zero strain rate at reference temperature Tref ,
used for the scaling of the pressure, is

η0,ref = ηs,ref +
K∑
k=1

ηk,ref . (2.135)

Note that the stress as well as the mechanical dissipation are scaled as if they were the New-
tonian stress and the Newtonian mechanical dissipation.

The mass balance (2.2), the balance of linear momentum with the Boussinesq approxima-
tion (2.7), the constitutive equations for the Giesekus stress model (2.15) and (A.3), and the
temperature equation (2.92) with the constitutive equation for the heat flux (2.112), can now
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be written in dimensionless form as follows15

−κTη0,refV

L
v
¯
∗ · ∇∗p∗ + αρ∆Tv

¯
∗ · ∇∗T ∗ = ∇∗ · v

¯
∗, (2.136)
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(2.139)

where e
¯
g is the unit vector in the direction of the force of gravity. The density is supposed to

be given by (2.122) and the moduli are assumed to be constant.

The above equations contain K + 4 dimensionless numbers:

• The well-known Reynolds number denoting the ratio of the inertia force and the viscous
force

Re =
ρrefV L

η0,ref

. (2.140)

• K Deborah numbers denoting the ratio of the characteristic time scale of a specific stress
mode of the fluid and a characteristic time scale of the flow

Dek =
λk,refV

L
. (2.141)

• The Péclet number denoting the ratio of the convective transport of heat and the transport
of heat by conduction

Pe =
ρrefc

eq
p,τe,ref

V L

κeq
. (2.142)

• The Brinkman number denoting the ratio of the heat production by mechanical dissipation
and the heat loss due to conduction

Br =
η0,refV

2

κeq∆T
. (2.143)

• The Grashof number which is the Reynolds number times the ratio of the force due to
differences in density and the viscous force

Gr =
ρ2

refL
3gαρ∆T

η2
0,ref

. (2.144)

15For normal fluids the bulk viscosity is of the same order as the shear viscosity, see Kuiken (1994). For shear
flows (∇∗ · v

¯
∗)2 � d

¯̄
∗ : d

¯̄
∗ and the Newtonian part of the stress and the mechanical dissipation is dominated by

the shear viscosity term.
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Furthermore the balance of linear momentum and the temperature equation contain K + 1
ratios of viscosities,

ηk,ref
η0,ref

, k = 1, . . . , K,

ηs,ref
η0,ref

. (2.145)

From (2.136) it follows that the flow can be considered as divergence free when |αρ∆T | � 1
and κTη0,refV/L� 1. For normal temperature differences the first condition is fulfilled, because
αρ is small for polymers (see equation (2.122)). Furthermore v

¯
∗ · ∇∗T ∗ can be small if they

are almost perpendicular, as for fully developed flows. For normal flow conditions the second
condition is also fulfilled due to the small value of κT , which is normally between 10−9 and
10−10.

Due to the large viscosity and the small expansion coefficient the ratio between the buoyant
force and the viscous force is in general small, Gr/Re � 1. Under extreme conditions such as a
small viscosity, due to shear thinning and a high temperature, and large temperature differences
in the flow the buoyant term may become important.

In the temperature equation the pressure term is relatively small compared to the mechanical
dissipation term, due to the factor T0αρ. If T0 = Tref this factor equals Trefαρ ' 0.16, see
equation (2.122). However, for a pipe flow this term is large in the centre of the flow and small
near the wall, whereas the mechanical dissipation is large at the wall and small in the centre of
the flow. Therefore it may be more important than follows from the non-dimensional analysis.

Instead of specifying K Deborah numbers for each mode, it is common to define a mean
Deborah number for the fluid

De =
λ0,refV

L
,

λ0,ref =
K∑
k=1

λk,refηk,ref
η0,ref

, (2.146)

where λ0,ref is a mean relaxation time at reference temperature.

Finally a dimensionless number denoting the strength of coupling between the balance of linear
momentum and the temperature equation can be introduced, the Nahme–Griffith number

Na =
η0,refV

2

κeq∆T shift
, (2.147)

where ∆T shift = aT/daT/dT is a temperature measure based on the shift factor. For the WLF
shift factor

∆T shift =
− (C2 + T − Tref)

2

C1C2
(2.148)

and for the Andrade shift factor

∆T shift =
−T 2

C1
. (2.149)

For the temperature T the mean temperature, the reference temperature or the maximum
temperature can be taken.
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2.6.2 High Deborah numbers

For high Deborah numbers the following dimensionless quantities, again denoted by a ∗, are
introduced

v
¯

= V v
¯
∗, p = G0,refp

∗, pm = G0,refp
∗
m,

τ
¯̄
k = Gk,refτ

¯̄
∗
k, κ

¯̄
= κeqκ

¯̄
∗, Dve

m,k =
Gk,ref

λk,ref
Dve,∗

m,k ,

L
¯̄

=
V

L
L
¯̄
∗, d

¯̄
=
V

L
d
¯̄
∗, ∇ =

1

L
∇∗,

(2.150)

and T = ∆T T ∗+T0 for the scaling of the temperature differences and T = T0T
∗ for the scaling

of the absolute temperature. The total shear modulus at reference temperature, used for the
scaling of the pressure, is defined as

G0,ref =
K∑
k=1

Gk,ref . (2.151)

Note that the stress and mechanical dissipation are scaled as if they were the elastic stress and
the mechanical dissipation defined in appendix B.

For high Deborah numbers the scaling with the total shear modulus G0,ref results in useful
dimensionless equations for the balance of linear momentum, the stress equations and the
temperature equation:

Ma2v
¯
∗ · ∇∗v

¯
∗ + ∇∗p∗m =

Ma2

Re
2
ηs,ref
η0,ref

∇∗ · (aTd
¯̄
∗) +

K∑
k=1

Gk,ref

G0,ref
∇∗ · τ

¯̄
∗
k +

Ma2Gr

Re2 T ∗e
¯
g, (2.152)

Dek
(
v
¯
∗ · ∇∗τ

¯̄
∗
k − L

¯̄
∗ · τ

¯̄
∗
k − τ

¯̄
∗
k · L¯̄

∗T)+ τ
¯̄
∗
k + αkτ

¯̄
∗2
k = 2DekaTd

¯̄
∗, k = 1, . . . , K, (2.153)

Pev
¯
∗ · ∇∗T ∗ − Br

De
T0αρT

∗v
¯
∗ · ∇∗p∗ = ∇∗ · (κ

¯̄
∗ · ∇∗T ∗) +

Br

(
2aT

ηs,ref
η0,ref

d
¯̄
∗ : d

¯̄
∗ +

K∑
k=1

ηk,ref
η0,ref

1

De2
k

Dve,∗
m,k

)
, (2.154)

where the small terms with the bulk viscosity, due to the same argument as for the low Deborah
number flows, have been neglected. The dimensionless numbers Re, Dek, Pe and Br have
already been defined in equation (2.140-2.143). The Mach number denoting the ratio of the
velocity and the shear wave speed of the fluid is defined as

Ma =
V√

G0,ref/ρref

, (2.155)

where the bulk viscosity has again been neglected. Again a mean Deborah number can be
specified, analogously to (2.146) and a Nahme–Griffith number analogously to (2.147).
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2.7 Conclusions

In the balance equations the stress, the heat flux and the internal energy of the material
still have to be specified by a constitutive equation. From the thermodynamics of irreversible
processes these constitutive equations have been derived for isotropic viscoelastic materials. The
derived stress equation contains the well-known stress differential models from the literature.
The obtained equation for the heat flux is a generalisation of the Fourier law, where the heat
conduction may depend on the (elastic) deformation of the fluid. Then it is possible to take into
account the experimentally observed anisotropy of the heat conduction tensor (an increasing
thermal conductivity in the direction of orientation and a decreasing thermal conductivity in
the direction perpendicular to the orientation). With the help of the thermodynamics also
the temperature equation has been derived from the equation of energy. Due to the high
viscosity of polymers the internal heat production is also important. A first cause of the
internal heat production is the (irreversible) heat production due to mechanical dissipation
Dve

m . The mechanical dissipation has been calculated for the well-known differential stress
models, including the models with a mixed convective derivative. The reversible part of the heat
production consists of two contributions. Firstly pressure changes may cool (during expansion)
or heat (during compression) the fluid. The second reversible contribution, the ∆sveb term, has
to do with the storage of the reversible energy and is determined by the temperature dependence
of the shear modulus. For a constant shear modulus the reversible energy is completely stored
as elastic energy (energy elastic). However, if the shear modulus depends linearly on the
temperature the reversible energy completely contributes to the temperature rise. The sum of
the reversible elastic energy and the mechanical dissipation exactly equal the stress work then.

After elimination of the small terms in the obtained system of equations, with the help of
dimensional analysis, the resulting equations are:

balance of mass :

∇ · v
¯

= 0,

balance of linear momentum :

ρv̇
¯

+ ∇p = 2∇ · (ηsd
¯̄
) +

K∑
k=1

∇ · τ
¯̄
k,

temperature equation :

ρ
(
ceqp,τe − ∆ceq

)
Ṫ − Tαṗ+ ρT∆sveb = Dve

m −∇ · φ
¯
q,

stress constitutive equation :

τ
¯̄
k =

Gk

1 − ξk
(Bkb

¯̄
k − I

¯̄
) ,

λkb
¯̄

2

k + g
¯̄
k(b

¯̄
k) = 0

¯̄
,

heat flux constitutive equation :

φ
¯
q = −κ

¯̄
(b
¯̄
k, T ) · ∇T,

κ
¯̄
(b
¯̄
k, T ) = κ0I

¯̄
+

K∑
k=1

(
κ1,kb

¯̄
k + κ2,kb

¯̄
2
k

)
, (2.156)

where the heat capacity difference ∆ceq, the entropy difference ∆sveb and the mechanical dissi-
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pation Dve
m are given by

∆ceq =
K∑
k=1

T

2(1 − ξk)2


 ∂

∂T


ρ−1 ∂Gk

∂T

∣∣∣∣∣
ρ



∣∣∣∣∣∣
p

(I1,k − ln I3,k − 3)


 ,

∆sve
b =

K∑
k=1

∂s

∂b
¯̄
k

∣∣∣∣∣
p,T,b

¯̄
′
k

: ḃ
¯̄k
,

Dve
m = 2ηsd

¯̄
: d
¯̄

+
K∑
k=1

1

2(1 − ξk)λk

(
τ
¯̄
k · b

¯̄
−1
k

)
: g
¯̄
k. (2.157)

Dependent on the density and temperature dependence of the shear modulus the heat capacity
difference ∆ceq may vanish or not. For a neo-Hookean viscoelastic fluid the entropy difference
and the heat capacity have been calculated from the free energy.

Except the importance, in the temperature equation, of the temperature scaling of the
shear modulus the (exponential) temperature dependence of the relaxation time and the mate-
rial functions is important. Especially near the glass transition temperature this temperature
dependence is extremely strong. The (linear) temperature dependences of the other coefficients
are less important.



Chapter 3

Analysis of the equations

In this chapter the equations describing the nonisothermal flow of a viscoelastic fluid will be
analysed analytically. In the first part, section 3.1, the limit behaviour for large deformation
rates will be discussed for the stress models of appendix A. For steady elongation and steady
simple shear the limit values of the internal deformation tensor will be given and with the
obtained results the behaviour of the heat conduction and the mechanical dissipation will be
calculated. The emphasis is on the behaviour of the heat conduction for the different stress
models. It will be checked which stress models are able to describe the experimentally observed
anisotropy of section 2.4. In the second part, section 3.2, attention is paid to the calculation
of the inverse of an internal deformation tensor. Normally this should not give any problem,
because b

¯̄
k is positive definite. However, due to numerical errors an internal deformation tensor

may become indefinite. A method will be developed to find the theoretical lower bound for
the invariants of the internal deformation tensor. The method will be applied to the models of
appendix A. Also two possibilities to correct an indefinite internal deformation tensor will be
given. Finally, in section 3.3, the advantages and drawbacks of the specific models for describing
nonisothermal viscoelastic flows are summarised.

3.1 Limit behaviour in simple flows

The system of equations (2.156), that has been obtained in chapter 2, is in general too difficult
to solve analytically. For simple flows as a steady uniaxial elongation or a steady simple shear
flow, however, it is possible to obtain some limit solutions. It is important that both types of
flow can be described by the viscoelastic model. For the calculations in chapter 5 a simple shear
flow occurs at the wall and a uniaxial elongation at the axis of symmetry of a contraction.

Experimentally it is found that for increasing orientation the thermal conductivity perpen-
dicular to the orientation of the polymer chains decreases until a lower bound has been reached,
then it remains constant. Further on this will be called restriction I. The thermal conductivity
parallel to the orientation increases with increasing orientation and does not approach a maxi-
mum for the highest deformations in the experiments. Further on this will be called restriction
II.

For the fitting of the model to experimental data from the literature a few problems arise.
Firstly the anisotropy of the heat conduction tensor has not been measured for a lot of polymeric
fluids. Secondly, for the polymeric fluids for which the anisotropy has been measured, only few
data points are available. These two reasons cause that it does not make much sense to use
a very complicated model for the heat conduction. An obvious choice is to take constant
coefficients in the equation for the heat conduction tensor (2.113), or even κ1,k = κ1 and
κ2,k = κ2 for all modes k. Besides the thermal conductivity in equilibrium, only two coefficients
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have to be determined then. A third problem is that the experimental data are expressed
as relations between the elongation ratio or shear rate and the heat conduction tensor. The
model (2.113), however, gives a relation between the internal deformation tensor and the heat
conduction tensor. For large shear or elongation rates the internal deformation tensor can
be written as an explicit function of the shear or elongation rate. This gives a possibility to
compare the limit behaviour with experimental results. Also some coefficients in (2.113) may
be determined in this way. With constant coefficients in the equation for the heat conduction
tensor (2.113) these restrictions can only be fulfilled for some of the stress models of appendix
A. For steady uniaxial elongation and steady simple shear it will be checked which stress models
are able to fulfil the restrictions I and II then.

For the analysis in this chapter the starting point is the general equation for the internal
deformation tensor (2.22). For an isotropic tensor function g

¯̄
k it can be written as

λkb
¯̄

2

k = g1,k (b
¯̄
k) I

¯̄
+ g2,k (b

¯̄
k) b

¯̄
k + g3,k (b

¯̄
k) b

¯̄
2
k, (3.1)

where the scalars gi,k are functions of the invariants of the internal deformation tensor.

3.1.1 Steady uniaxial elongation

For a uniaxial elongation, in the 11-direction, the modified velocity gradient L̂
¯̄

and the internal
deformation tensor b

¯̄
k are

L̂
¯̄

=




(1 − ξk)ε̇ 0 0

0 −1−ξk
2
ε̇ 0

0 0 −1−ξk
2
ε̇


 , b

¯̄
k =



b11,k 0 0
0 b22,k 0
0 0 b33,k


 , (3.2)

where b33,k = b22,k. The invariants of b
¯̄
k are then

I1,k = b11,k + 2b22,k, I2,k = b22,k(2b11,k + b22,k), I3,k = b11,kb
2
22,k. (3.3)

For convenience the non-dimensional elongation rate γk = λk ε̇ is introduced. For a uniaxial
elongation (3.1) then reduces to

2(1 − ξk)γkb11,k + g1,k + g2,kb11,k + g3,kb
2
11,k = 0,

−(1 − ξk)γkb22,k + g1,k + g2,kb22,k + g3,kb
2
22,k = 0. (3.4)

For given γk this is a nonlinear equation in the internal deformation tensor. Dependent on the
scalars gi,k it is possible to obtain an analytic solution or only a limit solution for small and
large values of the non-dimensional elongation rate γk.

The mechanical dissipation of a steady uniaxial elongation equals the stress work. With
τ22,k = τ33,k the mechanical dissipation of mode k becomes

Dve
m,k = (τ11,k − τ22,k)ε̇ = ηE(ε̇)ε̇2 =

GkBk

λk(1 − ξk)
(b11,k − b22,k)γk, (3.5)

where definition of the elongational viscosity (1.5) and the relation between the extra-stress
and the internal deformation tensor (2.19) have been used.
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With the model (2.113) the parallel and perpendicular thermal conductivities in a uniaxial
elongation become

κ‖ = κ0 +
K∑
k=1

(κ1,kb11,k + κ2,kb
2
11,k),

κ⊥ = κ0 +
K∑
k=1

(κ1,kb22,k + κ2,kb
2
22,k). (3.6)

Note that for constant coefficients the parallel and perpendicular thermal conductivities only
depend on the components of the internal deformation tensors in that direction.

In the remaining part of this subsection the internal deformation tensor, the corresponding me-
chanical dissipation, and the parallel and perpendicular thermal conductivity will be calculated
for various stress models in a steady elongational flow. As far as possible an analytic expression
will be given, otherwise only the approximations for large elongation rates will be presented.

The Johnson–Segalman model

The Johnson–Segalman model is given by (A.2). The scalars gi,k are g1,k = 1, g2,k = −1 and
g3,k = 0. Furthermore the coefficients in (2.19) are Bk = 1 and 0 ≤ ξk ≤ 2.

Limit of the internal deformation tensor.

For given γk the equation for the internal deformation tensor of the Johnson–Segalman model
reduces to a linear algebraic equation. It is straightforward to solve this equation analytically:

b11,k = 1 +
2(1 − ξk)γk

1 − 2(1 − ξk)γk
, b22,k = 1 − (1 − ξk)γk

1 + (1 − ξk)γk
. (3.7)

There is no limit γk � 1, because the solution of b11,k has a singularity at 2(1 − ξk)γk = 1.

The Giesekus model

The Giesekus model is given by (A.3). The scalars gi,k are g1,k = (1 − αk), g2,k = −(1 − 2αk)
and g3,k = −αk. The coefficients in (2.19) are Bk = 1 and ξk = 0.

Limit of the internal deformation tensor.

The equation for the internal deformation tensor of the Giesekus model can be solved analyti-
cally for given γk. This equation has been solved by Giesekus (1982). For αk = 0 it reduces to
the Johnson–Segalman model with ξk = 0. For 0 < αk < 1 the solution is

b11,k =
1

2αk

(
2γk − (1 − 2αk) +

√
1 − 4(1 − 2αk)γk + 4γ2

k

)
,

b22,k =
1

2αk

(
−γk − (1 − 2αk) +

√
1 + 2(1 − 2αk)γk + γ2

k

)
. (3.8)

The limit for γk � 1 for these values can be found by a standard Taylor expansion of the root:

b11,k '
2γk
αk

, b22,k →
1 − αk
γk

. (3.9)

The invariants then become

I1,k '
2γk
αk

, I2,k → 4
1 − αk
αk

, I3,k → 2
(1 − αk)

2

αkγk
. (3.10)
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Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.9) in the mechanical
dissipation expression for steady uniaxial elongation (3.5) gives

Dve
m,k '

2Gk

λkαk
γ2
k , (3.11)

which increases quadratically with the elongation rate.

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor (3.9) in the expression for
the parallel and perpendicular thermal conductivities for uniaxial elongation (3.6) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k

2γk
αk

+ κ2,k
4γ2

k

α2
k

)
,

κ⊥ → κ0 +
K∑
k=1

(
κ1,k

1 − αk
γk

+ κ2,k
(1 − αk)

2

γ2
k

)
. (3.12)

For constant heat conduction coefficients the limit value for the perpendicular thermal con-
ductivity is κ⊥ = κ0. For κ2,k = 0 the parallel thermal conductivity increases linearly with
γk, otherwise it increases quadratically. Thus with the Giesekus model and the anisotropic
heat conduction model with constant coefficients it is possible to describe the experimentally
observed behaviour in elongation for large values of γk.

The (modified) Leonov model

The modified Leonov model is given by (A.5). The scalars gi,k are g1,k = φk/2, g2,k =
−φk(I1,k − I2,k)/6 and g3,k = −φk/2. The coefficients in (2.19) are Bk = 1 and ξk = 0.
The Leonov model is the modified Leonov model with φk = 1. In contrast with the modified
Leonov model, the Leonov model can be solved analytically. The Leonov model will not be
treated separately, because in this section only the limit values will be examined. The limit val-
ues of the Leonov model can be found by substitution of αk = 0 in the results for the modified
Leonov model.

Limit of the internal deformation tensor.

For the modified Leonov model a nonlinear equation for b11,k has to be solved

4γkb11,k + φk(1 +
1

3
(I1,k − I2,k)b11,k − b211,k) = 0,

b22,k = b
−1/2
11,k , (3.13)

where I3,k = 1 has been used for the second equation. For γk � 1 it follows that

b11,k ' 6γk(1 + αk), b22,k →
1√

6γk(1 + αk)
. (3.14)

The invariants become

I1,k ' 6γk(1 + αk), I2,k ' 2
√

6γk(1 + αk), I3,k = 1. (3.15)
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Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.14) in the mechanical
dissipation expression for steady uniaxial elongation (3.5) gives

Dve
m,k ' 6

Gk

λk
(1 + αk)γ

2
k, (3.16)

which increases quadratically with the elongation rate.

Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for large γk (3.14) in the expression
for the parallel and perpendicular thermal conductivities for uniaxial elongation (3.6) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k6(1 + αk)γk + κ2,k36(1 + αk)

2γ2
k

)
,

κ⊥ → κ0 +
K∑
k=1


κ1,k

1

6
√

(1 + αk)γk
+ κ2,k

1

6(1 + αk)γk


 . (3.17)

For constant heat conduction coefficients the limit value for the perpendicular thermal conduc-
tivities is κ⊥ = κ0. For κ2,k = 0 the parallel thermal conductivity increases linearly with γk,
otherwise it increases quadratically. Thus with the (modified) Leonov model and the anisotropic
heat conduction model with constant coefficients it is possible to describe the behaviour for
large values of γk.

The Phan-Thien–Tanner model

The Phan-Thien–Tanner model is given by (A.6). The scalars gi,k are g1,k = Yk, g2,k = −Yk
and g3,k = 0. The coefficients in (2.19) are Bk = 1 and 0 ≤ ξk ≤ 2.

Limit of the internal deformation tensor.

For the Phan-Thien–Tanner model the equations

2(1 − ξk)γkb11,k + Yk(1 − b11,k) = 0,

−(1 − ξk)γkb22,k + Yk(1 − b22,k) = 0 (3.18)

have to be solved. Two different parameters will be considered: a linear Yk and an exponential
Yk. It is not possible to solve these equations analytically. For large values of γk however a
limit solution can be calculated.

The linear Phan-Thien–Tanner model

The nonlinear parameter in the linear PTT model is Yk = 1 + εk(b11,k + 2b22,k − 3). For
γk � 1 and ξk 6= 1 it follows from (3.18) that

b11,k '
2(1 − ξk)γk

εk
, b22,k →

2

3
. (3.19)

The invariants become

I1,k '
2(1 − ξk)γk

εk
, I2,k '

8(1 − ξk)γk
3εk

, I3,k '
8

9

(1 − ξk)γk
εk

. (3.20)
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Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.19) in the mechanical
dissipation expression for steady uniaxial elongation (3.5) gives

Dve
m,k '

2Gk

λkεk
γ2
k, (3.21)

which increases quadratically with the elongation rate.

Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for γk � 1 (3.19) in the expres-
sion for the parallel and perpendicular thermal conductivities for uniaxial elongation (3.6)
gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k

2(1 − ξk)γk
εk

+ κ2,k
4(1 − ξk)

2γ2
k

ε2k

)
,

κ⊥ → κ0 +
K∑
k=1

(
2

3
κ1,k +

4

9
κ2,k

)
. (3.22)

For constant heat conduction coefficients the limit value for the perpendicular thermal con-
ductivity κ⊥ is smaller than the equilibrium thermal conductivity κeq. For κ2,k = 0 the
perpendicular thermal conductivity is always larger than 2κeq/3. When the coefficients are
assumed to depend on a small negative power of one of the invariants, the perpendicular
thermal conductivity may be decreased further. For κ2,k = 0 the parallel thermal conductiv-
ity increases linearly with γk, otherwise it increases quadratically. Thus with the linear PTT
model and the anisotropic heat conduction model with constant coefficients it is possible to
describe the behaviour for large values of γk.

The exponential Phan-Thien–Tanner model

The nonlinear parameter in the exponential PTT model is Yk = exp[εk(b11,k + 2b22,k − 3)].
For γk � 1 and ξk 6= 1 it follows from (3.18) that

b11,k '
1

εk
ln(2(1 − ξk)γk), b22,k →

2

3
. (3.23)

The invariants become

I1,k '
1

εk
ln(2(1 − ξk)γk), I2,k '

4

3εk
ln(2(1 − ξk)γk),

I3,k '
4

9

1

εk
ln(2(1 − ξk)γk). (3.24)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.23) in the mechanical
dissipation expression for steady uniaxial elongation (3.5) gives

Dve
m,k '

Gk

(1 − ξk)λkεk
ln(2(1 − ξk)γk)γk, (3.25)

which increases less then quadratically with the elongation rate.
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Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor (3.23) in the expression
for the parallel and perpendicular thermal conductivities for uniaxial elongation (3.6) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k

1

εk
ln(2(1 − ξk)γk) + κ2,k

1

ε2k
ln2(2(1 − ξk)γk)

)
,

κ⊥ → κ0 +
K∑
k=1

(
2

3
κ1,k +

4

9
κ2,k

)
. (3.26)

For constant heat conduction coefficients the limit value for the perpendicular thermal con-
ductivity is the same as for the linear model. The parallel thermal conductivity increases
logarithmically with the elongation rate, with ln2 γk when κ2,k 6= 0 or with ln γk when
κ2,k = 0.

The Larson model

The Larson model is given by (A.9). The scalars gi,k are g1,k = 1/Bk, g2,k = −1/Bk and
g3,k = 0. The coefficients in (2.19) are Bk = (1 + βk(I1,k − 3)/3)−1 and ξk = 0.

Limit of the internal deformation tensor.

The differential equation for the internal deformation tensor equals the differential equation for
the linear Phan-Thien–Tanner model with ξk = 0 and εk = βk/3. Thus the resulting internal
deformation tensors and thermal conductivities are also equal. However, the relation between
the stress and the internal deformation tensor is different, so the mechanical dissipation is
different as well.

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.19) in the mechanical
dissipation expression for steady uniaxial elongation (3.5) gives

Dve
m,k '

3Gk

λkβk
γk, (3.27)

which increases only linearly with the elongation rate.

3.1.2 Steady simple shear

For a simple shear flow the modified velocity gradient L̂
¯̄

and the internal deformation tensor
b
¯̄
k are

L̂
¯̄

=


 0 (1 − ξk

2
)γ̇ 0

− ξk
2
γ̇ 0 0

0 0 0


 , b

¯̄
k =


 b11,k b12,k 0
b12,k b22,k 0
0 0 b33,k


 . (3.28)

The invariants of b
¯̄
k are then

I1,k = b11,k + b22,k + b33,k, I2,k = b11,kb22,k + b11,kb33,k + b22,kb33,k − b212,k,

I3,k = b33,k(b11,kb22,k − b212,k). (3.29)
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For convenience the non-dimensional shear rate γk = λkγ̇ is introduced. For a simple shear
flow (3.1) then reduces to

(2 − ξk)γkb12,k + g1,k + g2,kb11,k + g3,k(b
2
11,k + b212,k) = 0,

(1 − ξk
2

)γkb22,k −
ξk
2
γkb11,k + g2,kb12,k + g3,kb12,k(b11,k + b22,k) = 0,

−ξkγkb12,k + g1,k + g2,kb22,k + g3,k(b
2
22,k + b212,k) = 0,

g1,k + g2,kb33,k + g3,kb
2
33,k = 0. (3.30)

The values of gi,k for the specific models have already been given in section 3.1.1 and will not
be repeated in this section.

For a steady simple shear flow the material derivative of the internal deformation tensor
cancels out, so the mechanical dissipation equals the stress work. With (2.19) the mechanical
dissipation can be written as

Dve
m,k = τ12,kγ̇ = η(γ̇)γ̇2 =

GkBk

(1 − ξk)λk
b12,kγk, (3.31)

where definition of the shear viscosity (1.1) and the relation between the extra-stress and the
internal deformation tensor (2.19) have been used.

The thermal conductivities parallel and perpendicular to the flow direction in a simple shear
flow are

κ‖ = κ0 +
K∑
k=1

(
κ1,kb11,k + κ2,k(b

2
11,k + b212,k)

)
,

κ⊥ = κ0 +
K∑
k=1

(
κ1,kb22,k + κ2,k(b

2
22,k + b212,k)

)
. (3.32)

Note that if κ2,k = 0 the parallel and perpendicular thermal conductivities only depend on the
components of the internal deformation tensors in that direction, just as for the steady elonga-
tional flow. However, if κ2,k 6= 0 both conductivities also depend on the shear components of
the internal deformation tensors.

In the remaining part of this subsection the internal deformation tensor, the corresponding me-
chanical dissipation and the parallel and perpendicular thermal conductivity will be calculated
for various stress models in a steady simple shear flow. If possible an analytic expression will
be given for these quantities, otherwise only the approximations for large shear rates will be
presented.

The Johnson–Segalman model

For the values of gi,k, Bk and ξk refer to section 3.1.1. For given γk the equation (3.30) is a linear
algebraic equation, which can easily be solved analytically. The solution for the components of
the internal deformation tensor is

b11,k = 1 + (2 − ξk)γkb12,k, b12,k =
(1 − ξk)γk

1 + ξk(2 − ξk)γ2
k

,

b22,k = 1 − ξkγkb12,k, b33,k = 1. (3.33)
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For the limit γk � 1 three cases have to be considered for the parameter ξ in the mixed
convected derivative: ξk = 0, ξk = 2 and 0 < ξk < 2.

• ξk = 0

Limit of the internal deformation tensor.

Substitution of ξk = 0 in (3.33) gives

b11,k ' 2γ2
k , b12,k = γk, b22,k = 1, (3.34)

for large values of γk. The invariants become

I1,k ' 2γ2
k, I2,k ' 3γ2

k, I3,k ' γ2
k. (3.35)

Limit of the mechanical dissipation.

Substitution of the values of the internal deformation tensor (3.34) in the mechanical
dissipation expression for steady simple shear (3.31) gives

Dve
m,k =

Gk

λk
γ2
k, (3.36)

which equals exactly the Newtonian mechanical dissipation ηkγ̇
2, for all possible values

of the shear rate.

Limit of the heat conduction tensor.

Substitution of the components of the internal deformation tensor (3.34) in (3.32) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k2γ

2
k + κ2,k4γ

4
k

)
,

κ⊥ ' κ0 +
K∑
k=1

(
κ1,k + κ2,kγ

2
k

)
. (3.37)

For constant heat conduction coefficients this model predicts an increase of the parallel
thermal conductivity. For the model with constant coefficients the perpendicular thermal
conductivity is at least equal to the equilibrium conductivity or even increases when κ2,k
are positive. When the scalars are supposed to depend on the invariants it is possible to
fulfil restrictions I and II. If κ2,k = 0, a dependence of the scalars on a small negative
power of one of the invariants is sufficient.

• ξk = 2

Limit of the internal deformation tensor.

Substitution of ξk = 2 in (3.33) gives

b11,k = 1, b12,k = −γk, b22,k ' 2γ2
k. (3.38)

The invariants are the same as for ξk = 0: (3.35).
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Limit of the mechanical dissipation.

The mechanical dissipation is the same as for ξk = 0: (3.36).

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensors (3.38) in (3.32) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k + κ2,kγ

2
k

)
,

κ⊥ ' κ0 +
K∑
k=1

(
κ1,k2γ

2
k + κ2,k4γ

4
k

)
. (3.39)

It is clear that this model with constant coefficients is completely in contradiction with
the experiments.

• 0 < ξk < 2

Limit of the internal deformation tensor.

For 0 < ξk < 2 the components of the internal deformation tensor (3.33) become for large
γk

b11,k → 1 +
1 − ξk
ξk

, b12,k →
(1 − ξk)

ξk(2 − ξk)γk
=
Ck
γk
, b22,k → 1 − 1 − ξk

2 − ξk
. (3.40)

The invariants become

I1,k → 1 +
2

(2 − ξk)ξk
, I2,k →

3

(2 − ξk)ξk
, I3,k →

1

(2 − ξk)ξk
. (3.41)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.40) in the mechanical
dissipation expression for a steady simple shear flow (3.31) gives

Dve
m,k →

Gk

λk(1 − ξk)
Ck, (3.42)

which is independent of the shear rate.

Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for large γk (3.40) in the
expression (3.32) for the parallel and perpendicular thermal conductivities for a steady
shear flow gives

κ‖ → κ0 +
K∑
k=1

(
κ1,k

1

ξk
+ κ2,k

1

ξ2
k

)
,

κ⊥ → κ0 +
K∑
k=1

(
κ1,k

1

2 − ξk
+ κ2,k

1

(2 − ξk)2

)
. (3.43)
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For constant κ1,k and κ2,k, and even when they depend on the invariants, the thermal
conductivities only depend on the values of ξk. The perpendicular thermal conductivity
decreases and the parallel thermal conductivity increases when ξk < 1. When ξk > 1
the perpendicular thermal conductivity increases and the parallel thermal conductivity
decreases.

The Giesekus model

For the values of gi,k, Bk and ξk refer to section 3.1.1.

Limit of the internal deformation tensor.

For 0 < αk < 1 the equations for a simple shear flow of the internal deformation tensors (3.30)
have been solved analytically by Giesekus (1982). For αk = 0 the Giesekus equation reduces
to the Johnson–Segalman with ξk = 0. The resulting solution is a complicated function of the
non-dimensional shear rate and the parameter αk. It will not be repeated. The limit value for
γk � 1 can be found by a Taylor expansion of the solution given by Giesekus. This results in

b11,k '
1

αk

4

√
αk(1 − αk)

√
2γk, b12,k →

√
1 − αk
αk

,

b22,k →
2(1 − αk)

4

√
αk(1 − αk)

√
2γk

, b33,k = 1. (3.44)

The invariants become

I1,k '
1

αk

4

√
αk(1 − αk)

√
2γk, I2,k '

1

αk

4

√
αk(1 − αk)

√
2γk,

I3,k →
1 − αk
αk

. (3.45)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.44) in the mechanical
dissipation expression for a steady shear (3.31) gives

Dve
m,k '

Gk

λk

√
1 − αk
αk

γk, (3.46)

which increases linearly with the shear rate.

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor (3.44) in the expression for
the parallel and perpendicular thermal conductivities for a steady shear flow (3.32) gives

κ‖ ' κ0 +
K∑
k=1


κ1,k

4

√
αk(1 − αk)

αk

√
2γk + κ2,k

√
αk(1 − αk)

α2
k

2γk


 ,

κ⊥ → κ0 +
K∑
k=1


κ1,k

2(1 − αk)

4

√
αk(1 − αk)

√
2γk

+ κ2,k
1 − αk
αk


 . (3.47)
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For constant heat conduction coefficients the limit value for the perpendicular thermal conduc-
tivity is κ⊥ = κ0 +

∑K
k=1 κ2,k(1 − αk)/αk. For κ2,k = 0 this limit is always smaller than κeq.

For κ2,k > 0 it depends on the values of αk whether the perpendicular thermal conductivity de-
creases. For κ2,k = 0 the parallel thermal conductivity increases with the root of γk, otherwise
it increases linearly. Thus with the Giesekus model and the anisotropic heat conduction model
it is possible to describe the behaviour for large values of γk. It is interesting to note that the
anisotropy is smaller than for a uniaxial elongation with the same γk. For the elongation the
κ1,k term in the parallel thermal conductivity increased with the elongation rate and the κ2,k

term with the square of the elongation rate.

The (modified) Leonov model

For the values of gi,k, Bk and ξk refer to section 3.1.1. The results for the Leonov model may
be obtained by substitution of φk = 1 or αk = 0 in the results for the modified Leonov model.

Limit of the internal deformation tensor.

For the modified Leonov model the following equations have to be solved:

γkb
2
12,k + φkb12,k = γk,

γkb
2
22,k = φkb12,k,

4γkb12,k + φk(1 − b211,k − b212,k) = 0,

b33,k = 1. (3.48)

For γk � 1 follows

b11,k ' 2
√

(1 + αk)γk, b12,k → 1, b22,k →
√

1

(1 + αk)γk
. (3.49)

The invariants become

I1,k ' 2
√

(1 + αk)γk, I2,k ' 2
√

(1 + αk)γk, I3,k = 1. (3.50)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.49) in the mechanical
dissipation expression for a steady simple shear flow (3.31) gives

Dve
m,k '

Gk

λk
γk, (3.51)

which increases linearly with the shear rate.

Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for large γk (3.49) in the expression
for the parallel and perpendicular thermal conductivities for a steady simple shear flow (3.32)
gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k2

√
(1 + αk)γk + κ2,k4(1 + αk)γk

)
,

κ⊥ → κ0 +
K∑
k=1


κ1,k

1√
(1 + αk)γk

+ κ2,k


 . (3.52)
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For constant heat conduction coefficients the limit value for the perpendicular thermal conduc-
tivity is κ⊥ = κ0 +

∑K
k=1 κ2,k. For positive κ1,k this is smaller than the equilibrium thermal

conductivity. For κ2,k = 0 the parallel thermal conductivity increases with the root of γk,
otherwise it increases linearly. Thus with the (modified) Leonov model and the anisotropic
heat conduction model with constant coefficients it is possible to describe the behaviour for
large values of γk. It is interesting to note that the anisotropy is smaller than for a uniaxial
elongation with the same γk. For the elongation the κ1,k term increased linearly and the κ2,k

term quadratically with the elongation rate.

The Phan-Thien–Tanner model

For the values of gi,k, Bk and ξk refer to section 3.1.1. For the PTT model the following
equations have to be solved for the internal deformation tensor

(2 − ξk)γkb12,k + Yk(1 − b11,k) = 0,

(1 − ξk
2

)γkb22,k −
ξk
2
γkb11,k − Ykb12,k = 0,

−ξkγkb12,k + Yk(1 − b22,k) = 0,

b33,k = 1. (3.53)

Two different parameters will be considered: a linear Yk and an exponential Yk.

The linear Phan-Thien–Tanner model

The nonlinear parameter in the linear PTT model is Yk = 1 + εk(b11,k + b22,k − 2). For the
limit γk � 1 three cases have to be considered: ξk = 0, ξk = 2 and 0 < ξk < 2.

• ξk = 0

Limit of the internal deformation tensor.

For ξk = 0 the limit solutions of (3.53) are

b11,k ' 3

√√√√2γ2
k

ε2k
, b12,k ' 3

√
γk
2εk

, b22,k → 1. (3.54)

The invariants become

I1,k ' 3

√√√√2γ2
k

ε2k
, I2,k ' (2

3
√

2 − 1
3
√

4
) 3

√√√√γ2
k

ε2k
, I3,k ' (

3
√

2 − 1
3
√

4
) 3

√√√√γ2
k

ε2k
. (3.55)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.54) in the mechan-
ical dissipation expression for steady simple shear (3.31) gives

Dve
m,k '

Gk

λk

√
γk
2εk

γk, (3.56)

which increases with a 3/2 power of the shear rate.
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Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for γk � 1 (3.54) in the
expression for the parallel and perpendicular thermal conductivities for a steady simple
shear flow (3.32) gives

κ‖ ' κ0 +
K∑
k=1


κ1,k

3

√√√√2γ2
k

ε2k
+ κ2,k

3

√√√√4γ4
k

ε4k


 ,

κ⊥ ' κ0 +
K∑
k=1


κ1,k + κ2,k

3

√√√√ γ2
k

4ε2k


 . (3.57)

For constant heat conduction coefficients it follows from restriction I that κ2,k = 0.
But even then the limit value for the perpendicular thermal conductivity equals the
equilibrium thermal conductivity κ⊥ = κeq. Thus in contrast with the elongational
flow, restriction I cannot be fulfilled in a simple shear flow. For κ2,k = 0 the parallel

thermal conductivity increases less than linearly with the shear rate: γ
2/3
k . This is less

than for the elongational flow which increased linearly with the elongation rate. It
is possible to fulfil restriction I when the coefficients κ1,k and κ2,k depend on a small
negative power of one of the invariants.

• ξk = 2

Limit of the internal deformation tensor.

For ξk = 2 the limits of the components of the internal deformation tensors in (3.53)
become

b11,k → 1, b12,k ' − 3

√
γk
2εk

, b22,k ' 3

√√√√2γ2
k

ε2k
. (3.58)

The limits of the invariants are the same as for ξk = 0: (3.55).

Limit of the mechanical dissipation.

The mechanical dissipation is the same as for ξk = 0: (3.56).

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor (3.58) in the expres-
sion for the parallel and perpendicular thermal conductivities for steady shear (3.32)
gives

κ‖ ' κ0 +
K∑
k=1


κ1,k + κ2,k

3

√√√√ γ2
k

4ε2k


 ,

κ⊥ ' κ0 +
K∑
k=1


κ1,k

3

√√√√2γ2
k

ε2k
+ κ2,k

3

√√√√4γ4
k

ε4k


 . (3.59)

For constant heat conduction coefficients κ1,k = κ2,k = 0 due to restriction I. Thus only
the isotropic thermal conductivity remains. Even the dependence of κ1,k and κ2,k on the
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invariants does not help. It is then possible to obtain a limit value for the perpendicular
thermal conductivity which is smaller than the equilibrium conductivity. However, then
the parallel thermal conductivity is also smaller than the equilibrium conductivity.

• 0 < ξk < 2

Limit of the internal deformation tensor.

For large γk the limit of an internal deformation tensor is

b11,k →
1

ξk
, b12,k →

(1 − ξk)Yk
ξk(2 − ξk)γk

=
Ck
γk
,

b22,k →
1

2 − ξk
, Yk → 1 +

2εk(1 − ξk)
2

ξk(2 − ξk)
. (3.60)

The invariants become

I1,k →
1

ξk
+

1

2 − ξk
+ 1, I2,k →

3

ξk(2 − ξk)
, I3,k →

1

ξk(2 − ξk)
. (3.61)

Note that the limits of the invariants are equal to the limits of the invariants of the
Johnson–Segalman model (3.41).

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.60) in the mechan-
ical dissipation expression for a steady simple shear flow (3.31) gives

Dve
m,k →

Gk

λk
(1 − ξk)Ck, (3.62)

which is independent of the shear rate.

Limit of the heat conduction tensor.

Substitution of the values of the internal deformation tensor for large γk (3.60) in the
expression for the parallel and perpendicular thermal conductivities for simple shear
(3.32) gives

κ‖ → κ0 +
K∑
k=1

(
κ1,k

1

ξk
+ κ2,k

1

ξ2
k

)
,

κ⊥ → κ0 +
K∑
k=1

(
κ1,k

1

2 − ξk
+ κ2,k

1

(2 − ξk)2

)
. (3.63)

For constant heat conduction coefficients κ⊥ and κ‖ are limited. It depends on ξk
whether these limits are larger or smaller than the thermal conductivity in equilibrium
κeq. For 0 < ξk < 1 the limit of the perpendicular conductivity is smaller and the
parallel conductivity larger than the equilibrium conductivity. For 1 < ξk < 2 the
behaviour is opposite. A dependence on the invariants does not help to fulfil restriction
II. The invariants are also independent of the shear rate and only dependent on ξk. The
behaviour of the parallel thermal conductivity is completely different from the steady
elongation, where κ‖ increased with increasing elongation rate.
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The exponential Phan-Thien–Tanner model

In a steady shear flow the nonlinear parameter in the exponential Phan-Thien–Tanner model
equals Yk = exp[εk(b11,k + 2b22,k − 3)]. For the limit solution γk � 1 for (3.53) three cases
have to be considered: ξk = 0, ξk = 2 and 0 < ξk < 2.

• ξk = 0

Limit of the internal deformation tensor.

For large γk the limit of an internal deformation tensor is

b11,k '
1

εk
ln γk, b12,k '

√
ln γk
2εk

, b22,k → 1. (3.64)

The invariants then become

I1,k '
1

εk
ln γk, I2,k '

3

2εk
ln γk, I3,k '

1

2εk
ln γk. (3.65)

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor (3.64) in the mechan-
ical dissipation expression for a steady simple shear flow (3.31) gives

Dve
m,k '

Gk

λk
γk

√
ln γk
2εk

, (3.66)

which increases more than linearly with the shear rate.

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor in (3.32) gives

κ‖ ' κ0 +
K∑
k=1

(
κ1,k

1

εk
ln γk + κ2,k

1

ε2k
ln2 γk

)
,

κ⊥ ' κ0 +
K∑
k=1

(
κ1,k + κ2,k

1

2εk
ln γk

)
. (3.67)

When the coefficients κ1,k and κ2,k are constants, the parallel conductivity increases
logarithmically with the deformation rate. This behaviour is equal to the steady elon-
gation. However, in contrast with the elongational flow, the perpendicular conductivity
does not decrease. When κ2,k is positive it even increases logarithmically with the shear
rate. Restriction I and II can be fulfilled when κ1,k or κ2,k depend on a small negative
power of one of the invariants.

• ξk = 2

Limit of the internal deformation tensor.

For γk � 1 the components of an internal deformation tensor become

b11,k → 1, b12,k ' −
√

ln γk
2εk

, b22,k '
1

εk
ln γk. (3.68)

The invariants are the same as for ξk = 0: (3.65).
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Limit of the mechanical dissipation.

The mechanical dissipation is the same as for ξk = 0: (3.66).

Limit of the heat conduction tensor.

Substitution of the limit values of the internal deformation tensor in (3.32) gives

κ‖ ' κ0 +
K∑
k=1


κ1,k + κ2,k

√
ln γk
2εk


 ,

κ⊥ ' κ0 +
K∑
k=1

(
κ1,k

1

εk
ln γk + κ2,k

1

ε2k
ln2 γk

)
. (3.69)

It is clear that this model with constant coefficients is completely in contradiction with
the experiments. A dependence on the invariants does not help, because then only
restriction I or restriction II can be fulfilled.

• 0 < ξk < 2
The results are the same as for the linear Phan-Thien–Tanner model, except that the
limit of Yk, which is independent of the shear rate, is different:

Yk → exp [2εk(1 − ξk)
2ξk(2 − ξk)]. (3.70)

The Larson model

For the values of gi,k, Bk and ξk refer to section 3.1.1.

Limit of the internal deformation tensor.

The differential equation for the internal deformation tensor of the Larson model is the same as
for the linear Phan-Thien–Tanner model with βk/3 = εk. Only the stress is different. Therefore
only the expression for the mechanical dissipation will be given.

Limit of the mechanical dissipation.

Substitution of the limit values of the internal deformation tensor of the linear Phan-Thien–
Tanner model (3.54) in the mechanical dissipation expression for steady simple shear (3.31)
gives

Dve
m,k '

Gk

λk

3

√√√√9γ2
k

4β2
k

, (3.71)

which increases with a 2/3 power of the shear rate.

3.2 A lower bound for the invariants of the internal deformation
tensor

Hulsen (1990b) has shown that it is possible to identify a positive definite configuration tensor
(the internal deformation tensor b

¯̄
k) for the differential stress models of appendix A. Due to

numerical errors an internal deformation tensor may become indefinite. This indefiniteness
causes large non-linear instabilities, Hulsen (1988b). The positive definiteness of an internal
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deformation tensor gives the opportunity to correct b
¯̄
k to a semi-positive definite tensor, with

vanishing determinant. When the inverse of b
¯̄
k is needed, for example for the mechanical

dissipation in the temperature equation (2.92), it is not sufficient to have a semi-positive definite
b
¯̄
k. In this subsection a method will be developed to determine the lower bound of the invariants

of b
¯̄
k. With the results also the positiveness of the term with the invariants in ∆c and ∆c0,

equation (2.100) and 2.103), can be demonstrated. The method will be applied to the models
of appendix A. Finally two possibilities to correct an indefinite internal deformation tensor in
an axisymmetrical flow are discussed.

Starting point is the general equation for the internal deformation tensor (3.1). Combining this
relation with

İ3,k =
∂I3,k
∂b
¯̄
k

: ḃ
¯̄k

= I3,kb
¯̄
−1
k : ḃ

¯̄k
, (3.72)

which follows from (2.20), the following expression for the material derivative of the third
invariant is obtained:

λkİ3,k = 2λk(1 − ξk)I3,k∇ · v
¯

+ g1,kI2,k + (3g2,k + g3,kI1,k) I3,k. (3.73)

In the following a divergence free flow will be assumed. Then the first term on the right-hand
side vanishes1.

3.2.1 A lower bound for I2,k and I1,k on a surface of constant I3,k

In this subsection it will be shown that the invariants I1,k and I2,k are positive if the internal
deformation tensors are positive definite.

For a surface with constant determinant I3,k = C > 0 the second invariant equals

I2,k(b1,k, b2,k) = b1,kb2,k +
C

b1,k
+

C

b2,k
, (3.74)

where b1,k and b2,k are the values of b
¯̄
k on two principal axes. The third value b3,k has been

eliminated with I3,k = C. The local extrema can be found from:

∂I2,k
∂b1,k

= b2,k −
C

b21,k
= 0,

∂I2,k
∂b2,k

= b1,k −
C

b22,k
= 0,

which gives one real extremum b1,k = b2,k = b3,k = 3
√
C. The second derivatives of I2,k in this

extremum are
∂2I2,k
∂b21,k

= 2,
∂2I2,k
∂b22,k

= 2,
∂2I2,k

∂b1,k∂b2,k
= 1.

The conditions for a minimum are

∂2I2,k
∂b21,k

> 0,
∂2I2,k
∂b21,k

∂2I2,k
∂b22,k

>

(
∂2I2,k

∂b1,k∂b2,k

)2

,

1For compressible flows no positive lower bound can be obtained, because ∇ · v
¯

term may be negative.
However, the I3,k in that term avoids the indefiniteness of the internal deformation tensor.
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which are fulfilled in the local extremum.
Substitution of b1,k = b2,k = 3

√
C in (3.74) gives the value for the second invariant in the

local minimum: Imin
2,k = 3C2/3.

For a surface with constant determinant I3,k = C the first invariant equals

I1,k(b1,k, b2,k) = b1,k + b2,k +
C

b1,kb2,k
. (3.75)

The local extrema can be found from:

∂I1,k
∂b1,k

= 1 − C

b21,kb2,k
= 0,

∂I1,k
∂b2,k

= 1 − C

b22,kb1,k
= 0,

which is essentially the same condition as for the equation of the second invariant. Substitution
of b1,k = b2,k = 3

√
C in (3.75) then gives the value for the first invariant in the local minimum:

Imin
1,k = 3 3

√
C.

3.2.2 Lower bounds of the determinant for viscoelastic models

With the results of section 3.2.1 a lower bound will given for the determinant I3,k of the
differential models of appendix A. It will be shown that in 3D flows it is not possible for all
models to obtain a positive lower bound for the invariants.

The Johnson–Segalman model

The Johnson–Segalman model is given by (A.2). For the scalars gi,k refer to section 3.1.1.
Substitution of these scalars in equation (3.73) gives

İ3,k =
1

λk
I2,k −

3

λk
I3,k. (3.76)

With the result of section 3.2.1 for the minimum of the second invariant, equation (3.76) leads
to

İ3,k ≥
3C2/3

λk

(
1 − C1/3

)
, (3.77)

on the surface I3,k = C. For C = 1 it follows that İ3,k ≥ 0. Thus the lower bound for the
Johnson–Segalman model is Imin

3,k = 1, if it is assumed that any path starts from b
¯̄
k = I

¯̄
. From

the results in section 3.2.1 it also follows that the minima of the first and second invariant are
Imin
1,k = 3

√
C = 3 and Imin

2,k = 3C2/3 = 3, which corresponds to the values of the invariants in
equilibrium.

From (3.77) it also follows that for 0 < C < 1 the material derivative of the determinant
is positive. So, if for some reason the determinant has become smaller than its lower bound
I3,k < 1, it will increase again.

The Phan-Thien–Tanner model

The linear and exponential Phan-Thien–Tanner model can be described by (A.6). For the
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scalars gi,k refer to section 3.1.1. Substitution of these scalars in equation (3.73) gives

İ3,k =
Yk
λk
I2,k −

3Yk
λk

I3,k. (3.78)

With the result of section 3.2.1 for the minimum of the second invariant, equation (3.78) leads
to

İ3,k ≥
3YkC

2/3

λk

(
1 − C1/3

)
, (3.79)

on the surface I3,k = C. For C = 1 it follows that İ3,k ≥ 0. If it is assumed that any path
starts from b

¯̄
k = I

¯̄
, the lower bound for the Phan-Thien–Tanner model is Imin

3,k = 1, which is
the same as for the Johnson–Segalman model. The minima of the first and second invariant
also equal the minima of the Johnson–Segalman model: Imin

1,k = 3
√
C = 3 and Imin

2,k = 3C2/3 = 3,
which corresponds to the values of the invariants in equilibrium.

From (3.79) it also follows that for 0 < C < 1 the material derivative of the determinant
is positive. So, if for some reason the determinant has become smaller than its lower bound
I3,k < 1, it will increase again.

The Larson model

The Larson model is given by (A.9). This is exactly the differential equation for the internal
deformation tensor of the linear Phan-Thien–Tanner model, when βk = 3εk. So Imin

1,k = 3,
Imin
2,k = 3 and Imin

3,k = 1 are also lower bounds for the Larson model.

The Leonov model

The Leonov model can be described by (A.4). For the scalars gi,k refer to section 3.1.1. Sub-
stitution of these scalars in equation (3.73) gives

İ3,k =
1

2λk
I2,k (1 − I3,k) . (3.80)

If I3,k = 1 initially, then it always equals I3,k = 1. From the results in section 3.2.1 it also follows
that the minima of the first and second invariant are Imin

1,k = 3
√
C = 3 and Imin

2,k = 3C2/3 = 3,
which are equal to the values of the invariants in equilibrium.

Otherwise, if for some reason the determinant has become smaller or larger than I3,k = 1,
it will tend to I3,k = 1 for t→ ∞.

The modified Leonov model

The modified Leonov model can be described by (A.5). For the scalars gi,k refer to section
3.1.1. Substitution of these scalars in equation (3.73) gives

İ3,k =
φk
2λk

I2,k (1 − I3,k) . (3.81)

As for the Leonov model I3,k = 1, if it equals I3,k = 1 initially. Then the minima of the first
and second invariant are also Imin

1,k = 3
√
C = 3 and Imin

2,k = 3C2/3 = 3, which are equal to the
values of the invariants in equilibrium.

Otherwise, if for some reason the determinant is positive but does not equal 1 at the starting
point of the path, it will tend to I3,k = 1 for t→ ∞.

The Giesekus model

The Giesekus model can be described by (A.3). For the scalars gi,k refer to section 3.1.1.
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Substitution of these scalars in equation (3.73) gives

İ3,k =
1 − αk
λk

I2,k − I3,k

(
3(1 − 2αk)

λk
+
αk
λk
I1,k

)
. (3.82)

Hulsen (1988b) has shown that a positive lower bound exists for a 2D flow. However, for a 3D
flow of the Giesekus model it is not possible to find a positive lower bound for the determinant.
This will be demonstrated with a counter example: the steady uniaxial elongation described in
section 3.1.1. The limit solution of the determinant for large γk is given by (3.10):

lim
γk→∞ I3,k = lim

γk→∞
2(1 − αk)

2

αkγk
= 0,

which shows that no general positive lower bound can be given for the 3D Giesekus model.
Together with the positive definiteness of the internal deformation tensor this gives that the
lower bound for the determinant equals Imin

3,k = 0.
Whether positive lower bounds for I1,k and I2,k exist remains inconclusive from our analysis

in section 3.2.1 (only Imin
1,k = Imin

2,k > 0).

3.2.3 Correction of indefinite internal deformation tensors in 3D flows

In the previous subsection it has been shown that for a 3D flow the value of the determinant is
always positive for a finite velocity gradient L

¯̄
T . Except for the Giesekus model, it is possible

to obtain a positive lower bound for the determinant of an internal deformation tensor. The
question remains how an internal deformation tensor has to be corrected. Two possibilities will
be discussed for an axisymmetrical flow: a 2D and a 3D correction method.

Isotropic 2D correction.

The 2D correction is based on the idea that the indefiniteness of b
¯̄
k is caused by the velocity

derivatives. For axisymmetrical flows the φφ-component does not depend on velocity deriva-
tives, only on the radial velocity. When it is assumed that the error in the φφ-component is
small compared to the other components, the internal deformation tensor may be corrected
with a 2D isotropic term

bcrr,k = brr,k + c, bczz,k = bzz,k + c, bcφφ,k = bφφ,k. (3.83)

The positive correction parameter c is calculated from the condition that the determinant of
the corrected internal deformation tensor b

¯̄
c
k equals the minimum value for the specific stress

model: Ic3,k = Imin
3,k . This requires the solution of a quadratic equation. The correction method

is illustrated in figure 3.1.

Isotropic 3D correction.

When all the terms are affected due to numerical errors a 3D isotropic correction is an obvious
choice. The corrected internal deformation tensor then becomes

b
¯̄
c
k = b

¯̄
k + cI

¯̄
. (3.84)
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Figure 3.1: Correction of the internal deformation tensor in 2D. b1,k and b2,k are the principal values of b
¯̄k

.
The solution of the model lies in the dashed area, which is bounded by two lines with constant I3,k. The solid
arrow is the projection on the first quadrant used by Hulsen (1990a) and Hulsen & van der Zanden (1991). The
dashed arrow is a projection on the lower bound Imin

3,k .

When the indefiniteness is caused by the tangential component b
¯̄
φφ ≤ 0, the 2D method is

not sufficient. Then the 3D correction has to be made. This requires the solution of a cubic
equation, which has in general three different solutions. From the three possible values of c
that one must be chosen for which all three invariants of b

¯̄
c
k are positive (Ic1,k > 0, Ic2,k > 0 and

Ic3,k > 0).

3.3 Conclusions

In this chapter the behaviour of the internal deformation tensor for the stress models of appendix
A has been examined for large deformations in a steady elongational flow and a steady simple
shear flow. For these two cases the anisotropy of the heat conduction tensor has been calculated
as well. Because of the small amount of experimental data a simple model with constant
coefficients has been taken. It has been checked whether a qualitative agreement can be obtained
between the simple model and the experiments discussed in section 2.4. The results have been
summarised in table 3.1. For the stress models which are not in qualitative agreement an extra
dependence of the heat conduction coefficients on the invariants of b

¯̄
k has to be introduced

to correspond to the experimental results. With the help of the limit values of the internal
deformation tensor the behaviour of the mechanical dissipation has been calculated as well.

Finally, a method has been developed to calculate the lower bound of the invariants of an
internal deformation tensor for 3D flows. A positive lower bound for the determinant gives
the opportunity to correct the internal deformation tensor to a positive definite tensor. The
method has been applied to the stress models of appendix A, to indicate which models may cause
problems with the calculation of the inverse of the internal deformation tensors. The results
are summarised in table 3.1. From this table it follows that, for the anisotropy model with
constant coefficients, all models, except the Johnson–Segalman model, are able to describe the
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Table 3.1: Summary of the behaviour of the perpendicular and parallel thermal conductivities in steady shear
and steady uniaxial elongation for the various stress models with ξk = 0. The coefficients κ1,k and κ2,k are
assumed to be constant. For the perpendicular conductivity it is indicated whether it may be smaller or equal
to the equilibrium conductivity. For the parallel conductivity the proportionality with the shear and elongation
rate is indicated for large deformations. When two values are given, the first value is for κ2,k = 0 and the
second value for κ2,k > 0. When a positive value of κ2,k gives an infinite perpendicular thermal conductivity
only the behaviour for κ2,k = 0 is indicated. The fifth column, RI,RII, indicates whether the restrictions I and
II are both satisfied (+) or not (−). The last column contains the lower bound for the determinant Imin

3,k of an
internal deformation tensor.

model κsh
⊥ κsh

‖ κel
⊥ κel

‖ RI,RII Imin
3,k

Johnson–Segalman κeq γ̇2 − − − 1
Giesekus < κeq γ̇1/2; γ̇ < κeq ε̇; ε̇2 + 0
(modified) Leonov < κeq γ̇1/2; γ̇ < κeq ε̇; ε̇2 + 1
linear PTT κeq γ̇2/3 < κeq ε̇; ε̇2 − 1
exponential PTT κeq ln γ̇ < κeq ln ε̇; ln2 ε̇ − 1
Larson κeq γ̇2/3 < κeq ε̇; ε̇2 − 1

anisotropy in uniaxial elongation. However, in steady simple shear only the Giesekus model and
the Leonov models are able to fulfil both restriction I and II (a decreasing perpendicular thermal
conductivity until a certain lower limit and an increasing parallel thermal conductivity). The
Giesekus model, however, may cause problems with the calculation of the inverse of the internal
deformation tensors. Thus the (modified) Leonov model appears to have the best properties
for simulation purposes of nonisothermal flows of viscoelastic fluids with the anisotropic heat
conduction with constant coefficients2.

2Although the modified Leonov model seems to be well suited for nonisothermal calculations with anisotropic
heat conduction, it has some other disadvantages as will be shown in chapter 5 and appendix C.



Chapter 4

Numerical method for the balance equations and the

constitutive equations

This chapter consists of a description of the numerical method that has been used to solve the
system of partial differential equations (2.156), which has been obtained in chapter 2. First
the outline of the iterative method will given. In the next three sections the solution method
of the three different parts of the iterative method will be discussed. The details about the
discretisation method and the solution method of the equations of motion and the temperature
equation can be found in sections 4.2 and 4.3. The streamline integration will be discussed in
section 4.4. Finally the boundary conditions that can be imposed on the equations of motion
and the temperature equation will be given in section 4.5, including the fully developed flow
boundary condition at the inflow and outflow. The numerical implementation of the fully
developed boundary conditions will be described as well.

The numerical code is an extension to nonisothermal equations of the isothermal code
described by Hulsen & van der Zanden (1991). In this thesis the emphasis will be on the
changes in the numerical implementation due to the nonisothermal effects.

4.1 Introduction
In general, the system of partial differential equations (2.156) is too difficult to solve it ana-
lytically. For this, a numerical method that is able to solve the system of partial differential
equations for various types of flows will be discussed in this chapter. The discretisation method
that will be used for the equations of motion, the temperature equation and the stress constitu-
tive equation will be described in the next three sections. In these sections also the numerical
solution method will be described. To use different solution methods for the elliptic part of
the equations, the balance equations, and the hyperbolic part, the differential equations for
the internal deformation tensors, the system of equations will be decoupled. The decoupled
equations will be solved with the help of an iterative method. An additional advantage over
solving the whole system at once is that less memory is needed and very large computation
times are avoided. Particularly for multi-mode models, which are often needed to obtain a
good description of the fluid behaviour, the matrix in the resulting matrix-vector equation may
become very large when the coupled system is solved. On the other hand, however, the rate
of convergence may be low due to the splitting. Therefore a large number of relatively cheap
iterations has to be performed. Dependent on the problem the number of iterations is O(101)
or O(102).

The outline of the iteration process, which will be described in more detail in the next
sections, is as follows:

1. Start with an initial field for the velocity, the K internal deformation tensors and the

81
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temperature. This may be a result of a previous calculation. If there is no starting field
of a previous simulation available, a zero velocity and zero stress (b

¯̄
k = I

¯̄
) may be taken as

the initial field. However, to avoid problems with shift factors a reasonable initial field for
the temperature has to be specified, for example the temperature of a Dirichlet boundary
or the reference temperature.

2. Calculate an iteration step. An iteration step (i + 1) of the iteration process consists of
the following four or five substeps, which are performed after each other

• Calculate the updated velocity field, by solving a matrix-vector equation for the
equations of motion (2.156)1,2: AvV i+1 = f(V i, T i,Υi,P i). Dependent on the solu-
tion method the pressure may be written as a function of Vi only (penalty method)
or not (Uzawa’s method). These methods, the discretisation method and the imple-
mentation in the iterative scheme will be specified in section 4.2.

• Update the pressure field, if necessary (Uzawa’s method): Pi+1 = f(V i+1,P i).
• Calculate the updated temperature field, by solving a matrix-vector equation for the

temperature equation (2.156)3: ATT i+1 = f(V i+1,P i+1, T i,Bi). The discretisation
method and the implementation in the iterative scheme will be specified in section
4.3.

• Calculate the updated internal deformation tensor field, by solving the K uncoupled
equations (2.156)5: Bi+1

k = f(V i+1, T i+1,Bik) and calculate the sum of the modal
stresses Υi+1. The discretisation method and the implementation in the iterative
scheme will be specified in section 4.4.

• Calculate an approximation of the outflow boundary conditions. This step will be
explained further on in section 4.5.

V, T , Υ and P are vectors with the nodal point values of the discretised velocity, the
temperature, the sum of the modal stresses and the pressure. B represents all modes of
the internal deformation tensors, while Bk represents only the kth mode of the internal
deformation tensors.

3. Repeat step 2 until the solution has converged.

4.2 The equations of motion

For the equations of motion the finite element method has been used. This method will only
be introduced briefly. A comprehensive description about finite element methods can be found
in Cuvelier et al. (1986). To derive the finite element formulation for the mass balance (2.1)
and the balance of linear momentum (2.4) these equations are multiplied with test functions
and integrated over the domain Ω:

∫
Ω

(ρ̇+ ρ∇ · v
¯
) ψd dΩ = 0, ∀ψd ∈ Ψd, (4.1)

∫
Ω

(
ρv̇
¯

+ ∇p− ρf
¯
−∇ · τ

¯̄

)
· ψ
¯
mdΩ = 0, ∀ψ

¯
m ∈ Ψm, (4.2)
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where the decomposition of the total stress (2.5) has been used. The test functions for the mass
balance ψd and the balance of linear momentum ψ

¯
m belong to suitable spaces Ψd and Ψm on

Ω.

Before the discretisation method of (4.1) and (4.2) will be discussed, first the restrictions
on the numerical implementation will be given.

Restrictions on the numerical implementation

For the equations of motion the following restrictions have been made for the numerical imple-
mentation:

• The flow is assumed to be steady.

• The type of the coordinate system is either Cartesian or axisymmetrical.

• The density of the fluid is assumed to be constant in the equations of motion. In section
2.6 it has been shown that for the mass balance a constant density is often a good
approximation in shear flows with relatively small temperature differences. Then the
balance of mass reduces to the incompressibility condition. In the balance of linear
momentum the density appears in the convective term and in the buoyant force. The
convective term is small, so small density variations can be neglected in this term. In
section 2.6 it has been shown that in general the buoyant force is small either. Only for
extreme conditions this term may become important. However, if the buoyant force is
taken into account the flow is no longer axisymmetric for a horizontal pipe flow. Then a
3D implementation would be required. Therefore the buoyant force will be neglected as
well.

• The extra-stress tensor τ
¯̄

is specified by a Newtonian (solvent) stress andK modal stresses:
τ
¯̄

= 2ηsd
¯̄

+
∑K
k=1 τ¯̄

k, equation (2.15).

• The Newtonian (solvent) viscosity ηs is independent of the pressure.

• The temperature dependence of the Newtonian (solvent) viscosity ηs is given by1 the
WLF shift factor (2.123), the Andrade shift factor (2.124) or a combination of these two,
the WLF shift factor below a certain separating temperature T < Ts and the Andrade
shift factor above the separating temperature T > Ts.

4.2.1 Discretisation method

Substitution of the restrictions on the numerical implementation, discussed in the first part
of this section, in the integrated balance of mass (4.1) and the integrated balance of linear
momentum (4.2) gives the following equations of motion

(∇ · v
¯
, ψd) = 0, ∀ψd ∈ Ψd, (4.3)

1For test purposes also an exponential factor ln aT ,k = C1,k(T − Tref) has been implemented. With this
type of shift factors an analytical solution can be computed for steady flows of a Maxwell fluid in a Cartesian
coordinates. This is not possible for the Andrade and WLF shift factor.
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[ρrefv
¯
· ∇v

¯
, ψ
¯
m] + (p,∇ · ψ

¯
m) + 〈2ηsd

¯̄
,∇ψ

¯
m〉 =

−〈
K∑
k=1

τ
¯̄
k,∇ψ

¯
m〉 + [n

¯
· σ
¯̄
, ψ
¯
m]Γ, ∀ψ

¯
m ∈ Ψm, (4.4)

where n
¯

is the outward unit normal to the boundary Γ. The order of equation (4.4) has been
reduced, by applying the Gauss theorem to the stress and the pressure terms. The elliptic
part of the stress (the viscous stress) has been separated from the hyperbolic part (the modal
stresses). The numerical solution method for the modal stresses will be discussed in section
4.4. The Dirichlet or natural boundary conditions which have to be prescribed on Γ will be
discussed in section 4.5. In the equations (4.3) and (4.4) the following notation has been used
for the various surface and boundary integrals

(a, b) =
∫
Ω
ab dΩ, [a

¯
, b
¯
] =

∫
Ω
a
¯
· b
¯
dΩ,

〈a
¯̄
, b
¯̄
〉 =

∫
Ω
a
¯̄

: b
¯̄
dΩ, (a, b)Γ =

∫
Γ
ab dΓ,

[a
¯
, b
¯
]Γ =

∫
Γ
a
¯
· b
¯
dΓ. (4.5)

In the finite element method the approximation of the unknown velocity v
¯

and the pressure
p consists of an interpolation of the nodal point values of the concerned quantity:

ṽ
¯
(x
¯
) =

Jv∑
j=1

v
¯
jψv,j(x

¯
), p̃(x

¯
) =

Jp∑
j=1

pjψp,j(x
¯
), (4.6)

where Jv is the number of velocity nodes and Jp the number of pressure unknowns. ψv are the
velocity basis functions and ψp the pressure basis functions. A tilde ˜ above a quantity denotes
the discrete approximation of that quantity. The modal stress tensors and the temperature are
approximated by

τ̃
¯̄
k(x

¯
) =

Jτ∑
j=1

τ
¯̄
j
kψτ,j(x¯

), T̃ (x
¯
) =

JT∑
j=1

T jψT ,j(x
¯
), (4.7)

where Jτ is the number of stress nodes and JT the number of temperature nodes. ψτ are the
basis functions of the modal stresses and ψT the basis functions of the temperature.

In the standard Galerkin approximation the test functions of the incompressibility condition
are taken ψd = ψp and for the test functions of the balance of linear momentum ψ

¯
m = e

¯
ψv,

where e
¯

are unit basis vectors. In the finite element method the basis functions for the pressure
and the velocity consist of piecewise polynomials.

For the pressure and the velocity the modified Crouzeix–Raviart element (P+
2 -P1) has been

used. For this element the standard 6-point quadratic triangular element for the velocity has
been extended with its centre point. The discrete approximation of the pressure consists of the
pressure and two derivatives in the centre point, see figure 4.1. The pressure derivatives and
the velocities in the centre point can be eliminated on element level, thus there remain twelve
unknown velocities and one unknown pressure at the element level. With the elimination the
total number of velocity and pressure unknowns are both reduced by two times the number of
elements. The remaining number of pressure unknowns, which equals the number of pressure
nodes, will be denoted by Jrp .
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Figure 4.1: Standard quadratic element with six nodal points (denoted by a 3) and the Crouzeix–Raviart
element with seven velocity points (denoted by a 3) and a centre point with the pressure and its derivatives
(denoted by a ©).

For the approximation (4.7) of the modal stresses and the temperature the standard quad-
ratic triangular element basis functions has been used for ψτ and ψT . The quadratic element
has also been depicted in figure 4.1.

Elimination of the pressure

Two methods will be discussed to eliminate the pressure in the centre point of an element: the
penalty method and the Uzawa method.

• The penalty method.
A widely used method to eliminate the Jrp pressure unknowns pj, is the (discrete) penalty
method may be used. Instead of the divergence equation (4.3) now

(εpp
j + ∇ · ṽ

¯
, ψp,i) = 0, i = 1, . . . , Jrp (4.8)

is used. The penalty parameter εp is a small parameter. Usually εpp
j is O(10−5 − 10−7),

so that the divergence freedom is fulfilled approximately. Through the elimination of the
centre point pressures on element level, the number of unknowns is further reduced with
Jrp . Afterwards, when the solution has converged, the pressure may be reconstructed from
the velocities. A drawback of this method is that the condition of the system becomes
worse when the penalty parameter becomes smaller. For too small εp the iteration matrix
Av for the equations of motion becomes ill-conditioned.

• The Uzawa method.
Another possibility to eliminate the remaining Jrp pressure unknowns is the Uzawa method,
which has been described by Fortin & Fortin (1985) and Fortin et al. (1991). This method
can be used to obtain a better approximation of the incompressibility condition (4.3), with
the same εp (or an approximation as good as the penalty method with a larger εp). A
better approximation of the divergence may also give a better approximation of the pres-
sure and the pressure gradient, which are needed in the temperature equation. For the
Uzawa method the divergence of the velocity is equated to a pressure difference instead
of the pressure:

(εp
(
pj − pj,ref

)
+ ∇ · ṽ

¯
, ψp,i) = 0, i = 1, . . . , Jrp , (4.9)
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where pj,ref is a reference pressure in the jth centre point. For the reference pressure
the pressure at the previous iteration will be taken. This means that at every iteration
step the pressure has to be updated and an extra array with length Jrp has to be stored.
Another drawback with regard to the penalty method is that the convergence of the
iteration scheme is slower (Cuvelier et al. 1986).

Matrix-vector formulation

After elimination of the pressure by the penalty or the Uzawa method and substitution of
the finite element approximations of the various quantities in the integrated balance of linear
momentum (4.4), a matrix-vector equation of the following form is obtained:

Nv(V) + (ηs(T )Sv + Cv)V +Q(Υ) + LTPref = Fv, (4.10)

where Nv is a nonlinear operator due to the convective acceleration, Sv a linear operator due
to the viscous stresses, Cv the penalty matrix, Q a function of the viscoelastic stresses and Fv
contains the contributions of the natural boundary conditions. The pressure term LTPref , with
LT the gradient operator, is a contribution for the Uzawa method. For the penalty method this
term vanishes. To obtain a good accuracy, the surface integrals have been evaluated numerically
with a seven-point Gauss rule and the line integrals with a three-point Gauss rule.

4.2.2 Implementation in the iterative scheme

To solve the discretised equations of motion (4.10), an incremental formulation for the resulting
matrix-vector equation has been used:

Aiv∆V i+1 =
(
ηit(T i)Sv +Mv(V i) + Cv

)
∆V i+1 = −Rv(V i,Υi, T i,P i), (4.11)

where the Picard iteration matrix contains contributions of a proper linearization of the con-
vective terms Mv, the penalty matrix Cv and a viscous matrix ηitSv. The iteration viscosity ηit
only slows down the iteration process, but is necessary to obtain a convergent solution method2.
The increment of the velocities ∆Vi+1 is defined by

∆V i+1 = V i+1 − V i. (4.12)

The residual of the equations of motion Rv(V i,Υi, T i,P i) may depend on the discrete velocities
V i, the stress Υi, the temperatures T i and the pressure Pi of a former iteration step:

Rv(V i,Υi, T i,P i) =
(
ηs(T i) + ηco(T i)

)
SvV i +Nv(V i) +

CvV i +Q(Υi − 2ηco(T i)D̄i) + LTP i − Fv. (4.13)

From the vector Q with the contributions of the modal stresses, an extra diffusive term, based
on the nodal point averages of the rate-of-deformation tensor D̄i, has been subtracted. An

2For isothermal calculations ηit = η0 or ηit = 2η0, where η0 is the zero-shear-rate viscosity, is often a good
choice. For nonisothermal calculations the spatial temperature distribution may be strongly non-homogeneous.
This results in large differences of the viscosity in the flow. To take into account this temperature effect for the
iteration viscosity, a temperature dependent ηit has been implemented as well. The temperature dependence is
assumed to be the same as for the relaxation times and viscosities in the stress model.
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analogous term based on the non-averaged velocity gradients has been added to the contribution
of the solvent. The extra viscosity ηco is necessary to avoid almost zero effective viscosities3,
which may arise due to the use of averaged velocity gradients for the streamline integration.
The introduction of a correction term with the extra viscosity ηco improves the condition of
the system but increases the viscosity of ‘short wavelength’ velocity modes (Hulsen & van der
Zanden 1991).

For detecting convergence of the equations of motion two conditions have to be satisfied. The
first condition is related to the increment of the velocity and the second to the residual of the
equations of motion:

maxj |∆V i+1
j |

maxj |V i+1
j | ≤ εv,inc,

||Rv(V i,Υi, T i,P i)||f
||Rv(V i,Υi, T i,P i)||t

≤ εv,res, (4.14)

where the maximum norm |.| has been taken over all nodal points j. The norm || · ||f denotes
the Euclidean norm over the free degrees of freedom, without the essential boundary conditions.
The norm || · ||t denotes the Euclidean norm over the total degrees of freedom, including the
essential boundary conditions. εv,inc and εv,res are small parameters. For the calculations in
chapter 5 εv,inc = εv,res = O (10−3) will be taken.

4.3 The temperature equation

As for the equations of motion, a finite element method has been used for the temperature
equation. To derive the finite element formulation of the temperature equation, (2.156)3 is
multiplied by a test functions and integrated over the domain Ω:

∫
Ω

(
ρ(ceqp,τe − ∆ceq)Ṫ −∇ · (κ

¯̄
· ∇T ) − TαT ,bṗ−Dve

m + ρT∆sve
b

)
ψedΩ = 0, ∀ψe ∈ Ψe,

(4.15)
where ψe is the test function, which belongs to a suitable space Ψe on Ω.

Before the discretisation method of (4.15) will be discussed, first the restrictions on the
numerical implementation will be given.

Restrictions on the numerical implementation

The following restrictions have been made for the numerical implementation of the temperature
equation:

• The flow is assumed to be steady.

• The type of the coordinate system is either Cartesian or axisymmetrical.

3For isothermal calculations a value of ηco = η0 −ηs is often a good choice. As for the iteration viscosity, the
extra viscosity may be taken temperature dependent for nonisothermal problems. The temperature dependence
is again the same as the temperature dependence of the relaxation times and viscosities of the stress model.
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• The density of the fluid is assumed to be a linear function of the temperature as in
(2.122). Density variations appear in three terms of (2.156)3: the pressure gradient term,
the convective term and the entropy term ∆sveb . The latter will be discussed together
with the temperature and density dependence of the moduli. In section 2.6 it has been
shown that the pressure gradient term may be important, so the variations of the density
will be taken into account for this term. For the linear temperature dependence (2.122)
the thermal expansion coefficient equals αT ,b = αρ. In the convective term the density
variations may be important as well. Due to large values of the heat capacity and the
density the convective term is often the dominant term in the temperature equation. A
spatially weak non-homogeneous density field may still influence the temperature field
then.

• The heat capacity in mechanical equilibrium ceqp,τe, which is usually measured, may depend
linearly on the temperature as given by (2.120). As for the density this temperature
dependence may be important for convection-dominated flows.

• The heat capacity ceqp,τe and the density are independent of the pressure.

• The moduli may depend on the temperature and the density as in (2.126). These depen-
dences determine the terms ∆ceq and ∆sve

b . Three possibilities, discussed in section 2.3.3
have been implemented. Firstly the moduli may be constant. Then the convective term is
simplified, because ∆ceq = 0 (or cp,b = ceqp,τe). Also the entropy term ∆sveb cancels out then.
Secondly the moduli may depend linearly on the temperature Gk = Gk,refT/Tref . On the
one hand the temperature equation simplifies then, because the sum of the mechanical
dissipation and the entropy term equals the stress work Dve

m +∆sve
b = τ

¯̄
: d
¯̄
. On the other

hand the temperature equation becomes more complicated, because ∆ceq does not vanish
anymore, but it depends on the internal deformation tensors as in (2.104). Thirdly the
moduli may depend linearly on the temperature and the density Gk = Gk,refρT/ρrefTref .
Again, the sum of the mechanical dissipation and the entropy term equals the stress work
Dve

m + ∆sve
b = τ

¯̄
: d

¯̄
. Furthermore the convective term is simplified then, because ∆ceq

vanishes (or cp,b = ceqp,τe).

• The heat flux can be specified by Fourier’s law (2.112). The heat conduction tensor κ
¯̄

is
of the form (2.113). The heat conduction coefficients in (2.113) may depend linearly on
the temperature as given by (2.121).

4.3.1 Discretisation method

Substitution of the restrictions of the first part of this section into the integrated tempera-
ture equation (4.15) and applying the Galerkin method (ψe = ψT , the basis functions of the
temperature) gives the following equation for the temperature

(ρ(ceqp,τe − ∆ceq)v
¯
· ∇T, ψT ) + [κ

¯̄
· ∇T,∇ψT ] = (Dve

m + ρT∆sve
b − αρpv

¯
· ∇T, ψT ) −

[Tαρpv
¯
,∇ψT ] + (n

¯
· κ
¯̄
· ∇T + αρTpn

¯
· v
¯
, ψT )Γ, ∀ψT ∈ ΨT , (4.16)

where the bracket notation (4.5) has again been used for the integrals. Besides the heat conduc-
tion term, also the thermal expansion term has to be integrated partially, because the pressure
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is discontinuous over the element boundaries. During the partial integration use has been made
of the assumptions that the flow is divergence free (∇ · v

¯
= 0) and that αρ is constant. The

normal component of the heat flux on a natural boundary, n
¯
· κ
¯̄
· ∇T has to be specified by a

boundary condition. The possible choices will be discussed in section 4.5.

The finite element approximation of the various quantities have already been given in section
4.2.1 about the discretisation of the equations of motion: equations (4.6) and (4.7). The
discretisation of the internal deformation tensors is analogous to the modal stress tensors.
For the temperature a standard 6-point quadratic triangular element has been used with the
vertices and the mid-side nodes of the element as the nodal points (see figure 4.1). Thus the
approximation of the temperature is piecewise quadratic.

In the remainder of this section the details of the calculation of the finite element integrals
over the domain Ω will be given. The detailed description of the boundary integrals will be
postponed until section 4.5.

Calculation of the mechanical dissipation

For many stress models the expression for the mechanical dissipation contains a term with
tr b

¯̄
−1
k = I2,k/I3,k, the trace of the inverse of the internal deformation tensor (see appendix

B). Theoretically this should not give any problems, because the internal deformation tensors
are positive definite. However, due to numerical approximation errors the positive definiteness
may be lost. Particularly near I3,k = 0 this may lead to very large numerical errors or even
arithmetic overflows. The causes and the ways to solve these problems will be discussed next.

A first cause of the indefiniteness of an internal deformation tensor is the (quadratic) in-
terpolation of (positive definite) internal deformation tensors from the nodal points to the
integration points4. Due to the (quadratic) interpolation the positive definiteness of the in-
ternal deformation tensor may be lost. Particularly, large gradients in an element may cause
indefinite internal deformation tensors in the integration points. This occurs for example at
the start-up from a zero-velocity initial field with fully developed boundary conditions at the
inflow. These large errors can be avoided when the mechanical dissipation is firstly calculated
in the nodal points and then interpolated to the integration points. However, this procedure
reduces the accuracy of the calculation of the finite element integrals and will therefore be
restricted to the integration points where b

¯̄
k is indefinite.

A second cause is that during the streamline integration the internal deformation tensor
in some nodal point has become indefinite. Although theoretically the tensors b

¯̄
k are positive

definite, they may become indefinite due to numerical approximation errors. Especially in
regions where large gradients are present, for example near sharp corners. Due to the long
residence time of a fluid particle near the wall, negative determinants may blow up the quadratic
term in the nonlinear stress equations in appendix A. To avoid these nonlinear instabilities the
internal deformation tensor is then corrected with an isotropic term to a semi-positive definite
tensor. In section 3.2 the correction method with an isotropic term has been explained. To
save computing time the 2D method with a lower bound of Imin

3,k = 0 will be taken during

4From the streamline integration semi-positive definite internal deformation tensors are obtained in the nodal
points. The calculation in the nodal points saves computing time, because the total number of nodal points is
much smaller than the total number of integration points. However, to obtain a good accuracy the integrals in
the finite element formulation of the temperature equation are evaluated in the integration points.
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the streamline integration. The internal deformation tensor in a nodal point may therefore be
semi-positive definite. This is sufficient to avoid the nonlinear instabilities during the streamline
integration. However, for the calculation of the inverse of an internal deformation tensor this
is not sufficient. In section 3.2 it has been shown that for most of the models it is possible to
find a sharper lower bound for the determinant Imin

3,k , see table 3.1. For all the stress models,
except the Giesekus model, the lower bound is Imin

3,k = 1. For the 2D Giesekus model it is also
possible to find a lower bound which depends on the parameter αk of that model, see Hulsen
(1988b). However for the 3D axisymmetrical Giesekus model it is not possible to find such a
lower bound and one has to proceed differently5. An obvious and cheap way is then to take the
stress work of the specific mode τ

¯̄
k : d

¯̄
instead of its mechanical dissipation Dve

m,k.

Summarising the procedure is as follows when an internal deformation tensor in a certain
integration point is indefinite.

1. Check whether the indefiniteness of b
¯̄
k is caused by the interpolation to the integration

points. When the internal deformation tensor is positive definite in all nodal points
the mechanical dissipation Dve

m,k is calculated in the nodal points of that element. The
mechanical dissipation in the integration point is found by a quadratic interpolation of
the nodal point mechanical dissipations.

2. The indefiniteness is caused by the streamline integration and a positive lower bound of
the determinant exists. The deformation tensor is then corrected with a 2D isotropic
term so that its determinant equals the theoretical lower bound of the determinant Imin

3,k .
This is possible for all the stress models of appendix A, except the 3D Giesekus model.

3. Take the stress work τ
¯̄
k : d

¯̄
of mode k as an approximation of the mechanical dissipation

Dve
m,k of mode k. A very small positive value of the determinant may also cause large

numerical errors in the mechanical dissipation. Therefore the stress work of the specific
mode will be taken instead of the mechanical dissipation when the determinant of the
internal deformation tensor is small, say less than 10−8. For the models of appendix A
this is only necessary for the 3D Giesekus model.

Calculation of the pressure

The pressure is piecewise linear per element and discontinuous over the element boundaries.
In the equations of motion the pressure gradient in the centre point of an element has been
eliminated with the help of the centre point velocities of that element. It can be recomputed on
element level with the inverse operation used in the equations of motion. The pressure in the
centre point has been eliminated on element level with the help of the penalty method or the
Uzawa method. It can be recomputed with the inverse operation used to eliminate the pressure
in the equations of motion (4.8) or (4.9). The pressures in the integration points of an element
are then obtained from a linear interpolation of the pressure and its derivatives in the centre

5Solving a separate equation for the determinant I3,k of b
¯̄k

, equation (3.73), did not solve this problem. The
determinant was also negative when b

¯̄k
was indefinite. A possible way to avoid the problem could be to solve

the differential equation for the inverse of the internal deformation tensor b
¯̄
−1
k as well. Then the trace of the

inverse of the internal deformation tensor may be calculated directly from b
¯̄
−1
k instead of b

¯̄k
. This has not been

tried, because it will cost much extra computing time and it may only be useful for the 3D Giesekus model.
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point of that element.

Upwind methods for the temperature equation

For convection-dominated problems the standard Galerkin method may give rise to unphysical
solutions, i.e. solutions with a globally oscillating character. For a lot of problems the tempera-
ture equation is dominated by convection due to the small value of the diffusivity of polymeric
fluids. The order of magnitude is κ/ρcp,b = O(10−7) m2 · s−1. To avoid the unphysical wiggles
for convection-dominated problems, the value of the mesh Péclet number must fulfil the severe
condition Pem = ρcp,bv∆x/κv ≤ 2 in all elements. Here v, ∆x and κv are the velocity, the
size of the element and the thermal conductivity in the streamwise direction. To fulfil this
restriction the size of the elements of the mesh must be extremely small. This limits of course
the practical use of the Galerkin method. However, it is possible to avoid the extreme mesh
refinement for high values of the mesh Péclet number by using an upwind technique. The wig-
gles can be suppressed with the help of such methods, but they may cause inaccurate solutions
through the introduction of false (extra) diffusion, especially for coarse grids. The amount of
false diffusion reduces when the element size becomes smaller.

Consistent and non-consistent upwind methods.

The non-consistent upwind methods consist of the multiplication with an extra test function
in the streamwise direction of the convective term only. The finite element formulation of the
temperature equation (4.16) then becomes

(ρ(ceqp,τe − ∆ceq)v
¯
· ∇T, ψT ) + (ρ(ceqp,τe − ∆ceq)v

¯
· ∇T, ψu)Ωe + [κ

¯̄
· ∇T,∇ψT ] =

(Dve
m + ρT∆sve

b − αρpv
¯
· ∇T, ψT ) − [Tαρpv

¯
,∇ψT ] + (n

¯
· κ
¯̄
· ∇T + Tαρpn

¯
· v
¯
, ψT )Γ,

∀ψT ∈ ΨT , ∀ψu ∈ Ψu, (4.17)

where ψu is the upwind test function, which belongs to a suitable space Ψu on Ω. For the
contribution of upwind terms the following notation for the finite element integrals will be used

(a, b)Ωe =
N∑
e=1

∫
Ωe

ab dΩe, [a
¯
, b
¯
]Ωe =

N∑
e=1

∫
Ωe

a
¯
· b
¯
dΩe, (4.18)

where Ωe is the domain of an element and N the number of elements. When the streamlines
are taken as the upwind direction, the crosswind diffusion may be eliminated. However, the
non-consistent method results in excessively diffusive solutions when source terms are present
(Brooks & Hughes 1982). For polymeric fluids the source terms, viz. the mechanical dissipation
and the thermal expansion cooling term, may be large. This makes an inconsistent upwind
method inefficient for the numerical calculations in chapter 5.

For the consistent upwind methods all the terms in the temperature equation are multiplied
with an upwind test function ψu and added to the integrated temperature equation (4.16). The
total finite element formulation of the temperature equation then becomes(
ρ(ceqp,τe − ∆ceq)v

¯
· ∇T, ψT

)
+ [κ

¯̄
· ∇T,∇ψT ] +

(
ρ(ceqp,τe − ∆ceq)v

¯
· ∇T −∇ · (κ

¯̄
· ∇T ) , ψu

)
Ωe

=

(Dve
m + ρT∆sve

b , ψT ) + (Dve
m + ρT∆sve

b + Tαρv
¯
· ∇p, ψu)Ωe − [Tαρpv

¯
,∇ψT ] +

(n
¯
· κ
¯̄
· ∇T + Tαρpn

¯
· v
¯
, ψT )Γ, ∀ψT ∈ ΨT , ∀ψu ∈ Ψu. (4.19)
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Note that the sum of the integrals over element interiors cannot be written as a global integral
over Ω due to the presence of the second order term ∇ · (κ

¯̄
· ∇T ). Therefore the diffusion term

with the upwind test function may not be integrated by parts as for the standard Galerkin term.
This is not allowed because the upwind test functions are discontinuous across the element sides.

As for the inconsistent upwind method, the crosswind diffusion can be eliminated by tak-
ing the streamlines as the upwind direction. Additionally the consistent upwinding solves the
problem of the diffuse solutions when source terms are present. Brooks & Hughes (1982) have
shown that a consistent method eliminates the artificial diffusion that bothers many classical
upwind schemes.

Firstly the implementation of the second derivative term in (4.19) will be discussed. Then some
choices for the upwind test function ψu, which have been proposed in the literature, will be
reviewed.

Implementation of the second order terms.

In the standard Galerkin approach the Gauss theorem can be used to reduce the order of the
derivatives of the integrands. The test functions ψT are piecewise polynomials and continu-
ous over the element boundaries. The upwind test functions ψu depend on the gradient of
the temperature test function and are therefore discontinuous across the element boundaries.
Therefore the Gauss theorem cannot be applied to the second order term in (4.19) and this
term has to be treated differently. An extra difficulty is that the heat conduction tensor is not
constant over an element.

The evaluation of the integral over the surface of a finite element e

−
∫
Ωe

∇ · (κ
¯̄
· ∇T )ψudΩe (4.20)

can be done as follows. Firstly a finite element approximation of the heat flux κ
¯̄
· ∇T has to

be evaluated in the nodal points, because the discrete approximation of the temperature (4.7)
is in the nodal points. This gives for axisymmetrical or 2D Cartesian coordinates

κ
¯̄
· ∇T =

2∑
r=1

κpr(x
¯
)

n∑
j=1

T j
∂ψj(x

¯
)

∂xr
=

n∑
j=1

T jqjp(x¯
), (4.21)

where n is the number of temperature nodes. Secondly the integral (4.20), with the approxi-
mation in the nodal points of the heat flux (4.21) has to be calculated in the integration points
for accuracy reasons. Therefore the values of ∇ · (κ

¯̄
· ∇T ) must be known in the integration

points. This can be obtained by approximating the variable qjp in the standard finite element
way:

qjp(x¯
) =

n∑
l=1

qj,lp ψ
l(x

¯
). (4.22)

Taking the divergence of (4.21) with the approximation (4.22) gives

∇ · (κ
¯̄
· ∇T ) =

n∑
j=1

T j
n∑
l=1

2∑
p=1

qj,lp
∂ψl(x

¯
)

∂xp
, (4.23)

which must be evaluated in the integration points.
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With this approximation the contribution of the second order upwind term to the element
matrix Sijψ for the unknowns T j becomes

Sijψ = −
m∑
k=1

ψiu(x¯
k)

n∑
l=1

2∑
p=1

qj,lp
∂ψl(x

¯
k)

∂xp
, i, j = 1, . . . , n, (4.24)

where m is the number of integration points x
¯
k.

The upwind test function.

Below an overview will be given of the upwind test functions which can be used for steady
flows. The upwind test functions consist of an upwind direction and an upwind function and
are discontinuous across the element boundaries, because the upwind direction is multiplied
scalarly by the gradient of the test functions ψT . This inner product will still be multiplied by
an upwind function τ to take care that no (or less) upwinding is applied if it is not necessary.
Successively the choice for the upwind direction and the amount of upwinding that must be
applied will be discussed separately.

Determination of the upwind direction
Two different choices of the upwind direction, that can be used for quadratic elements, will be
summarised: the standard upwind Petrov–Galerkin method and a method with discontinuity
capturing.
- Standard upwind Petrov–Galerkin.

Hughes & Brooks (1982) have described an upwind method for finite element meth-
ods. This method, which is known as the Standard Upwind Petrov–Galerkin method
(SUPG), is widely used for convection-dominated problems. For the SUPG method the
streamlines are taken as the upwind direction, which gives for the upwind test function

ψu = τv
¯
· ∇ψ. (4.25)

Hughes & Brooks (1982) have shown that with this choice of ψu sufficiently smooth
exact solutions can be approximated very well. The presence of sharp layers may
create local oscillations, in contrast with the standard Galerkin method which creates
globally-propagating oscillations.

- Upwinding with discontinuity capturing.
Hughes, Mallet & Mizukami (1986) have developed an upwind scheme (HMM), similar
to SUPG, in which they add an additional discontinuity capturing term which controls
the derivatives in the direction of the temperature gradient. The wiggles in the neigh-
bourhood of sharp layers, which arise with the SUPG method, can then be suppressed.
They take for the upwind test function ψu

ψu =

{
τv
¯
· ∇ψ + τpv

¯
p · ∇ψ, ||∇T || 6= 0,

τv
¯
· ∇ψ, ||∇T || = 0,

(4.26)

where τp is the parallel upwind function and v
¯
p, the upwind direction parallel to the

gradient of the temperature, defined as

v
¯
p =



v
¯
· ∇T ∇T

||∇T ||2 , ||∇T || 6= 0,

0
¯
, ||∇T || = 0.

(4.27)
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Preliminary calculations in a contraction flow showed that for isotropic heat conduction
this method gave somewhat smoother temperature profiles near the sharp corner. For
anisotropic heat conduction however the iterative method did not converge, possibly
because the direction of the discontinuity capturing, the direction of the temperature
gradient ∇T does not equal the direction of the heat flux κ

¯̄
· ∇T then.

Determination of the upwind function
The upwind function τ indicates the amount of upwinding that must be applied. It is based
on the element Péclet number βu, which is defined as

βu =
||v
¯
||hρcp,b
2κv

,

κv =
v
¯
· κ
¯̄
· v
¯||v

¯
||2 , (4.28)

where h is the maximum distance in the element in the direction of the velocity v
¯

and κv is a
measure for the thermal conductivity in the streamwise direction. When the element Péclet
number βu < 1 the upwind function can be chosen small, because the standard Galerkin
approach still gives accurate solutions. For βu > 1 however, upwinding has to be applied to
avoid unphysical wiggles. For a one-dimensional steady state problem, without mechanical
dissipation and source terms Christie et al. (1976) have shown that the optimal choice for
the upwind function is

τ =
hξu

2||v
¯
|| ,

ξu = coth βu −
1

βu
, (4.29)

where ξu is a non-dimensional numerical diffusivity. In the simple one-dimensional example
of Christie et al. this choice of τ leads to nodally exact solutions.

To minimize the computing time the ‘doubly asymptotic’ approximation of the non-dimen-
sional numerical diffusivity ξu

ξu =




βu
3

, −3 ≤ βu ≤ 3,

sgn βu , |βu| > 3,

(4.30)

or the critical approximation

ξu =




1 − 1

βu
, βu > 1,

0 , |βu| ≤ 1,

−1 − 1

βu
, βu < −1,

(4.31)

can be employed (Hughes et al. 1986). For the results the choice of the upwind function
does not seem very important. In test calculations of a flow through a 4:1 contraction the
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different choices of the upwind function did not give significant differences.

The parallel upwind function τp in the HMM upwinding (4.26) is based on v
¯
p, the velocity

parallel to the temperature gradient, and hp, the maximum distance in the direction of the
parallel velocity, instead of the velocity v

¯
and h, the maximum distance in the streamwise

direction. For the ‘optimal’ choice the parallel element Péclet number (4.28) and the parallel
upwind function (4.29) become6

βu,p =
||v
¯
p||hpρcp,b
2κv,p

,

κv,p =
v
¯
p · κ

¯̄
· v
¯
p

||v
¯
p||2

,

τp =
hpξu,p
2||v

¯
p||
,

ξu,p = coth βu,p −
1

βu,p
. (4.32)

To minimize the computing time the doubly asymptotic approximation or the critical ap-
proximation may be used for the parallel numerical diffusivity as well.

Matrix-vector formulation

Substitution of the finite element approximation (4.7) in the temperature equation (4.19) results
in the matrix-vector equation

NT (V, T ) + ST (B, T )T = FT (V, T ,B,P), (4.33)

with NT a nonlinear operator due to the convective term and ST an operator due to heat con-
duction. ST may depend on the internal deformation tensors and linearly on the temperature,
via the heat conduction tensor. ST may also contain the contributions of the natural boundary
conditions. The right-hand-side vector FT consists of contributions of the natural boundary
conditions, the mechanical dissipation, the thermal expansion terms and the reversible entropy
production term ∆sve

b . To obtain a good accuracy, the surface integrals have been evaluated
numerically with a seven-point Gauss rule and the line integrals with a three-point Gauss rule.

4.3.2 Implementation in the iterative scheme

As for the discretised equations of motion, an incremental formulation has been used to solve
the discretised temperature equation (4.33) as well:

(
κitS

it
T + ST (Bi, T i) +MT (V i+1, T i)

)
∆T i+1 = −RT (V i+1,Bi, T i,P i+1), (4.34)

where all of the matrices and vectors may contain contributions of the upwind scheme. The
Picard iteration matrix contains contributions of the convective terms MT , the diffusive terms
ST and an extra diffusive term κitS

it
T . The iteration diffusivity κit slows down the iteration

6To avoid the doubling effect when v
¯p

is almost parallel to v
¯
, they propose to take max (0, τp − τ) instead of

τp in the upwind test function (4.26).
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process, but is sometimes necessary to obtain a convergent solution method7. A constant and
isotropic iteration diffusivity gave good results for the calculations in chapter 5. The increment
of the temperature ∆T i+1 is defined by

∆T i+1 = T i+1 − T i, (4.35)

and the residual RT (V i+1,Bi, T i,P i+1) of the temperature equation equals

RT (V i+1,Bi, T i,P i+1) = ST (Bi, T i)T i +NT (V i+1, T i) − FT (V i+1,Bi, T i,P i+1), (4.36)

where the diffusive matrix ST (Bi, T i) may depend on the internal deformation tensors due to
the anisotropic heat conduction. NT contains the contributions of the convective terms. The
mechanical dissipation, the thermal expansion terms, the reversible entropy production term
and the boundary integrals of the natural boundary conditions contribute to FT .

For detecting convergence of the temperature equation two conditions, which are analogous to
the conditions of the equations of motion, have to be satisfied. The first condition is related to
the increment of the temperature and the second to the residual of the temperature equation:

maxj |∆T i+1
j |

maxj |T i+1
j |

≤ εT ,inc,

||RT (V i,Bi, T i)||f
||RT (V i,Bi, T i)||t

≤ εT ,res, (4.37)

where the maximum norm |.| has been taken over all nodal points j. The norms || · ||f and || · ||t
again denote the Euclidean norm over the free and total degrees of freedom. εT ,inc and εT ,res are
small parameters. For the calculations in chapter 5 εT ,inc = εT ,res = O (10−3) will be taken.

4.4 The stress constitutive equation

In this section a short overview will be given of the streamline integration method that will be
used to solve the differential equations for the internal deformation tensors in (2.156)5. The
stress models in appendix A can be written as a set of ordinary differential equations for the
internal deformation tensor, by applying the method of characteristics. For a steady flow the
characteristics are equal to the streamlines. Equation (2.156)5 can then be written as

db
¯̄
k

ds

ds

dt
= G

¯̄
k(v

¯
, L
¯̄
T , b

¯̄
k, T ), (4.38)

where s is a streamline parameter and G
¯̄
k a tensor function that depends on the constitutive

model. The stress that is needed in the balance equations can then be then found by (2.19).
For a detailed description of the computation of the streamlines and the integration along

it for isothermal problems see Hulsen (1990a). Below only a summary of some important as-
pects of the streamline integration will be given, supplemented by the specific problems for the
nonisothermal equation. First, however, the restrictions on the numerical implementation of

7An iteration diffusivity κit = κeq is often sufficient.
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the stress constitutive equation will be summarized.

Restrictions on the numerical implementation

The following restrictions have been made for the numerical implementation of the stress con-
stitutive equation:

• The flow is assumed to be steady.

• The type of the coordinate system is either Cartesian or axisymmetrical.

• The relations between the modal stresses and the internal deformation tensors are given
by (2.19).

• The moduli Gk may depend on the temperature and the density as in (2.126), where the
density may be a linear function of the temperature.

• Other coefficients in (2.19) do not depend on the temperature and the pressure or density.

• The internal deformation tensors are specified by one of the differential equations dis-
cussed in appendix A.

• The temperature dependence of the relaxation times λk may be given by8 the WLF shift
factor (2.123), the Andrade shift factor (2.124) or a combination of these two (the WLF
shift factor below a certain separating temperature T < Ts and the Andrade shift factor
above the separating temperature T > Ts).

• Except the relaxation times, the other coefficients in the equations for the internal defor-
mation tensors are assumed to be independent of the temperature.

• In the differential equation for the internal deformation tensor all coefficients are inde-
pendent of the pressure or density.

The isothermal streamline integration method

A detailed description of the isothermal streamline integration has been given by Hulsen
(1990a). Below some important aspects of this method have been summarized.

• Computation of the streamlines.
From the piecewise quadratic velocities of the first step of an iteration a quadratic stream
function is calculated per element. With this stream function a piecewise quadratic
streamline can then be calculated.

• Initial conditions.
For the integration of (4.38) an initial condition for the internal deformation tensor b

¯̄
k has

to be specified. There are three possibilities. Firstly the streamline may cross an inflow
boundary. Then the initial value is taken from the specified boundary value. In case a
fully developed flow is prescribed, the inflow conditions have to be calculated separately.

8For test purposes also an exponential factor ln aT ,k = C1,k(T − Tref) has been implemented. With this
type of shift factors an analytical solution can be computed for steady flows of a Maxwell fluid in Cartesian
coordinates. This is not possible for the Andrade and WLF shift factor.
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These fully developed flow boundary conditions will be examined in section 4.5. Secondly
the streamline may cross an element where the internal deformation tensor has already
been computed. Then the initial value is obtained from a quadratic interpolation of the
nodal point values of that element. Finally, to reduce the computing time, the integration
is stopped if the travel time is longer than 3λk. The initial values are then found by a
quadratic interpolation of the nodal point values of the previous iteration.

• Integration accuracy.
The integration along the streamlines of the right-hand side of (4.38) has been computed
numerically with a fourth order Runge–Kutta scheme. Quantities that must be computed
outside the nodal points of an element are obtained by a quadratic interpolation of the
nodal point values (internal deformation tensor and velocity gradient) or an extended
quadratic interpolation (velocity).

• Stepsize limitations.
The limitation of the stepsize of the streamline integration is based on the stability region
of the linearized form of equation (4.38). Furthermore it is possible to limit the stepsize
further when the change of a quantity during a step is too large. For example, it is
necessary to limit the change in velocity gradient at start-up for high values of the Deborah
number.

• Shear flow correction.
On the wall numerical approximation errors may cause large false elongational stresses
for high Deborah numbers, due to the infinite residence time on the wall. This can be
avoided by imposing an exact simple shear flow on the wall.

• Correction of the internal deformation tensors.
Due to numerical approximation errors the internal deformation tensor can become in-
definite in regions where large gradients are present, for example near sharp corners.
Negative determinants may blow up the nonlinear terms of the internal deformation ten-
sor in (4.38). To avoid these nonlinear instabilities the internal deformation tensor will be
corrected with an isotropic term. In section 3.2 the correction method has been explained.
During the streamline integration the 2D method with a lower bound of Imin

3,k = 0 will
be taken. The internal deformation tensor b

¯̄
c
k is therefore semi-positive definite. This is

sufficient to avoid the nonlinear instabilities and saves computing time.

Additions for the nonisothermal streamline integration method

On the whole the nonisothermal streamline integration method is similar to the isothermal
streamline integration method described by Hulsen (1990a). It only differs in the following
aspects.

• Temperature dependence of the right-hand-side tensor G
¯̄
k.

The tensor function G
¯̄
k in (4.38) is also a function of the temperature, due to the tempera-

ture dependence of the time constant λk. Therefore the temperature along the streamline
has to be known. These temperatures are obtained by quadratic interpolation of the
nodal point values of the element in which the part of the streamline is.
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• Stepsize limitations.
The computation of the step size for the numerical integration of mode k of (4.38) in a
certain point along the streamline is based on the stability region of the linearized form,
with respect to the internal deformation tensor b

¯̄
k, of (4.38). The temperature dependence

is due to the temperature dependent relaxation time λk in G
¯̄
k. When the temperature

rises, for example due to dissipation, the relaxation time decreases and the step size
becomes smaller. When the temperature decreases, for example due to wall cooling, the
relaxation time increases and the step size becomes larger.

• Maximum travel time.
The magnitude of the particle trajectory is limited by the nonisothermal travel time of
a particle 3 maxk λk,ref maxk aT ,k evaluated at the end point of the streamline (the nodal
point where the internal deformation tensor has to be calculated) instead of 3 maxk λk,ref
for the isothermal calculations. For the nonisothermal travel time the maxima over λk and
aT ,k have been taken to avoid problems when different modes are described by different
shift factors.

• Maximum integration length.
The maximum integration length for mode k, which must of course be smaller than the
travel time, is 3λk(T ) instead of the 3λk,ref for the isothermal calculations. λk(T ) is eval-
uated at the end point of the streamline. The temperature dependence of the maximum
integration length avoids the calculation of many small integration steps for regions where
a number of the relaxation times λk have become small due to the temperature rise in
the fluid. On the other hand a larger particle length may be necessary when the temper-
ature decreases. Because the relaxation time strongly depends on the temperature the
isothermal value 3 maxk λk,ref may not be large enough.

• Calculation of the modal stresses.
After solving the differential equation for the internal deformation tensors b

¯̄
k the sum of

the modal stresses τ
¯̄
k, which is needed in the equations of motion, is calculated with the

help of (2.19). For the nonisothermal calculations the nodal point values of the tempera-
ture are needed additionally, because the moduli Gk may depend on the temperature and
the density (ρ = ρ(T )).

4.5 Boundary conditions

To obtain a complete set of equations, boundary conditions at the boundary Γ of the domain Ω
have to be specified for the equations of motion, the temperature equation and the K equations
for the internal deformation tensor. The equations of motion and the temperature equation
are elliptic. Therefore boundary conditions have to be specified on the complete boundary.
The constitutive equations for the internal deformation tensor are hyperbolic, which implies
that a boundary condition may only be imposed at an inflow boundary. Firstly the boundary
conditions at fixed walls and axes of symmetry will be given. Then the inflow and outflow
boundary conditions will be discussed extensively.
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4.5.1 Boundary conditions at a fixed wall and an axis of symmetry

Some different types of boundary conditions for the equations of motion and the temperature
equation, which can be imposed on a fixed wall or an axis of symmetry, are summarized in this
section.

Boundary conditions for the equations of motion.

At a fixed wall Γw the no-slip boundary condition is supposed to hold for the velocity:

v
¯

= 0
¯
, at Γ = Γw. (4.39)

At an axis of symmetry Γax the boundary condition for the equations of motion is given by

n
¯
· v
¯

= 0, σ
¯
t = 0

¯
, at Γ = Γax, (4.40)

where n
¯

is the outward unit normal and

σ
¯
t = n

¯
· σ
¯̄
− n

¯
σn,

σn = n
¯
· σ
¯̄
· n
¯
. (4.41)

σn is the component of the total stress tensor in the direction normal to the boundary Γax and
σ
¯
t the total stress in the direction tangential to Γax.

Boundary conditions for the temperature equation.

At a fixed wall Γw the temperature may be prescribed by the Dirichlet boundary condition

T = T0, at Γ = Γw, (4.42)

or the heat flux may be prescribed by the Neumann boundary condition

n
¯
· (κ

¯̄
· ∇T ) = Q0, at Γ = Γw, (4.43)

or a linear combination of the temperature and the heat flux may be prescribed by the Robin
boundary condition

n
¯
· (κ

¯̄
· ∇T ) + β1T = Q1, at Γ = Γw. (4.44)

The temperature T0, the fluxes Q0 and Q1 and the parameter β1 may be functions of the
coordinates of the boundary.
At an axis of symmetry Γax the temperature boundary condition is given by the symmetry
condition, a vanishing normal component of the heat flux:

n
¯
· (κ

¯̄
· ∇T ) = 0, at Γ = Γax. (4.45)

4.5.2 Inflow and outflow boundary conditions

At an inflow or outflow boundary the boundary conditions are based on the fully developed
profiles of the equations of motion, the temperature equation and the differential equations for
the K internal deformation tensors. The restrictions mentioned in the sections 4.2, 4.3 and
4.4 for the finite element implementation are also valid for the implementation of the fully
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developed boundary conditions. Through the assumption of a fully developed flow the balance
equations and the constitutive equations are simplified considerably. For example all material
derivatives, except ṗ, vanish. From equation (2.90) then follows that the mechanical dissipation
always equals the stress work Dve

m = τ
¯̄

: d
¯̄
. For a fully developed shear flow the mechanical

dissipation reduces to the product of the shear stress and the shear rate, i.e. Dve
m = τ12γ̇.

The equations for a fully developed flow have been implemented for 2D Cartesian and
axisymmetrical flows. In view of the axisymmetrical examples for the calculations in chapter 5
the derivation and implementation of the equations will only be discussed for axisymmetrical
problems. For Cartesian coordinates, however, the derivation is completely analogous.

At an inflow boundary the obtained solutions of the fully developed velocity, temperature
and internal deformation tensors may be prescribed as Dirichlet boundary conditions. At
an outflow boundary natural boundary conditions are prescribed for the equations of motion
and the temperature equation. These natural boundary conditions are based on the fully
developed profile. Firstly the equations and boundary conditions for fully developed flows and
its numerical implementation will be discussed. At the end of this section the natural boundary
conditions at the outflow will be explained.

Equations for fully developed axisymmetrical flows.

For axisymmetrical flows the following solution of the fully developed flow problem in figure 4.2
is assumed

v
¯

= w(r)e
¯
z,

τ
¯̄

= τij(r)e
¯
ie
¯
j , i, j = r, z,

T = T (r). (4.46)

If the density depends on the temperature, this velocity profile still fulfils the mass balance.
Only when the density also depends on the pressure the mass balance is not fulfilled anymore.

Figure 4.2: Geometry of the fully developed axisymmetrical flow. The inner wall or axis of symmetry corresponds
to r = r1 and the outer wall to r = r2.

Substitution of the velocity and stress (4.46) in the balance of linear momentum (2.156)2 yields

∂p

∂r
=

1

r

d(rτrr)

dr
,

∂p

∂z
=

1

r

d(rτrz)

dr
. (4.47)
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The pressure p can only be solved if the equations (4.47) are compatible, which means that

∂

∂z

∂p

∂r
− ∂

∂r

∂p

∂z
=

∂

∂z

(
1

r

d(rτrr)

dr

)
− ∂

∂r

(
1

r

d(rτrz)

dr

)
= − d

dr

(
1

r

d(rτrz)

dr

)
= 0. (4.48)

Integration of the compatibility relation (4.48) gives

τrz = −µr +
d

r
, (4.49)

where µ and d are constants which have to be determined from the boundary conditions.
Combination with (4.47) yields

p = −2µz + τrr −
∫ r2

r

τrr(s)

s
ds+ p0, (4.50)

where p0 is an integration constant, which remains undetermined for incompressible flows.
The resulting equations for the equations of motion (4.49) and (4.50) have to be supple-

mented by a constitutive equation for the stress (one of the models discussed in appendix A,
possibly supplemented by a solvent viscosity), which has the form

τij = τij(γ̇, T ), i, j = r, z,

γ̇ =
dw

dr
. (4.51)

Note that the differential equation for the internal deformation tensor reduces to an algebraic
equation for fully developed flows. This simplifies the equations considerably.

The last equation that has to be solved is the temperature equation. After substitution of
(4.46) in the temperature equation (2.156)3 an ordinary differential equation results

−2Tαρwµ+ γ̇τrz +
1

r

d

dr

(
κrrr

dT

dr

)
= 0. (4.52)

Boundary conditions for fully developed flows.

To compute the integration constants µ and d in the equation for the shear stress (4.49) and the
velocity constant resulting from the integration of (4.51)2 some boundary conditions have to
be specified for the velocity. One constant can be found from the prescribed pressure gradient
or averaged velocity. The other two have to be found from the boundary conditions at a fixed
wall or an axis of symmetry.

At a fixed wall having coordinate rw the no-slip boundary condition is supposed to hold for the
velocity:

w = 0, at r = rw. (4.53)

At an axis of symmetry having coordinate r = 0, the velocity boundary condition is given by

dw

dr
= 0, at r = 0. (4.54)
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To solve the elliptic temperature equation (4.52) two temperature conditions are needed in the
boundary points. At a fixed wall the temperature boundary condition may be prescribed by a
Dirichlet condition

T = T0, at r = rw, (4.55)

a Neumann boundary condition

κrr
dT

dr
= Q0, at r = rw, (4.56)

or a Robin boundary condition

κrr
dT

dr
+ β1T = Q1, at r = rw. (4.57)

At an axis of symmetry having coordinate r = 0 the temperature boundary condition is given
by a vanishing normal heat flux, which reduces to

dT

dr
= 0, at r = 0, (4.58)

because κrr > 0 due to the positive definiteness of the heat conduction tensor. To obtain a
well-posed problem it is of course not allowed to impose two conditions of the Neumann type.
Thus if there is an axis of symmetry, (4.56) cannot be imposed on the wall.

Numerical solution of the fully developed flow problem.

To solve the fully developed flow equations (4.49-4.52), each part between two finite element
boundary points on an inflow or outflow boundary is divided into N subparts of equal distance.
Usually N = 4 is sufficient. The system of equations, an algebraic equation for the shear rate
and a differential equation for the temperature, is solved iteratively. The iteration process is as
follows:

1. Start with a zero initial field for the shear rate and the temperature.

2. Calculate an iteration step. An iteration step (i + 1) of the iteration process consists of
the following two substeps, which are performed after each other:

• Solve the temperature equation: T i+1 = f(γ̇i, T i, wi, µi).
– Determine the particular solution of the temperature equation Tp.
– Calculate the (total) temperature T by matching of the homogeneous solution
T h of the temperature equation to the boundary conditions.

• Solve the nonlinear equations for the shear rate: γ̇i+1 = f(γ̇i, T i+1).

If, at a certain point, the shear rate γi and the temperature T i are known, the stress can
be obtained by solving the nonlinear algebraic equation for the stress (4.51)1, the velocity
by integrating (4.51)2 and the pressure from (4.50).
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3. Repeat step (2) until the solution has converged: the difference between two subsequent
shear rates and two subsequent particular solutions of the temperature in the iteration
process must be small. For the equation for the shear rate maxj |γ̇i+1

j − γ̇ij| < εmaxj |γ̇i+1
j |

has to be fulfilled and for the temperature equation maxj |T p,i+1
j −T p,i

j | < εmaxj |T p,i+1
j |,

where ε is a small parameter, usually O(10−4) or O(10−5), and j denotes the evaluation
points.

During an iteration the temperature equation will be solved before the equation for the shear
rate. After the first step of the first iteration the temperature then equals the homogeneous
solution. This avoids problems with the shift factors due to a bad initial guess of the temper-
ature. For the convergence criterion of the temperature equation the particular temperature
T p has been used instead of the (total) temperature T , because Tp vanishes in mechanical
equilibrium. In the remaining part of this section a short description of the solution method of
one iteration step is given. Again only axisymmetrical coordinates will be considered. However
when Cartesian coordinates are used, the derivation is completely analogous.

The first part of the iteration step for the temperature consists of solving the axisymmetrical
temperature equation (4.52) for any particular solution Tp that fulfils

d

dr

(
rκrr

dT p

dr

)
= −rγ̇τrz + rTαρwµ, (4.59)

where the shear rate γ̇, the shear stress τrz, the velocity w and the integration constant µ are
obtained from the previous iteration step. To avoid convergence problems for strongly coupled
problems, i.e. high Nahme–Griffith numbers, a relaxation factor is introduced as follows

(κit + 1)
d

dr

(
rκrr

dT p,i+1

dr

)
= −rγ̇τrz + rT iαρwµ+ κit

d

dr

(
rκrr

dT p,i

dr

)
, (4.60)

where κit is a constant relaxation factor and the superscript i again denotes a quantity at the ith

iteration. The iteration diffusivity equals now κitκrr, which is only constant when the thermal
conductivity κrr is independent of the temperature and the internal deformation tensor. For
strongly coupled problems the iteration process must be slowed down to obtain a convergent
solution method. Mostly a relaxation factor of κit = O(10−1) or O(1) is sufficient. This means
that the difference between two iteration steps may be small, even when the iteration process
has not converged. Therefore an extra convergence criterion has been introduced, which takes
into account the relaxation due to the iteration diffusivity. For a Picard iteration scheme van
der Zanden (1989) has shown that the right truncation criterion is

max
j

|T p,i+1
j − T p,i

j | < 1 − L

L
εmax

j
|T p,i+1
j |,

L '
maxj |T p,i+1

j − T p,i
j |

maxj |T p,i
j − T p,i−1

j |
, (4.61)

where ε is the same small parameter as for the case without an iteration diffusivity. For L ' 1
this criterion is much severe then the original truncation criterion for the temperature equation.
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Integration of (4.60) yields

rκrr
dT p,i+1

dr
=

1

κit + 1

∫ r

r1

(
−rγ̇τrz + rT iαρwµ+ κitrκrr

dT p,i

dr

)
dr = f(r), (4.62)

which defines the function f(r). Note that the integral on the right-hand side is O(r2) at
r = r1 = 0, so that r−1 times the integral vanishes at r = 0. Integrating once more, gives the
particular part of the temperature

−T p,i+1(r) =
∫ r2

r
f(r)dr = g(r), (4.63)

which defines the function g(r). The integrations on the right-hand sides of equations (4.62)
and (4.63) are computed numerically with the Simpson rule.

The second part of the iteration step for the temperature consists of the calculation of Th, the
solution of the homogeneous differential equation (equation (4.52) without source terms):

d

dr

(
κrrr

dT

dr

)
= 0. (4.64)

After integration it follows

T h(r) = C1

∫ r

r1
(rκrr)

−1dr + C2. (4.65)

In case the perpendicular thermal conductivity κrr does not depend on the temperature or the
internal deformation tensor, this reduces to the usual homogeneous temperature distribution
T h(r) = C1 ln r+C2, or a constant temperature when a symmetry condition at r = 0 is imposed.
Otherwise the integral in (4.65) has to be calculated numerically. The constants C1 and C2

have to be determined from the boundary conditions for the temperature.
For the example of a constant temperature at the inner wall, T = T1 at r = r1 > 0, and a

Robin boundary condition at the outer wall, κrrdT/dr + β2T = Q2 at r = r2, the 2x2 system

T1 = T h(r1) + T p(r1) = C2 − g(r1),

Q2 =

(
κrr

dT h

dr
+ κrr

dT p

dr

)
r=r2

+ β2

(
T h(r2) + T p(r2)

)
=

C1

r2
+
f(r2)

r2
+ β2

(
C1

∫ r2

r1
(rκrr)

−1dr + C2

)
(4.66)

must be solved for C1 and C2. Substitution of these constants in the equation for the homoge-
neous temperature solution (4.65) and addition of the obtained particular solution (4.63) finally
gives the total temperature field at iteration (i+ 1).

In the second part of an iteration the equations of motion are solved together with the consti-
tutive equations for the stress. The latter is simplified considerably, because for fully developed
flows the differential equations for the internal deformation tensors reduce to algebraic relations.
Details about the solution method for isothermal problems can be found in Hulsen (1988a). For
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nonisothermal problems the solution method for the equations of motion and the stress con-
stitutive equation remains the same, due to the decoupling of the system of equations. Only
the relaxation times λk, the solvent viscosity ηs and the shear moduli Gk may depend on the
temperature. They are calculated with the temperature T i+1 obtained in the first part of the
iteration step.

Inflow boundary conditions.

At an inflow boundary the velocity, the temperature and the K internal deformation tensors
have to be specified. For the velocity and the temperature the values in the nodal points are
needed. For an internal deformation tensor the value is needed at arbitrary points on the
boundary. Then the shear rate and the temperature are obtained from a linear interpolation
of the surrounding boundary points. Next the initial value of the internal deformation tensor
is calculated, with the help of this shear rate and temperature.

Outflow boundary conditions.

In principle it is possible to impose the Dirichlet boundary conditions of a fully developed
flow at the outflow of a nonisothermal flow, as can be done for the isothermal calculations.
However, if the Dirichlet boundary conditions at the outflow do not match with the flow,
large wiggles may arise near the outflow. For nonisothermal flows with high Péclet numbers,
very long exit lengths would be required, before the flow is fully developed. On its turn
this would lead to long computation times and would require a large memory capacity. To
avoid these problems fully developed natural boundary conditions, instead of fully developed
Dirichlet boundary conditions, are imposed at the outflow for the equations of motion and the
temperature equation. Natural boundary conditions are not explicitly satisfied by the solution,
so there is more freedom to adapt to a boundary condition that does not correspond to the
flow in the neighbourhood of the boundary.

For viscoelastic fluids, however, the fully developed natural boundary conditions are not as
straightforward as for viscous fluids. For the equations of motion of viscous fluids a constant
pressure and a vanishing tangential velocity correspond to the fully developed flow boundary
condition. For the temperature equation a vanishing normal heat flux φ

¯
q,n = n

¯
· φ
¯
q = 0,

which equals n
¯
· ∇T = 0, corresponds to the fully developed Dirichlet boundary condition. For

viscoelastic fluids, however, these natural boundary conditions would still lead to large wiggles.
A constant pressure does not correspond to a fully developed flow, because viscoelastic fluids
have normal stresses in a fully developed simple shear flow. Thus for viscoelastic fluids an
approximation of the normal stress σn = n

¯
· σ
¯̄
· n
¯

along the outflow boundary is needed.

The idea is now that the velocity is already close to its fully developed profile, or at least
develops much quicker than the temperature, while the temperature might be far from its fully
developed profile. Because the stress is a strong function of the temperature, the normal stress
at the outflow is then not close to the fully developed normal stress. For this, the approximation
of the normal stress at the outflow is calculated with the help of the temperature obtained from
solving the temperature equation (4.34), with the natural temperature boundary condition,
and the fully developed shear rate which corresponds to this temperature distribution. For a
viscoelastic fluid with anisotropic heat conduction a vanishing normal heat flux φ

¯
q,n = 0 does

not correspond to the fully developed Dirichlet boundary condition as well. For convenience it
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will be assumed now that the normal direction corresponds to the z-direction and the tangential
direction to the r-direction. For a fully developed flow, T = T (r) and thus ∂T/∂z = 0, the
shear component of the heat conduction tensor then gives a contribution to the heat flux in
the normal direction: φ

¯
q,n = κrz∂T/∂r. For isotropic heat conduction this term vanishes. For

anisotropic heat conduction an approximation of this term on the outflow boundary is needed.

If the cooling due to thermal expansion is taken into account the boundary integral for
the temperature equation also contains a contribution of the pressure term given in (4.16).
Then also an approximation of the pressure at the outflow is needed. Therefore the same
approximation as for the pressure in the normal stress will be taken.

To include the fully developed natural boundary conditions in the numerical process step 2
of the iteration process outlined in the beginning of this chapter is modified as follows:

1. Solve the fully developed flow equation for the shear rate at the outflow (4.49-4.51) with
the temperature in (4.51) obtained from a former iteration of step 4. Because the number
of evaluation points is larger than the number of nodal points on the boundary of a finite
element the nodal point temperatures have to be interpolated. The temperature in the
evaluation points are obtained by a linear interpolation of the temperatures at the two
neighbouring nodal points on the outflow boundary. From the obtained shear rate and
the temperature from step 4 the approximation of the normal stress σn = −p+

∑K
k=1 τk,n

is calculated in the nodal points at the outflow. A mode of the normal component of a
modal stress is defined as τk,n = n

¯
· τ
¯̄
k · n

¯
, which equals τk,n = τk,zz for an axisymmetrical

flow. For a fluid with anisotropic heat conduction also an approximation of the normal
heat flux φ

¯
q,n is calculated from the obtained shear rate and the temperature from step

4. For a fully developed axisymmetrical flow the normal heat flux is φ
¯
q,n = κrzdT/dr.

Unfortunately it is not possible to give a good approximation of dT/dr, independent of
the interior values. Therefore the temperature derivative at the interior will be taken
as an approximation. If the cooling due to thermal expansion is taken into account the
integrand Tαρpn

¯
· v
¯

has to be evaluated. The pressure is obtained in the same way as for
the normal stress for the equations of motion. The normal velocity and the temperature
are obtained from step 2 and 4 respectively.

2. Calculate the updated velocity, by solving the equations of motion with the normal stress
σn obtained from step 1 and a vanishing tangential velocity as the outflow boundary
conditions.

3. Update the pressure, if necessary.

4. Calculate the updated temperature, by solving the temperature equation with a vanish-
ing heat flux in the normal direction as the outflow boundary condition (isotropic heat
conduction) or with the obtained φ

¯
q,n from step 1 (anisotropic heat conduction).

5. Calculate the updated internal deformation tensors.
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4.6 Conclusions

In this chapter a numerical method has been described to solve the system of equations, derived
in chapter 2 for steady 2D Cartesian or axisymmetrical flows. The system of nonisothermal
equations for viscoelastic fluid flows has been decoupled into three parts: the equations of
motion, the temperature equation and the constitutive equations for the modal stresses. The
decoupled system of equations has been solve iteratively. For the elliptic part a finite element
method has been used, for the hyperbolic part a streamline integration method.

In fact, the implementation of the equations of motion and the stress constitutive equations
is analogous to the numerical implementation described by Hulsen & van der Zanden (1991),
with some small modifications for the temperature dependent coefficients. For the equations of
motion the standard Galerkin method has been used. The pressure has been eliminated with
the help of the balance of mass for incompressible flows. The differential equations for the
internal deformation tensors are solved by a streamline integration method.

For the temperature equation the attention has been focused on two subjects. Firstly,
the implementation of an upwind method has been discussed. This is necessary to avoid
extreme mesh refinement for flows with high Péclet numbers. Secondly, a special procedure has
been developed to calculate the mechanical dissipation of viscoelastic fluids. Due to numerical
errors, the internal deformation tensor may be indefinite. A straightforward calculation of the
mechanical dissipation may then result in an unbounded mechanical dissipation.

Finally the boundary conditions have been given, with the emphasis on the fully developed
Dirichlet boundary conditions at the inflow and the special Neumann boundary conditions at
the outflow. Because nonisothermal flows are rarely fully developed at the outflow, Neumann
boundary conditions are necessary to avoid large wiggles there. Due to the normal stresses
of the viscoelastic fluids in simple shear flows, the usual Newtonian fully developed Neumann
conditions are also not sufficient to avoid the wiggles. Therefore the normal stress at the outflow
has been approximated by a special procedure based on the fully developed flow.



Chapter 5

Numerical calculations

The algorithm described in chapter 4 to solve the equations of motion, the temperature equation
and the constitutive equation for the stress (2.156), has been implemented in the computer
program for isothermal viscoelastic flows described by Hulsen (1990a). In the future the code
will be available in the Sepran package (Segal 1984) as part of the Viscel extension described
by van der Zanden (1990).

Section 5.1 contains an overview of the fluid parameters that will be used for the computa-
tions. The computations have been performed for two viscoelastic fluids. For one of them, low
density polyethylene, the influence of the temperature on the viscosities and relaxation times is
relatively small and for the other one, polystyrene, the influence is large. For these fluids three
different types of flows will be studied. Firstly a fully developed shear flow will be examined
in section 5.2, to gain insight into the behaviour of the system of equations. For a fully de-
veloped shear flow the equations simplify considerably, because almost all material derivatives
vanish. Next a more difficult problem will be discussed in section 5.3: a straight pipe flow
with a sudden temperature jump on the wall, a problem similar to the classical Graetz–Nusselt
problem. Finally the flow through a 4:1 contraction, which has a sudden jump of the radius of
the pipe, will be examined in section 5.4, with and without cooling of the outflow. For both
fluids the influence of the following issues will be examined numerically: the cooling due to
the thermal expansion term, the anisotropy of the heat conduction tensor, the temperature
dependence of the shear modulus, and the use of the stress work or the mechanical dissipation.
All computations have been performed on a HP9000-735 computer with a Linpack speed of 40
Mflops.

5.1 Fluid parameters

For the calculations in this chapter two polymer melts will be used: low density polyethylene
(LDPE) and polystyrene (PS). It is attractive to use these fluids because a lot of experimental
data are available for them and they behave quite differently for nonisothermal flows. The only
thing missing is a set of experimental data of the anisotropy of the heat conduction tensor. Only
for a few fluids there are some reliable experimental data available in the literature. However,
for these fluids no viscoelastic data were available.

For the polyethylene melt the LDPE melt I of the IUPAC workshop will be taken. An
overview of experimental data, such as the shear viscosity and the first normal stress difference,
has been given by Bird et al. (1987a). They also show that the data may be fitted with an
eight-mode Giesekus model. Bush (1989) showed that the LDPE melt may also be described by
a seven-mode modified Leonov model. To obtain a reasonable fit of the elongational viscosity
Bush gives αk = 3 and βk = 4 for all modes k = 1, . . . , K. The differential equations describing

109
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these models can be found in appendix A.
In chapter 3 it has been shown that the Leonov models are more convenient than the

Giesekus model, because the latter has no positive lower bound for the determinant of the
internal deformation tensor. This suggests that the modified Leonov model will be the best
choice for the simulations. However, the parameters αk = 3 and βk = 4, as determined by Bush,
give large wiggles in the shear viscosity, the first normal stress coefficient and the elongational
viscosity, see appendix C. For this reason the Giesekus model will be taken.

The modal viscosities and the modal relaxation times of the eight-mode Giesekus model
for the LDPE melt are presented in table 5.1. The temperature dependence of the relaxation
time can be described by an Andrade shift factor (2.124). The shift constants and the other
temperature dependences of the parameters are given by Bird et al. (1987a) and have been
summarised in table 5.2. The zero-shear-rate viscosity at a reference temperature of Tref =
423 K is η0,ref = 5.105 · 104 Pa·s. The mean relaxation time at the reference temperature is
λ0,ref = 5.875 · 101 s. Figures 5.1, 5.2 and 5.3 show the model predictions of the shear viscosity
η, the first normal stress coefficient Ψ1 and the elongation viscosity ηE as function of the shear
and elongation rate for different temperatures. These quantities have been calculated with
the viscoelastic parameters given in table 5.1 and the Andrade shift parameters in table 5.2.
Note that the slope of the shear viscosity equals ∂η/∂γ̇ = −1 for large shear rates, because
τrz,k approaches a constant value for the Giesekus model. The constant value depends on the
dimensional parameter αk as given by (3.44).

Table 5.1: Viscoelastic properties of LDPE at T =
423 K. Successively the mode number, the modal
viscosity, the modal relaxation time and the non-
dimensional parameter αk are given. The data are
from Bird et al. (1987a).

k ηk(Pa·s) λk(s) αk
1 1.00 · 103 103 0.03
2 1.80 · 104 102 0.05
3 1.89 · 104 101 0.2
4 9.80 · 103 100 0.5
5 2.67 · 103 10−1 0.4
6 5.86 · 102 10−2 0.3
7 9.48 · 101 10−3 0.2
8 1.29 · 101 10−4 0.1

Table 5.2: Thermal properties of LDPE at T =
423 K. Successively the density, the linear ther-
mal expansion coefficient, the heat capacity and its
temperature dependence, the thermal conductivity
in equilibrium and the shift constant for the Andrade
shift factor are given. The data have been obtained
from Bird et al. (1987a).

ρref 7.80 · 102 kg·m−3

αρ 7.02 · 10−4 K−1

ceqp,τe,ref 2.54 · 103 J·kg−1 ·K−1

αc 1.00 · 10−3 K−1

κeq,ref 2.41 · 10−1 W·m−1 ·K−1

Tref 4.23 · 102 K
C1 1.95 · 103 K

Table 5.3: Heat conduction constants of LDPE in (W·m−1 ·K−1) for all modes k.

κ0 8.92 · 10−2

κ1,k 2.17 · 10−2

κ2,k 0

Above the melting temperature Tm no detailed measurements of the anisotropy of the heat
conduction tensor for LDPE are available in the literature. Measurements of Wallace et al.
(1985) at Tref = 433 K showed that the perpendicular thermal conductivity of some HDPE melt
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Figure 5.1: Model predictions of the Giesekus model,
with parameters described in the tables 5.1 and 5.2,
for the shear viscosity η of LDPE as a function of
the shear rate for different temperatures.

Figure 5.2: Model predictions of the Giesekus model,
with parameters described in the tables 5.1 and 5.2,
for the first normal stress coefficient Ψ1 of LDPE as a
function of the shear rate for different temperatures.

Figure 5.3: Model predictions of the Giesekus model,
with parameters described in the tables 5.1 and 5.2,
for the elongation viscosity ηE of LDPE as a function
of the elongation rate for different temperatures.

Figure 5.4: Model predictions of the Leonov model,
with parameters described in the tables 5.4 and 5.5,
for the shear viscosity η of PS as a function of the
shear rate for different temperatures.

decreases asymptotically until about 40 % of the equilibrium thermal conductivity. Measure-
ments of Choy & Luk (1978) below the melting temperature Tm showed that the perpendicular
thermal conductivity of some HDPE melt is about 30−40 % of the thermal conductivity in
equilibrium. For some LDPE melt the decrease of the κ⊥ is of the same order. It will be
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Figure 5.5: Model predictions of the Leonov model,
with parameters described in the tables 5.4 and 5.5,
for the first normal stress coefficient Ψ1 of PS as a
function of the shear rate for different temperatures.

Figure 5.6: Model predictions of the Leonov model,
with parameters described in the tables 5.4 and 5.5,
for the elongation viscosity ηE of PS as a function of
the elongation rate for different temperatures.

assumed that above Tm this decrease is of the same order. For the heat conduction constants
κ1,k = 0.09 · κeq will be taken for all modes. The minimum perpendicular thermal conductivity
is then κ0 = 0.28 · κeq. The constants have been given in table 5.3.

For the polystyrene material Polystyrene 678E will be taken. The material parameters for
PS 678E have been measured by Flaman (1990). The shear measurements could be fitted
with a four-mode Leonov model, for which the viscoelastic properties have been summarised
in table 5.4. The thermal properties have been given in table 5.5. The relaxation times and
viscosities highly depend on the temperature, particularly in the region Tg < T < Tg + 50 K.
The temperature dependence can be described by the WLF shift factor (2.123)1. The zero-
shear-rate viscosity at the reference temperature Tref = 463 K is η0,ref = 7.146 · 103 Pa·s. The
mean relaxation time at the reference temperature is λ0,ref = 9.32 · 10−1 s. Figures 5.4, 5.5
and 5.6 show the model predictions of the shear viscosity η, the first normal stress coefficient
Ψ1 and the elongation viscosity ηE as function of the shear and elongation rate for different
temperatures. These quantities have been calculated with the viscoelastic parameters given in
table 5.4 and the WLF shift parameters in table 5.5. Although for the Leonov model a modal
shear stress approximates a constant value, see equation (3.49), the total shear stress reaches
a plateau. This is due to the non-zero Newtonian viscosity ηs.

For PS the density slightly decreases and the heat capacity slightly increases with increasing
temperature. The thermal conductivity is practically constant for 373 K < T < 473 K. For
the anisotropy of the heat conduction tensor of polystyrene the only available experimental

1The WLF shift factors at the glass transition temperature given by Flaman are Tref = Tg = 373 K,
C1 = 12.64 and C2 = 53.6 K. With the help of the formulas Cref

2 = Cg
2 + Tref − Tg and Cref

1 = Cg
1C

g
2/C

ref
2 the

shift constants Cref
1 and Cref

2 at an arbitrary reference temperature may be obtained from the shift constants
at the glass temperature Cg

1 and Cg
2 (see Tanner 1985).
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Table 5.4: Viscoelastic properties of PS at T =
463 K. Successively the mode number, the modal
viscosity and the modal relaxation time are given.
The data are from Flaman (1990).

k ηk(Pa·s) λk(s)
s 3.501 · 101

1 2.049 · 103 2.68 · 100

2 3.388 · 103 3.28 · 10−1

3 1.422 · 103 4.10 · 10−2

4 2.516 · 102 4.46 · 10−3

Table 5.5: Thermal properties of PS at T = 463 K.
Successively the density, the linear thermal expan-
sion coefficient, the heat capacity and its tempera-
ture dependence, the thermal conductivity in equi-
librium and the shift constant for the WLF shift fac-
tor are given. The data have been obtained from
Flaman (1990).

ρref 1.02 · 103 kg·m−3

αρ 5.13 · 10−4 K−1

ceqp,τe,ref 2.08 · 103 J·kg−1 ·K−1

αc 1.20 · 10−3 K−1

κeq,ref 1.7 · 10−1 W·m−1 ·K−1

Tref 4.63 · 102 K
C1 4.178 · 100

C2 1.436 · 102 K

Table 5.6: Heat conduction constants of PS in (W·m−1 ·K−1) for all modes k.

κ0 1.36 · 10−2

κ1,k 8.50 · 10−3

κ2,k 0

data are given by Washo & Hansen (1969). Figure 2.2 shows that for a relative elongation of
ε = 6 the anisotropy is still small for polystyrene. Although this is a relatively small elongation
ratio and it is not clear which part of the deformation corresponds to the elastic deformation, it
seems not likely to assume that the anisotropy is large. For some other polymers the anisotropy
is much larger for ε = 6. Therefore κ1,k = 0.05 · κeq will be taken for all modal heat conduction
constants. The minimum perpendicular thermal conductivity is then κ0 = 0.80 · κeq. The
constants have been summarised in table 5.6.

5.2 A fully developed pipe flow

To gain some insight into the importance of the different terms in the system of equations
(2.156) the fully developed flow of a viscoelastic fluid will be examined. For this situation the
system of equations simplifies considerably due to the fact that all material derivatives, except
the pressure derivative, vanish. Because the material derivative of the internal deformation
tensor vanishes, the mechanical dissipation also equals the stress work then. In section 4.5
it has been shown that the fully developed flow problem of viscoelastic fluids is described by
(4.49-4.52).

The geometry of the flow is shown in figure 5.7. The boundary conditions on the centreline
r = 0 are dT/dr = 0 for the temperature equation and dw/dr = 0 for the equations of motion.
On the wall r = R the no-slip boundary condition w = 0 is assumed to hold for the velocity.
For the temperature boundary condition on the wall a Dirichlet condition T = Tw will be
prescribed. In the simulations the wall temperature Tw is set at Tw = 423 K and the tube
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Figure 5.7: Flow geometry and boundary conditions for the fully developed axisymmetrical flow.

radius is taken to be R = 0.02 m. They have been chosen such that both viscoelastic and
temperature effects are important.

For a given flow rate Q the behaviour of the velocity and temperature will be examined.
The important dimensional numbers are the Deborah number De and the Brinkman number
Br . For the reference temperature Tref in these numbers the wall temperature will be taken.
For the temperature difference in the Brinkman number the maximum temperature difference
over the computation domain will be taken.

The iteration process is assumed to be converged if the difference between two subsequent
solutions is small, as described in section 4.5. The convergence parameter has been taken
ε = 10−4. To obtain a convergent solution method it is necessary to use the relaxation param-
eter introduced in (4.60), particularly for the polystyrene melt where κit = 0.6 was needed for
the highest Deborah number.

The outline of the remaining part of this section is as follows. The starting point is a temper-
ature equation with isotropic heat conduction, mechanical dissipation and shift factors for the
viscosities and relaxation times. Successively the cooling due to the thermal expansion term,
the anisotropy of the heat conduction tensor and the temperature dependence of the shear mod-
uli Gk are added then to examine the influence of these terms. The velocity and temperature
profiles will be given for some flow rates. The flow rates used and the corresponding Deborah
number, the calculated maximum temperature difference, and the Brinkman number have been
given in table 5.7 for the LDPE melt and in table 5.8 for PS.

5.2.1 Influence of the mechanical dissipation

In this subsection the fully developed flow equations with mechanical dissipation in the temper-
ature equation and shift factors for the viscosities and relaxation times will be solved. Cooling
due to the thermal expansion term, anisotropic heat conduction, and a temperature dependence
of the modulus are neglected. In numerical simulations that have appeared in the literature
these effects are often not taken into account.

Due to the high viscosity of polymers, which cause large stresses, the mechanical dissipation
is often not negligible. Only for small shear rates it may be neglected. For increasing flow
rate the mechanical dissipation becomes more and more important, because the Brinkman
number increases quadratically with the mean velocity. On the other hand when the flow rate
is increased, the viscosity decreases due to the shear thinning as well as the increase of the
temperature. This may considerably slow down the temperature rise for increasing flow rate.
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Table 5.7: Average velocity W in m·s−1, Deborah number De, maximum temperature difference ∆T in K and
Brinkman number Br for LDPE. For situation I only mechanical dissipation and isotropic heat conduction have
been taken into account in the temperature equation and shift factors for the relaxation times and viscosities.
For situation II the cooling due to the thermal expansion term has been added. For situation III the anisotropy
of the heat conduction has also been taken into account. For situation IV the temperature dependence of the
shear moduli has been added.

W 3.41 · 10−5 3.41 · 10−4 3.41 · 10−3 1.70 · 10−2 3.41 · 10−2 5.11 · 10−2

De 0.100 1.00 10.0 50.0 100 150
I ∆T 2.6 · 10−4 1.79 · 10−2 8.10 · 10−1 7.54 23.7 40.2

Br 0.94 1.37 3.03 8.15 10.3 13.7
II ∆T 1.0 · 10−4 6.74 · 10−3 3.02 · 10−1 2.87 8.69 13.3

Br 2.5 3.64 8.12 21.4 28.2 41.5
III ∆T 1.1 · 10−4 8.25 · 10−3 4.16 · 10−1 4.27 13.6 21.7

Br 2.2 2.97 5.88 14.4 18.0 25.4
IV ∆T 1.1 · 10−4 8.25 · 10−3 4.16 · 10−1 4.27 13.6 21.4

Br 2.2 2.97 5.88 14.4 18.0 25.8

Table 5.8: Average velocity W in m·s−1, Deborah number De, maximum temperature difference ∆T in K and
Brinkman number Br for PS. For situation I only mechanical dissipation and isotropic heat conduction have
been taken into account in the temperature equation and shift factors for the relaxation times and viscosities.
For situation II the cooling due to the thermal expansion term has been added. For situation III the anisotropy
of the heat conduction has also been taken into account. For situation IV the temperature dependence of the
shear moduli has been added.

W 3.24 · 10−5 3.24 · 10−4 3.24 · 10−3 1.62 · 10−2 3.24 · 10−2 4.85 · 10−2

De 0.100 1.00 10.0 50.0 100 150
I ∆T 2.53 · 10−3 1.40 · 10−1 4.21 36.8 66.8 87.6

Br 1.16 2.10 6.95 19.8 43.8 75.2
II ∆T 1.27 · 10−3 6.88 · 10−2 1.98 18.6 41.6 57.3

Br 2.30 4.25 14.8 39.2 70.3 115
III ∆T 1.28 · 10−3 7.24 · 10−2 2.20 20.7 43.6 58.9

Br 2.29 4.04 13.3 35.3 67.1 112
IV ∆T 1.17 · 10−3 6.66 · 10−2 2.01 19.0 41.9 57.7

Br 2.50 4.39 14.6 38.4 69.8 114

Near the wall τrz and γ̇ are large, so that the mechanical dissipation may become large
there. At the axis of symmetry the mechanical dissipation vanishes, because the shear rate is
γ̇ = 0. Nevertheless, in the steady state the temperature rise near the axis of symmetry is
larger than the temperature rise near the wall. This is caused by the redistribution of heat via
the heat conduction term.

Although the equations are simplified considerably, they are still too difficult to solve ana-
lytically when the shift factors are taken into account. An analytic solution can be calculated
for a Maxwell fluid with constant viscosity. For small temperature differences aT ' 1 this gives
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the following behaviour:

w

W
= 2(1 − r2

R2
),

T =
η0,refW

2

κeq

(
1 − r4

R4

)
+ Tw,

W =
Q

πR2
, (5.1)

whereW is the mean axial velocity andQ the flow rate. Equation (5.1) shows that the maximum
of the temperature is on the axis of symmetry and the temperature decreases monotonically
with increasing r. For small γ̇ the viscoelastic fluid models in appendix A behave like a Maxwell
fluid. The mechanical dissipation is small then, thus for low Deborah numbers it is expected
that (5.1) is a good approximation.

Low density polyethylene

For LDPE the velocity and the temperature have been given in figure 5.8 for different values
of the Deborah number. When the flow rate, or the Deborah number at the wall, is increased

Figure 5.8: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of the LDPE melt for the different values of De of table 5.7. Only mechanical dissipation and isotropic heat
conduction have been taken into account in the temperature equation.

there are two effects on the viscosity of the fluid. On the one hand the viscosity decreases due
to the shear thinning of the fluid. This effect is large near the wall and small near the axis
of symmetry. Due to this non-homogeneity the velocity profile shows a tendency to become
more flat and on the centreline w/W will decrease. On the other hand the viscosity decreases
due to the temperature rise. This effect is large near the centreline and small near the wall.
Due to this non-homogeneity the velocity profile shows a tendency to become more steep and
on the centreline w/W will increase. Due to the relatively small temperature dependence
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of the relaxation times and viscosities, the influence of the temperature rise on the velocity
profile is relatively small. For De = 0.1 the effect of shear thinning and the effect of the
temperature on the viscosity are extremely small. Therefore the velocity profile almost equals
the velocity of a Maxwellian fluid (5.1) for which w/W = 2 at the centreline. Figure 5.8 shows
that for small Deborah numbers the shear thinning is dominant. The minimum of the non-
dimensional velocity w/W on the centreline is approximately of De = 50. Then the decrease of
the viscosity due to the temperature rise at the centreline becomes more important and w/W
increases somewhat. The temperature profiles in figure 5.8 may roughly be divided into three
parts: a plateau near the centreline, an almost linear part near the wall and a transition zone.
For higher flow rates the plateau becomes smaller and the gradient at the wall increases.

Polystyrene

For PS the velocity and the temperature are given in figure 5.9 for different values of the
Deborah number. The temperature dependence of the relaxation times and the viscosities for

Figure 5.9: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R of
PS for the different values of De of table 5.8. Only mechanical dissipation and isotropic heat conduction have
been taken into account in the temperature equation.

PS is much stronger than for LDPE. This results in completely different velocity profiles for the
higher flow rates, see figure 5.9. For De = 0.1 the velocity profile almost equals the velocity of
a Maxwellian fluid (5.1). For small flow rates the shear thinning is still dominant. However, the
influence of the temperature becomes more and more dominant when the flow rate is increased.
This results in a velocity ratio on the centreline of w/W ' 4.8 for De = 150. Near the wall
the velocity decreases correspondingly. For De = 150 the flow almost stagnates in the region
0.8 < r/R < 1. As for the LDPE melt, the temperature profiles for PS in 5.9 show a plateau
near the centreline, a linear part near the wall and a transition zone. Compared to figure 5.8
the linear part near the wall is much larger, while both the plateau and the transition zone are
smaller.
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5.2.2 Influence of the thermal expansion term

In section 2.6 it has been noticed that although the cooling due to the thermal expansion term
is relatively small compared to the mechanical dissipation, this term may not be neglected in
shear flows. Contrary to the mechanical dissipation, which is small near the centreline and
large near the wall, the cooling due to the thermal expansion term is large near the centreline
and small near the wall. Dependent on the value of αρ the temperature profiles may change
drastically when this term is taken into account. At the wall the velocity vanishes, thus there
the thermal expansion term does not contribute to the temperature change. At the axis of
symmetry the velocity w is relatively large and there the thermal expansion term will cause a
decrease of the temperature, compared to the situation when only mechanical dissipation has
been taken into account. It is possible to obtain an analytic solution when the viscosity is
constant and T = Tw in the thermal expansion term. For the boundary conditions given in the
beginning of this section the temperature becomes

T =
η0,refW

2

κeq

(
1 − r4

R4
− αρTw(1 − r2

R2
)(3 − r2

R2
)

)
+ Tw, (5.2)

where W is given by (5.1). The maximum temperature is no longer on the axis of symmetry,

but at the non-dimensional coordinate r/R =
√

2αρTw/(1 + αρTw). The larger αρTw the more
the maximum will shift towards the wall. If αρTw ≥ 1 the maximum is at the wall. For
the LDPE melt (αρ = 7.02 · 10−4 K−1) the maximum is predicted at r/R = 0.68 and for PS
(αρ = 5.13 · 10−4 K−1) the maximum is predicted at r/R = 0.60. The temperature at the
centreline Tax is

Tax − Tw =
η0,refW

2

κeq
(1 − 3αρTw) . (5.3)

For αρTw = 1/3 the temperature at the centreline equals the temperature on the wall. For
αρTw > 1/3 the temperature Tax is even smaller than the wall temperature and the minimum
temperature is at the axis of symmetry then. For the calculations the temperature will in
general not be close to the temperature profile (5.2) due to the strong temperature dependence
of η0,ref . Only for T (r) ' Tw it may be used as a first approximation.

Low density polyethylene

For the LDPE melt the velocity and the temperature are given in figure 5.10 for different values
of the Deborah number. Figure 5.10 shows that the effects on the temperature profile are large.
Not only the maximum temperature is much smaller, 25 K for the highest Deborah number, but
it is also at a completely different position. For all the Deborah numbers the maximum is in the
region 0.68 ≤ r/R ≤ 0.75. On the centreline the temperature is close to the wall temperature.
Only for De = 150 it is a little less. Nevertheless, the velocity profiles are almost equal to figure
5.8, where only the mechanical dissipation was taken into account in the temperature equation.
Only for the high Deborah numbers the centreline velocity w/W is somewhat smaller.

Polystyrene

For PS the velocity and the temperature are given in figure 5.11 for different values of the
Deborah number. As expected, the influence of the cooling due to the thermal term on the
temperature profiles is less than for LDPE. The linear expansion coefficient of PS is about 35 %
smaller than for LDPE. In figure 5.11 the difference between the maximum temperature and
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Figure 5.10: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of the LDPE melt for the different values of De of table 5.7. Mechanical dissipation, cooling due to the thermal
expansion term and, isotropic heat conduction have been taken into account in the temperature equation.

Figure 5.11: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of PS for the different values of De of table 5.8. Mechanical dissipation, cooling due to the thermal expansion
term, and isotropic heat conduction have been taken into account in the temperature equation.

the temperature on the centreline is relatively small compared to the maximum temperature
difference. Furthermore the maximum temperature is closer to the centreline. Dependent on
the flow rate it is somewhere in the interval 0.5 < r/R < 0.65. With increasing flow rate the
maximum is closer to the axis of symmetry. Compared to figure 5.9, where the cooling due to
the thermal expansion term was not taken into account, the temperature near the centreline
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is much smaller: for the highest Deborah number about 40 K. However, near the wall the
differences are small even for the large flow rates.

The influence of the temperature on the velocity profile is still large for the large flow rates.
However, due to the smaller temperatures near the axis of symmetry, the centreline velocities
are smaller than in figure 5.9. Particularly for the high Deborah numbers the effect is clear. On
the centreline the non-dimensional velocity is w/W ' 3, compared to w/W ' 4.8 in figure 5.9,
for the highest Deborah number. Because the shear stress and the shear viscosity have a fixed
sign in a fully developed shear flow, the shear rate also has a fixed (negative) sign. Therefore
the maximum velocity remains on the axis of symmetry, although the maximum temperature
does not. The region near the wall where the flow stagnates is 0.9 < r/R < 1, which is half of
the length of the region in figure 5.9.

5.2.3 Influence of the anisotropic heat conduction

In section 2.4 it has been noticed that the anisotropy of the heat conduction tensor may be
important. For a fully developed flow only the component perpendicular to the flow κrr ap-
pears in the temperature equation. In chapter 3 it has been shown that the model (2.113), in
combination with the Giesekus or the Leonov model, is able to predict a lower perpendicular
thermal conductivity when κ0 and κ1,k are constants. The decrease of the parallel thermal
conductivity of course leads to higher temperatures.

Low density polyethylene

For the LDPE melt the velocity and the temperature are given in figure 5.12 for different values
of the Deborah number. On the axis of symmetry there is no decrease of the perpendicular ther-

Figure 5.12: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of the LDPE melt for the different values of De of table 5.7. Mechanical dissipation, cooling due to the thermal
expansion term, and anisotropic heat conduction have been taken into account in the temperature equation.

mal conductivity, because brr,k = 1. In the neighbourhood of the wall brr,k < 1 for the Giesekus
model, thus the perpendicular thermal conductivity decreases there. Because of the smaller
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conductivity less heat can be removed from the fluid which results in higher temperatures. The
temperature profiles in figure 5.12 show that, compared to figure 5.2.2, the temperature rise
is mainly near the temperature maximum: about 10 K for the highest flow rate. Close to the
centreline the temperature rise is only 1 K. The increase of the temperature maximum has
hardly any effect on the velocity profiles. The velocity profiles in figure 5.10 and figure 5.12 are
almost identical.

Polystyrene

For PS the velocity and the temperature are given in figure 5.13 for different values of the
Deborah number. For the three lowest Deborah numbers the velocity and the temperature do

Figure 5.13: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of PS for the different values of De of table 5.8. Mechanical dissipation, cooling due to the thermal expansion
term, and anisotropic heat conduction have been taken into account in the temperature equation.

not show any perceptible difference with figure 5.11. For the three highest Deborah numbers
the temperature is somewhat higher compared to the temperature in figure 5.11. Left of the
maximum the temperature difference is about 1−2 K, right of the maximum it is between
0−1 K. Because the temperature rise near the axis of symmetry is slightly larger, the velocity
near the centreline increases slightly compared to figure 5.11.

5.2.4 Influence of the temperature dependence of the modulus

In section 2.6 it has been noticed that the influence of the temperature on the modulus is small
and may often be neglected for the calculation of the stress in (2.19). Now it will be checked
whether this is permissible. The density is assumed to be constant, so that (2.126) reduces to
Gk = Gk,refT/Tref . If the temperature dependence of the density is also taken into account the
influence of the temperature on the moduli is still smaller, because the density decreases with
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increasing temperature.

Low density polyethylene

For the LDPE melt the velocity and the temperature are given in figure 5.14 for different values
of the Deborah number. Figure 5.14 shows that the influence of the temperature dependence of

Figure 5.14: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of the LDPE melt for the different values of De of table 5.7. Besides the mechanical dissipation, the cooling
due to the thermal expansion term and the anisotropic conduction, the temperature scaling of the modulus has
been taken into account.

the modulus on the velocity and the temperature field is very small. Only the temperature pro-
files are a little different. On the left-hand side of the temperature maximum the temperatures
are slightly smaller and on the right-hand side slightly larger compared to the temperature
distributions in figure 5.12. However, even for the highest Deborah number the differences are
smaller than 0.5 K. The velocity profiles are completely identical.

Polystyrene

For PS the velocity and the temperature are given in figure 5.15 for different values of the
Deborah number. The influence is somewhat larger than for the LDPE melt. This is mainly
caused by the difference in the wall temperature of 423 K and the reference temperature of
463 K. However, comparison of the temperature distributions in figure 5.15 and 5.13 shows that
the differences are small (at most about 1.5 K for the highest Deborah number). Only on the
right-hand side of the maximum the temperature is somewhat higher. The linear scaling of the
shear modulus with the temperature decreases the viscosity for regions where the temperature
is relatively low. For the high Deborah numbers the temperature differences in the flow are
large. Then the velocity near the wall has slightly increased and the velocity near the centreline
has slightly decreased compared to the velocity in figure 5.13.
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Figure 5.15: The non-dimensional velocity w/W and the temperature against the non-dimensional radius r/R
of PS for the different values of De of table 5.8. Besides the mechanical dissipation, the cooling due to the
thermal expansion term and the anisotropic conduction, the temperature scaling of the modulus has been taken
into account.

5.2.5 Comparison with the isothermal flow

In this section the results of the nonisothermal flows will be compared with the isothermal flow
at the wall temperature Tw = 423 K. The isothermal flow will be denoted by situation 0, the
nonisothermal flows by the situations I-IV of table 5.7 for LDPE and table 5.8 for PS.

Low density polyethylene

Comparison of the isothermal flow at 423 K with the situations I-IV of table 5.7 shows small
differences, even for the higher Deborah numbers (flow rates). The maximum temperature
and the pressure gradient ∂p/∂z have been depicted in figure 5.16. For the three lowest flow
rates the temperature is still close to 423 K. Then there are no significant differences for the
velocity, the stresses and the pressure gradient. For the three highest flow rates the temperature
distribution differs considerably from the isothermal situation. However, the differences for the
velocity, the stresses and the pressure are still relatively small. For the highest flow rate the
stresses and pressure gradient of the nonisothermal flow with mechanical dissipation are about
10 % smaller than the isothermal flow. For the other nonisothermal flows the differences are
smaller, because the temperature is lower then. For situation IV the differences are about 4 %.
The velocity at the centreline differs slightly from the isothermal case, even for the highest flow
rate. Then the difference is about 5 % for situation I. Otherwise the difference is less than 1 %.

Polystyrene

Comparison of the isothermal flow at 423 K with the situations I-IV of table 5.8 shows large
differences for the higher Deborah numbers (flow rates). Particularly the stresses and the
pressure gradients are much smaller for the nonisothermal flows. For the highest Deborah
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Figure 5.16: Maximum temperature Tmax relative to the wall temperature Tw and pressure gradient ∂p/∂z for
the fully developed flow of LDPE. 3 = Situation 0, + = Situation I, 2 = Situation II, × = Situation III, 4 =
Situation IV.

number the stresses and pressure gradients are about one decade lower. Figures 5.17, 5.18
and 5.19 also show that until De ' 10 the differences between the five situations are small.
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Figure 5.17: Normal stress τzz at the wall and normal stress τrr at the wall for the fully developed flow of PS.
3 = Situation 0, + = Situation I, 2 = Situation II, × = Situation III, 4 = Situation IV.

This can easily be explained by examining figure 5.20, which shows that the temperature rise
on the centreline, about 1−4 K, and the maximum temperature rise, about 2−4 K, are still
relatively small then. For the three highest Deborah numbers the temperature rises are about
20−90 K. These large temperature rises also causes a large increase of the relative velocity at
the centreline, while it keeps decreasing for the isothermal flow.
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Figure 5.19: Pressure gradient ∂p/∂z and pressure difference ∆p between the axis of symmetry and the wall
for the fully developed flow of PS. 3 = Situation 0, + = Situation I, 2 = Situation II, × = Situation III, 4 =
Situation IV.

Mutually the nonisothermal situations II, III and IV do not differ very much. However,
the relatively high temperature for situation I, without the thermal expansion term, results in
lower stresses and pressure gradients. Compared to the other nonisothermal flows they are a
factor 1.5−2 smaller. Due to the high temperatures near the centreline, the relative velocity on
the centreline is also much larger for situation I than for the other nonisothermal situations.
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5.3 A Graetz–Nusselt problem

To examine the influence of the wall cooling a variant of the Graetz–Nusselt problem will be
discussed. The polymer melt flows in a pipe with a sudden temperature jump at the wall. It
will be treated as an introductory example for the more difficult problem of a flow through a
contraction with a temperature jump at the wall. To avoid phase changes and possible problems
with the convergence of the solution method the cooling temperature at the wall has been taken
well above Tg in the simulations. For the velocity it has been assumed that the no-slip boundary
condition holds at the fixed wall. At the inflow fully developed Dirichlet boundary conditions
have been imposed for the velocity, the modal stresses and the temperature. At the outflow
fully developed Neumann boundary conditions have been imposed for the equations of motion
and the temperature equation. Refer to section 4.5 for the details. The geometry of the flow
has been depicted in figure 5.21. The inflow length has been taken 20 R and the outflow length

Figure 5.21: Flow geometry and temperature boundary conditions for the Graetz–Nusselt problem. The first
part of the wall −20 ≤ z/R < 0 has been kept at temperature T1, the last part of the wall 0 ≤ z/R ≤ 60 at
temperature T0 < T1.
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60 R, as in the isothermal computations for a 4:1 contraction of Hulsen & van der Zanden
(1991). For the radius of the pipe R = 5.0 · 10−3 m has been taken. The part of the mesh near
the temperature jump has been depicted in figure 5.22. Near the temperature jump at z = 0,

Figure 5.22: A part of the finite element mesh for the Graetz–Nusselt problem near the temperature jump:
−3 ≤ z/R ≤ 3.

where the gradients are large, the mesh is relatively fine. Towards the inflow and the outflow
the grid has been taken coarser, because the gradients are much smaller there.

For the fully developed flows the only non-dimensional numbers were the Deborah number
and the Brinkman number. For the Graetz–Nusselt problem the convective terms do not vanish
anymore in the equation of motion and the temperature equation. Due to the large viscosity
of the polymers the Reynolds number Re does not play an important role in most problems.
However, the convective term in the temperature equation is often dominant due to the large
values of the density and the heat capacity for polymeric materials.

In section 5.2, describing the fully developed flows, it has been shown that for the polystyrene
melt small temperature differences may result in large differences in the velocity and stress pro-
files. For LDPE, however, small temperature differences have hardly any effect on the velocity
and stress profiles. Then, however, the anisotropy of the heat conduction tensor may play an
important role. Therefore the following examples for polystyrene will be more focused on the
influence of the temperature on the velocity and the examples for low density polyethylene on
the anisotropy of the heat conduction tensor.

Polystyrene

For the polystyrene melt a Graetz–Nusselt problem will be considered, for which the temper-
ature jump is ∆T = T1 − T0 = 40 K, where T1 = 463 K and T0 = 423 K. The flow rate will
be varied to examine the influence of the Deborah and Péclet number. The average velocities
and the non-dimensional parameters for the simulations have been summarised in table 5.9.
For the temperature difference in the Brinkman number the imposed temperature jump at

Table 5.9: Average velocity W in m·s−1, Deborah number De, Péclet number Pe , Brinkman number Br and
Reynolds number Re for PS.

W 8.09 · 10−6 8.09 · 10−5 8.09 · 10−4 4.05 · 10−3

De 0.100 1.00 10.0 50.0
Pe 4.86 · 10−1 4.86 4.86 · 101 2.43 · 102

Br 4.57 · 10−6 4.57 · 10−4 4.57 · 10−2 1.14
Re 8.70 · 10−11 8.70 · 10−10 8.70 · 10−9 4.35 · 10−8

the wall of ∆T = 40 K has been taken. For these problems the Reynolds number is small:
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Re ≤ 5 · 10−8 for the highest flow rate. In the temperature equation the Péclet number does
play an important role, due to the large value of the diffusivity ρceqp,τe/κeq for polystyrene. For
the simulations the following contributions to the temperature equation have been taken into
account: isotropic heat conduction, a constant shear modulus (i.e. entirely energy elastic) and
the cooling due to the thermal expansion term. Due to the relatively small Brinkman numbers
the mechanical dissipation and the cooling due to the thermal expansion term do not play an
important role. When these terms are neglected, the temperature and velocity profiles do not
change significantly.

During the calculations the following subjects came to light. For the highest flow rate
the convergence becomes very slow. Until εv,res ' 4 · 10−2 the convergence of the iteration
process is good. The ratio of two residuals of two subsequent iteration steps is then somewhere
between 0.5 and 0.9. Afterwards the ratio of two residuals of two subsequent iteration steps
is about 0.990 − 0.998. It is true that the convergence criteria for the equations of motion
and the temperature equation εv,res = εT ,res = εv,inc = εT ,inc = 10−3 could be achieved for
the mesh depicted in figure 5.22, but the radial velocity and all stress components showed
relatively large wiggles near z = 0. The wiggles for the axial velocity were somewhat smaller.
Mesh refinement with a factor two solved this problem. If the mesh was refined once more,
the results did not change significantly. The iteration process has been stopped when εv,res =
εT ,res = εv,inc = εT ,inc = 5 · 10−3 was fulfilled. Except at the temperature jump the differences
for the velocity, stress and temperature profiles were at most about 1 %. For the iteration
viscosity ηit = 2η0 and the extra viscosity ηit = η0 − ηs, both at the temperature of the wall
at the outflow section, have been taken in the equations of motion. Other values of these
parameters did not give a better convergence of the solution method for the highest flow rate.
An attempt to accelerate the convergence by taking the same temperature dependence as the
modal viscosities ηk for ηit = 2η0(T ) and ηco = η0(T ) − ηs(T ) failed. Contrary to a Newtonian
fluid, where a temperature dependent ηit accelerated the convergence considerably, the method
did not converge for viscoelastic fluids. For the temperature equation the SUPG method, see
section 4.3, has been used to handle the large Péclet numbers. An iteration diffusivity of
κit = κeq for the three lowest flow rates and κit = 2κeq for the highest flow rate has been
used to slow down the iteration process. Then a value of κit = κeq was insufficient to obtain a
convergent solution method.

The temperature profiles for the various situations in table 5.9 have been given in figure 5.23.
For the lowest flow rate, with Pe = 4.86 ·10−1 the diffusive transport of heat is dominant. Even
upstream of the temperature jump the temperature decreases, particularly near the centreline.
Just after the jump, at about z/R = 2.5 the temperature distribution is almost homogeneous
again. For the flow rate with Pe = 4.86 the temperature decrease upstream of the jump is
much smaller and it takes much longer (about z/R = 9) before the temperature distribution
is almost homogeneous again. For the next flow rate this effect is still increased. Although
the temperature differences at z/R = 60 are already relatively small for the flow rate with
Pe = 4.86 · 101, the convective transport is so large that the temperature distribution still
differs from the fully developed profile. Upstream of z = 0 the temperature only decreases
somewhat close to the wall. Near the centreline, where the velocity is large, the temperature
decreases only for z/R > 2. For the highest flow rate the temperature at the outflow is far from
its fully developed profile. At the centreline the temperature is still larger than 450 K, while
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Figure 5.23: Temperature profiles of PS for the Péclet numbers of table 5.9, arranged from low to high flow
rates. The temperatures have been given at lines of constant radii: r/R = 0, r/R = 0.2, r/R = 0.4, r/R = 0.6,
r/R = 0.8 and r/R = 1. The arrow indicates the direction of increasing r.

the maximum temperature difference for the fully developed profile would be ∆Tmax ' 1 K.

The corresponding axial velocities w have been depicted in figure 5.24. Due to the relatively
large temperature differences upstream of the temperature jump for the lowest flow rate, w
firstly decreases near the centreline (relatively low temperatures) and increases near the wall
(relatively high temperatures). Downstream of the temperature jump the temperatures near the
wall are relatively low compared to the region near the centreline. This results in relatively large
velocities near the centreline and low velocities near the wall. On the centreline the maximum
velocity is wmax

ax /W = 2.35. At about z/R = 2 the temperature distribution is approximately
homogeneous. The axial velocity is then fully developed as well. For the second flow rate the
temperature differences upstream of the jump are too small to influence the velocity field there.
Downstream, the maximum velocity near the centreline increases until wmax

ax /W = 3.30 and the
minimum near the wall decreases, compared to the lowest flow rate. For the third flow rate the
maximum velocity at the centreline becomes larger wmax

ax /W = 3.43. and shifts downstream
to z/R ' 3. The minimum for r/R = 0.2 remains close to z = 0. For the highest flow rate
the maximum axial velocity becomes somewhat lower: wmax

ax /W = 3.09 at z/R ' 11. This is
possibly caused by the influence of the viscoelasticity. The influence of the viscoelasticity on
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Figure 5.24: Non-dimensional axial velocity w/W of PS for the Péclet numbers of table 5.9. The velocities have
been given at lines of constant radii: r/R = 0, r/R = 0.2, r/R = 0.4, r/R = 0.6 and r/R = 0.8. The arrow
indicates the direction of increasing r.

the velocity profile is already considerably at the inflow. The ratio of the axial velocity at r = 0
and the mean velocity is about 1.85. For the three lowest flow rates this ratio almost equals
the Newtonian value of 2.

Note that the fully developed Neumann boundary conditions are not necessary for the two
lowest flow rates. Fully developed Dirichlet boundary conditions will not cause convergence
problems or wiggles, because the outflow length is large enough. For the example with W =
8.09 ·10−4 m·s−1 and particularly for W = 4.05 ·10−3 m·s−1 the Neumann boundary conditions
are necessary to avoid wiggles or even lack of convergence.

Influence of the various terms in the temperature equation.

For the three lowest flow rates the mechanical dissipation, the thermal expansion term and the
anisotropy of the heat conduction tensor are too small to cause significant differences in the
stress, pressure, velocity and temperature distribution. Only for the highest flow rate these
terms cause some small differences. The following situations are considered: isotropic heat
conduction and mechanical dissipation Dve

m (situation I), anisotropic heat conduction and me-
chanical dissipation Dve

m (situation II), and anisotropic heat conduction, mechanical dissipation
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Dve
m and a linear dependence of the moduli Gk on the temperature (situation III). For situation

III the fluid is entirely entropy elastic, which means that the stress work τ
¯̄

: d
¯̄

contributes
completely to the temperature changes. In table 5.10 some of these differences are given at
z/R = 40. This is far enough from the temperature jump and far enough from the outflow,

Table 5.10: Pressure difference ∆p (Pa) between the inflow and z/R = 40, normal stress τzz (Pa) at the wall,
shear stress τrz (Pa) at the wall, temperature T (K) at the centreline and relative velocity wmax

ax /W at the
centreline for the polystyrene melt. Stresses, temperature and velocity are at z/R = 40. Situation I: isotropic
heat conduction and constant moduli, situation II: anisotropic heat conduction and constant moduli, situation
III: anisotropic heat conduction and linear temperature dependence of the moduli.

∆p τzz τrz T wmax
ax /W

I 4.7 · 106 2.4 · 105 −6.6 · 104 456.8 2.74
II 4.6 · 106 2.2 · 105 −6.3 · 104 458.1 2.91
III 4.4 · 106 2.1 · 105 −5.9 · 104 458.1 2.89

so that the boundary conditions and stress peaks have no noticeable influence on the solution
there. Due to the slightly higher temperatures, particularly near the centreline, for the situa-
tions where the anisotropy has been taken into account, the pressure difference and the stresses
are somewhat smaller. The velocity near the centreline is a little larger for these situations. If
the temperature dependence of the moduli is taken into account, the pressure difference and
the stresses, become somewhat smaller. The temperature and the velocity remain almost un-
changed.

Low density polyethylene

For the LDPE melt a Graetz–Nusselt problem will be considered, for which the wall tempera-
ture at the outflow is 393 K, just above the melting point. Successively the wall temperature at
the inflow will be taken 403 K, 433 K and 463 K, so that the temperature jumps are ∆T = 10,
∆T = 40 and ∆T = 70. For the simulations the following contributions to the temperature
equation have been taken into account: anisotropic heat conduction, a constant shear modulus
(i.e. entirely energy elastic) and the cooling due to the thermal expansion term. For the average
velocity W = 2.56 · 10−2 m·s−1 will be taken, so that the Deborah number at the wall of the
outflow equals De = 300. The Péclet number then equals Pe = 4.9 · 102. The Brinkman num-
bers for the three different temperature jumps at the wall are respectively Br = 6.1, Br = 1.5
and Br = 0.88, with increasing temperature jump.

To obtain a convergent solution method ηit = 2η0 and ηco = η0−ηs, both at the temperature
at the outflow section, have been taken in the equations of motion. In the temperature equation
the iteration diffusivity has been taken κit = κeq.

The resulting temperature profiles at different distances from the temperature jump have
been depicted in figure 5.25. The temperature profiles at z/R = −10 seem to differ a lot.
However, the different scales give a distorted view. In fact the differences are not that large. The
maximum temperature difference at the inflow is about 0.8 K for the highest wall temperature
and 1.3 K for the lowest. For the temperature jump of 10 K the maximum slowly moves
towards the centreline with increasing z-coordinate. At z/R = 30 the maximum is still about
r/R = 0.3. However, the difference with the temperature at the centreline is already very small
then. For the temperature jump of 40 K and the temperature jump of 70 K the maximum is
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Figure 5.25: Development of the temperature profiles for the Graetz–Nusselt problem for LDPE (arranged from
a small to a high temperature jump). The temperatures have been given at lines of constant z: z/R = −10,
z/R = 0, z/R = 5, z/R = 15, z/R = 30 and z/R = 60. Near the wall the temperature decreases with increasing
z.

sooner at the axis of symmetry, although this is difficult to see in figure 5.25. This is caused
by the higher temperature derivative in the radial direction. Note that if the exit length would
be much longer, so that the flow would approximate its fully developed profile, the maximum
moves again to higher r/R-values (see section 5.2).

The normal stress τzz at the wall and the velocity at the centreline wax have been depicted
in figure 5.26. Near the temperature jump there are some small wiggles, both for the normal
stress and the axial velocity. The temperature jump causes an overshoot in the zz-component
of the normal stress. For increasing ∆T the overshoot becomes larger: for ∆T = 10 K the
magnitude of the overshoot equals ∆τ = 2 · 104 Pa, for ∆T = 40 K it is ∆τ = 6 · 104 Pa and
for ∆T = 70 K it is ∆τ = 1.1 · 105 Pa. After the overshoot the stress increases slowly due to
the developing temperature boundary layer. The axial velocity at the centreline also shows an
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Figure 5.26: Normal stress τzz of LDPE at the wall and normalised velocity at the centreline for the three
different temperature jumps. Solid line: ∆T = 10 K, line with large dashes: ∆T = 40 K, line with small dashes:
∆T = 70 K.

overshoot. However, because the temperature boundary layer develops slowly, the maximum is
not at z = 0, but somewhere downstream. For ∆T = 70 K for example the maximum velocity
only occurs at z/R = 20.

The relatively large Deborah number of the flow results in internal deformation tensors
which are far from equilibrium. Therefore the anisotropy of the heat conduction tensor may
be large. The perpendicular thermal conductivity has been depicted in figure 5.27. Before the
temperature jump, the perpendicular thermal conductivity κrr is the smallest for ∆T = 10 K.
Due to the relatively low temperature the relaxation times are higher then. This results in a
larger anisotropy of the internal deformation tensors and consequently a larger anisotropy of the
heat conduction tensor. At the temperature jump κrr increases, compared to the fully developed
flow. For ∆T = 40 K and ∆T = 70 K there is a sharp peak at the jump. The maximum value
is even larger than the equilibrium value. This is caused by the strong temperature boundary
layer after z = 0. Due to the relatively high viscosity there, the direction of the velocity is not
parallel to the wall. Thus also the polymers will not be oriented parallel to the wall then.

The shear component of thermal conductivity has been depicted in figure 5.28. For all three
examples the largest deviations from equilibrium are near the temperature jump. In the other
part of the flow region the shear component is of the order of the equilibrium conductivity. The
angular behaviour after the temperature jump is mainly caused by the first mode, which gives
the largest contribution to κrz. The other modes are relatively smooth.

The parallel thermal conductivity has been depicted in figure 5.29. The maximum con-
ductivity, at the temperature jump, is about 300 times as large as the equilibrium thermal
conductivity. This maximum decreases somewhat with increasing temperature jump. For the
smallest temperature jump, κzz is already large before the temperature jump, due to the rel-
atively low temperature. The temperature jump does not cause large differences then. For
the other two examples κzz is much smaller at the inflow. Probably due to the coarser mesh,
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Figure 5.27: Isolines for the perpendicular component of the thermal conductivity κrr/κeq of LDPE for ∆T =
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the solution becomes more angular near z/R = 6. The first and second mode of the inter-
nal deformation tensor, which contribute most to the parallel thermal conductivity, show the
same angular behaviour near the wall. The other modes are relatively smooth. To give an
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impression of the contributions of the different modes to the heat conduction tensor: the max-
imum zz-component of the internal deformation tensor equals bmax

zz = 2 · 103 for the first mode,
bmax
zz = 5 · 102 for the second mode, and bmax

zz = 5 · 101 for the third mode. Thus the high value
of κzz ' 300 is mainly caused by the first two modes. Whether κzz may become that large in
real flows or this is a deficiency of the model, is of course still open to question.

5.4 Flow through a 4:1 contraction

The isothermal flow through an axisymmetrical contraction has been, and still is, one of the
benchmarks for viscoelastic computations. This flow consists of a fully developed flow at the
upstream boundary, a sudden contraction and a fully developed flow at the downstream bound-
ary. The 4:1 contraction will be studied here, because it is the most studied contraction flow
in the literature. Reviews of both the experimental results and the numerical calculations of
contraction flows have been presented by Boger (1987) and White et al. (1987).

In this section the emphasis will be on the nonisothermal flow through a 4:1 contraction.
The geometry of the flow and the temperature boundary conditions that will be used for the
flow through the contraction have been depicted in figure 5.30. As for the Graetz–Nusselt
problem, the inflow length will be taken 20 R and the outflow length 60 R, where the radius at
the outflow has been taken R = 5 · 10−3 m. The wall near the inflow has been kept at a fixed
temperature T1, the other part of the fixed wall has been kept at a fixed temperature T0 ≤ T1.
For the equations of motion it will be assumed that on the fixed wall the no-slip boundary
condition holds for the velocity. At the inflow boundary fully developed Dirichlet boundary
conditions will be prescribed for the velocity, the modal stresses and the temperature. At the
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outflow boundary fully developed Neumann boundary conditions for the normal stress and the
temperature will be imposed. See section 4.5 for the details of these boundary conditions.

The calculations will be performed on a mesh with 5587 grid points. The part of the mesh
near the contraction has been depicted in figure 5.31. Near the sharp corner, where the gradients
are large, the mesh is relatively fine. Towards the outflow and inflow boundary the mesh has
been taken much coarser, because the gradients are much smaller there.

Figure 5.30: Flow geometry, definition of the opening angle β and temperature boundary conditions for the 4:1
contraction. The fixed wall near the inflow (dashed line) has been kept at temperature T1. The other part of
the wall (solid line) has been cooled to T0.

Figure 5.31: A part of the finite element mesh, −10 ≤ z/R ≤ 3, near the sharp corner of the 4:1 contraction.

A characteristic phenomenon of contraction flows of viscoelastic fluids is that a vortex may
exist in the entry corner. Two features of this vortex will be examined. Firstly, the opening
angle β of the vortex, defined in figure 5.30, which is a measure for the size of the vortex.
Secondly, the vortex intensity Iψ defined by

Iψ =
ψsep − ψcen

ψax − ψsep
, (5.4)

where ψsep is the value of the stream function at the separating streamline, ψcen the value at
the centre of the vortex and ψax the value at the axis of symmetry. The vortex intensity equals
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the ratio of the amount of fluid flowing in the vortex and in the main flow.

Before the results of the nonisothermal calculations will be presented, the influence of the
viscoelasticity (isothermal) will be examined for the LDPE and PS melt. The isothermal
results will be used as a reference for the nonisothermal flow through a 4:1 contraction.

5.4.1 Isothermal flow
Hulsen & van der Zanden (1991) have calculated the flow through a 4:1 and a 5.75:1 contraction
for the eight-mode Giesekus model of table 5.1. They have shown that the size of the computed
vortex in the edge before the contraction agrees well with experimental results. The size of the
vortex strongly depends on the flow. To characterise the flow the Deborah number based on
the outflow radius R and the average velocity at the outflow will be used.

Hulsen & van der Zanden (1991) argued that the growth of the vortex is a mechanism to
fulfil the balance of momentum in the z-direction:

1

r

∂rτrz
∂r

+
∂τzz
∂z

' 0, (5.5)

where the (small) term with the pressure gradient has been neglected. With a larger vortex
the build-up of the dominant term in this equation, τzz, before the contraction can be more
gradually. Equation (5.5) indicates that the ratio of the elongational stress and the shear stress
is important for the size of the vortex.

Low density polyethylene

The isothermal flow through the 4:1 contraction for the eight-mode Giesekus model has been
calculated for the four Deborah numbers of table 5.11. For the computations the iteration

Table 5.11: Vortex intensity Iψ and opening angle β for various Deborah numbers for the isothermal flow
through a 4:1 contraction of the LDPE melt.

De Iψ(%) β(deg)
3 2.9 28

15 10.0 43
50 10.9 52

200 11.1 53

viscosity has been taken ηit = 2η0 and the extra viscosity ηco = η0 − ηs.
The results for the streamline patterns of the eight-mode Giesekus model have been depicted

in figure 5.32. Notice that for relatively small Deborah numbers the opening angle β is already
considerable: β = 28 deg for De = 3. For increasing Deborah number the opening angle keeps
increasing till β = 53 deg for the highest Deborah number of De = 200. However, for the
two highest Deborah numbers the difference are relatively small. The corresponding opening
angles β and the vortex intensities Iψ for the various Deborah numbers have been given in
table 5.11. As for the opening angle, the increase of the vortex intensity is large for the low
Deborah numbers. For the two highest Deborah numbers there is hardly any difference. The
strong increase for the low Deborah numbers can be explained by examining the stresses at the
contraction.
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Figure 5.32: Streamline contours of the LDPE melt near the contraction, −7 ≤ z/R ≤ 4, for the various
Deborah numbers of table 5.11. Seven contours are evenly spaced from zero to the maximum value and from
zero to the minimum value.

The normal stress τzz and the shear stress τrz at z = 0, have been depicted in figure 5.33.
The stresses are relative to the wall shear stress τw at the outflow for a Deborah number of
De = 200. Particularly between De = 3 and De = 50 the increase of τzz is relatively large. Only
for the lowest Deborah numbers the normal stress is almost constant over the whole region.
For De = 15 a small local maximum arises near r/R ' 0.7. The local maximum is more clear
for the two highest Deborah numbers, where the maximum normal stress is about two times as
large as the normal stress at the centreline and at the wall. Also the magnitude of the shear
stress decreases more for the low Deborah numbers, although less than τzz. For all Deborah
numbers τrz remains approximately linear in the core region. Only near the wall there is a
sharp decrease preceded by a small increase for the two highest Deborah numbers.

Polystyrene

The isothermal flow through the 4:1 contraction for the four-mode Leonov model has been
calculated for the four Deborah numbers of table 5.11, which are the same as for the eight-
mode Giesekus model. For the computations the iteration viscosity has been taken ηit = η0

and the extra viscosity2 ηco = η0 − ηs. Before proceeding, a remark has to be made on the
expected correspondence with experimental results. In the flow of a polymer melt through a

2The iteration viscosity has to be chosen carefully. For an increase of the iteration factor by a factor two or
three the convergence criteria could not be obtained.
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Figure 5.33: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for various Deborah numbers of the LDPE
melt. The stresses have been normalised with the wall shear stress for De = 200 at the outflow.

Table 5.12: Vortex intensity Iψ and opening angle β for various Deborah numbers for the isothermal flow
through a 4:1 contraction of the PS melt.

De Iψ(%) β(deg)
3 0.7 22

15 2.6 31
50 5.2 40

200 5.4 50

contraction both the (unsteady) elongational behaviour and the (unsteady) shear behaviour are
important, see Hulsen & van der Zanden (1991). Because the polystyrene melt has only been
characterised in shear flows, it is open to question whether the numerical results of this section
correspond well with experimental results. Experiments for a 5.75:1 contraction of White &
Kondo (1977/1978) for polyethylene and polystyrene show that the opening angle is smaller
for the PS melts, particularly for low Deborah numbers.

For the four-mode Leonov model the obtained streamline patterns for the various Deborah
numbers have been depicted in figure 5.34. As for the LDPE melt the size of the vortex may
be considerable for the high Deborah numbers. However, it is striking that the size of the
vortex is smaller than for the LDPE melt, particularly for the lower Deborah numbers. The
corresponding opening angles β and the vortex intensities Iψ have been given in table 5.12.
Except for the smaller opening angle, also the vortex intensities for the PS melt are relatively
low compared to the LDPE melt.

The normal stress τzz and the shear stress τrz at z = 0, have been depicted in figure 5.35.
The stresses are relative to the wall shear stress τw at the outflow for a Deborah number of
De = 200. For the two lowest Deborah numbers the normal stress is almost constant over the
whole region. For De = 50 a small local maximum arises near r/R ' 0.7. The local maximum
is more clear for the highest Deborah number. Compared to LDPE the strong increase of the



140 Chapter 5: Numerical calculations

De=3

1
2 3

4

5
6

7
8

9
10

11
12

13
14

15

De=15

1 2 3

4
5 6

7

8

9
10

11
12

13
14

15

De=50

1

2
3
4

5

6

7

8

9
10

11
12

13
14

15

De=200

1
2

3
4

5
6

7

8

9
10

11
12

13
14

15

Figure 5.34: Streamline contours of the PS melt near the contraction, −7 ≤ z/R ≤ 4, for the various Deborah
numbers of table 5.12. Seven contours are evenly spaced from zero to the maximum value and from zero to the
minimum value.
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Figure 5.35: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for various Deborah numbers of the PS
melt. The stresses have been normalised with the wall shear stress for De = 200 at the outflow.

normal stress τzz is at higher Deborah numbers. For the LDPE melt the differences between
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De = 50 and De = 200 are just relatively small. Furthermore the large differences between
the value of τzz at the centreline and at the wall are large for PS, while they are almost equal
for LDPE. For the two lowest Deborah numbers, the behaviour of the shear stress resembles
that for the LDPE melt: approximately linear in the core region and a sharp decrease near the
wall. For the two highest Deborah numbers the decrease near the wall vanishes. For De = 50
it remains approximately constant and for De = 200 it even increases. Near the wall there are
also some wiggles in the shear stress then.

5.4.2 Nonisothermal flow

First the isothermal flow will be compared with the nonisothermal flow, without a temperature
jump at the wall. Then the results for the 4:1 contraction for which the outflow boundary has
been cooled will be presented. All dimensionless numbers, unless explicitly stated, are based on
the outflow conditions, i.e. the outflow radius and the temperature and average velocity at the
outflow. For the LDPE melt the attention will again be focused on the anisotropy of the heat
conduction tensor, while for the PS the emphasis will be on the influence of the temperature
on the flow.

Low density polyethylene

For the computations the iteration viscosity has been taken ηit = 2η0 and the extra viscosity
ηco = η0 − ηs, both at the temperature of the wall at the outflow. The heat conduction tensor
will be taken independent of the temperature. Furthermore the heat capacity and the density
will be taken constant in the convective term of the temperature equation.

First the influence of the internal heat production has been checked. For a wall temperature
of Tw = 463 K, a Deborah number of De = 50, a Péclet number of Pe = 523, and the anisotropy
of the heat conduction taken into account, the maximum temperature rise at z = 0 was about
0.15 K. At the outflow boundary the maximum temperature rise was about 0.7 K. Since the
stresses do not depend very strongly on the temperature, these temperature rises do not have
a significant effect on the flow. If the flow rate was increased until De = 200, no convergence
could be obtained. Probably this problem is caused by the wiggly behaviour of the first mode
of the internal deformation tensors near the contraction. If the heat conduction was assumed
to be isotropic, or if the anisotropy caused by the first mode was omitted, it was no problem
to obtain a convergent solution method. In the following calculations the Deborah number will
be taken De = 50.

For the second nonisothermal flow of the LDPE melt the anisotropy of the heat conduction
tensor will be examined. For the temperature jumps at the wall ∆T = 10 K and ∆T = 40 K will
be taken. For the anisotropy the parameters of table 5.3 will be taken again. This means that
4 cases will be distinguished: ∆T = 10 K with isotropic heat conduction (case I), ∆T = 10 K
with anisotropic heat conduction (case II), ∆T = 40 K with isotropic heat conduction (case III)
and ∆T = 40 K with anisotropic heat conduction (case IV). The isothermal flow at De = 50
will be denoted by case 0. The Péclet number for all calculations was Pe = 93.

For the four cases the resulting temperature distributions near the contraction have been de-
picted in figure 5.36. The results can be explained by considering the corresponding anisotropy
of the heat conduction tensor. The rr-, the rz- and zz-components have been depicted in
figures 5.37 and 5.38. In the entry corner the conduction of heat upstream is much larger
when the anisotropy has been taken into account. This is caused by the large values of κzz in
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Figure 5.36: Temperature isolines near the contraction, −5 ≤ z/R ≤ 6, of LDPE for various temperature jumps
with and without the anisotropy of the heat conduction tensor. Case I-IV of table 5.13 have been depicted.
The ten isotherms are evenly spaced between the maximum temperature, 403 K or 433 K, and the minimum
temperature 393 K.

the entry corner as can be seen from the small figures in figures 5.37 and 5.38. Along the wall
of the outflow a temperature boundary layer develops. At z = 0 the boundary layer for the
anisotropic cases is about two times as large as for the isotropic cases. Because the cold front
develops farther outside the vortex, the convective transport of heat in the core flow provides
a larger temperature boundary layer at z = 0. Due to the reduced thermal conductivity in the
direction perpendicular to the flow in the outflow section (after some z/R when the polymer
chains are oriented in the direction of the flow), the boundary layer develops much slower for
the anisotropic cases. At z/R ' 6 (the top side of the figures in 5.36) the sizes of the boundary
layers are almost equal. The magnitude of the rz-component of the heat conduction tensor is
large (and negative) near the separation line of the vortex, indicating that the polymer chains
are oriented in the direction of the flow. The main difference between figure 5.37 for ∆T = 10 K
and figure 5.38 for ∆T = 40 K is that the thermal conductivity parallel to the flow is much
lower for the latter. This is due to the lower temperature in the core flow, which causes a lower
relaxation time and therefore less orientation of the polymer chains. The thermal conductivities
in the direction perpendicular to the flow are of comparable magnitude. The minimum is just
below 0.7κeq, indicating that only the first four modes are active.

Due to the higher temperature near the centre, compared to the isothermal flow for De = 50



5.4 Flow through a 4:1 contraction 143

2
2
2

2

22

2
2

2

2

2

3

3

3

3

4

4
4

4

5

5

5

5

56

6

6

6
6

6
7

7

7

7

7
7

8

8

8

8

8
8

9

9
9

9

9

9

9

9

1010
11 1112 1212 121313 1314151617

κrr

2

2

2

3

3
3 456789

9

1
2

34
5

6

7
778

8

88
8

8
8

8

8
8

9

9

9

9

9

99 9

9

9

9

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11
11

11

11

12

12

12

12

12 12

12
12

13

13

13

13

13

14

14

14

15

15

15

16

κrz

1 12
223 33 44

5
5

6

7777

7

77

8

88

9

2 333 444 55 6 6

6

7

7

8

8

99

9

9

910

10

12

12

13

13

13

13

14

14
14

14
14

14

15

16

17

κzz

2 2

2 2

3
4

5
6

Figure 5.37: Isolines near the contraction, −5 ≤ z/R ≤ 6, for κrr, κrz and κzz for the LDPE melt. The
temperature jump equals ∆T = 10 K (case II of table 5.13). The lines are evenly spaced below and above the
isotropic value of the concerned quantity. The isotropic value corresponds to line 8 for κrz and κzz and to line 10
for κrz. The minimum (line 1) and maximum (line 17) values are: 0.68 ≤ κrr/κeq ≤ 204, −143 ≤ κrz/κeq ≤ 3.2,
0.74 ≤ κzz/κeq ≤ 791. For the figures of the entry corner, −3 ≤ z/R ≤ 0 and 1 ≤ r/R ≤ 4, the minimum
(line 1) and maximum (line 9) values are evenly spaced between: 0.68 ≤ κrr/κeq ≤ 24, −16 ≤ κrz/κeq ≤ 3.2,
0.74 ≤ κzz/κeq ≤ 89.

at T = 393 K, the magnitude of the stresses is also smaller. The influence on the normal stress
τzz and the shear stress τrz at z = 0 has been depicted in figure 5.39. The stresses are relative
to the wall shear stress τw at the outflow for the isothermal flow of De = 200. For comparison
the stresses for the isothermal flows with De = 15 and De = 50 have also been given. The
latter corresponds to the Deborah number calculated with the temperature of 423 K at the
outflow boundary. The first almost corresponds to the Deborah number calculated with the
temperature of 463 K at the inflow boundary (De(T1) = 17). Particularly, the resulting normal
stresses τzz at z = 0 are considerably smaller than for the isothermal case at De = 50 and
larger than the isothermal case at De(T1). Only at the wall all stresses for the nonisothermal
calculations are almost equal to the stresses for the isothermal calculations at De = 50. The
shear stress shows the same type of behaviour, only the differences are somewhat smaller.

Compared to the influence of the temperature jump, the anisotropy only has a small in-
fluence on the stresses, although the temperature at z = 0 is considerably lower when the
anisotropy of the heat conduction tensor has been taken into account. With increasing magni-
tude of the temperature jump the differences increase, but only for ∆T = 40 K the magnitude
of the stresses near r/R = 0.8 are significantly larger when the anisotropy has been taken into
account.

In view of the isothermal results for the stresses in figure 5.33, one would expect that the
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Figure 5.38: Isolines near the contraction, −5 ≤ z/R ≤ 6, for κrr, κrz and κzz for the LDPE melt. The
temperature jump equals ∆T = 40 K (case IV of table 5.13). The lines are evenly spaced below and above the
isotropic values of the concerned quantity. The isotropic value corresponds to line 8 for κrz and κzz and to line 10
for κrz. The minimum (line 1) and maximum (line 17) values are: 0.69 ≤ κrr/κeq ≤ 175, −109 ≤ κrz/κeq ≤ 3.4,
0.75 ≤ κzz/κeq ≤ 478. For the figures of the entry corner, −3 ≤ z/R ≤ 0 and 1 ≤ r/R ≤ 4, the minimum
(line 1) and maximum (line 9) values are evenly spaced between: 0.69 ≤ κrr/κeq ≤ 20, −12 ≤ κrz/κeq ≤ 3.4,
0.75 ≤ κzz/κeq ≤ 54.

decrease of the stresses in the nonisothermal flow also decreases the vortex intensity and the
opening angle. The resulting opening angles β and the vortex intensities Iψ have been given in
table 5.13. The opening angle does not differ much from the isothermal calculations, with the

Table 5.13: Vortex intensity Iψ , opening angle β and the Deborah number at the temperature at the inflow
boundary for the LDPE melt. For the various temperature jumps at the wall, the influence of the anisotropy
of the heat conduction tensor has been given. The Deborah number based on the outflow equals De = 50.

∆T (K) Iψ(%) β(deg) De(T1)
0 isotherm 10.9 52 50

I 10 isotropic 10.4 50 38
II 10 anisotropic 10.9 50 38
III 40 isotropic 6.8 42 17
IV 40 anisotropic 7.9 43 17

0 isotherm 10.0 43 15

Deborah number evaluated at the temperature of the wall at the inflow. The vortex intensities,
however, may become considerably smaller. For the isothermal calculations at De = 15 the
vortex intensity was Iψ = 10 %. For the nonisothermal calculations with ∆T = 40 K the vortex
intensity is about 2-3 % smaller. The local decrease of the temperature in the entry corner,
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Figure 5.39: Normal stress τzz/|τw| and shear stress τrz/|τw| of the LDPE melt at z = 0 for various temperature
jumps ∆T with and without the anisotropy of the heat conduction tensor (see table 5.13). The isothermal
stresses for De = 50 has been depicted for comparison. The stresses have been normalised with the isothermal
wall shear stress τw at the outflow.

increases the viscosity of the fluid there. If the force of the core flow on the vortex increases
less, the temperature is close to T = T1 in almost the complete core flow, this results in a
decrease of the vortex intensity.

Polystyrene

For the computations the iteration viscosity has been taken ηit = η0 and the extra viscosity
ηco = η0 − ηs, both at the temperature of the wall at the outflow. The heat conduction tensor
will be taken isotropic and independent of the temperature. Furthermore the heat capacity and
the density will be taken constant in the convective term of the temperature equation.

For the first problem the influence of the cooling due to expansion and the use of the
mechanical dissipation (energy elastic) or the stress work (entropy elastic) will be examined.
The Péclet number of the flow equals Pe = 6.6 · 103 and the temperature at the fixed wall will
be taken T = 463 K. This means that four cases will be considered: case I with only mechanical
dissipation, case II with only the stress work, case III with the mechanical dissipation and the
pressure derivative and case IV with the stress work and the pressure derivative.

The temperature isolines for the various examples have been depicted in figure 5.40. Figure
5.40 shows that the cooling due to the pressure decrease, does change the temperature profiles
considerably. The temperature in the core flow decreases by 3-4 K and the maximum shifts
towards the wall. The influence of the mechanical dissipation, compared to the stress work,
is small. Near the contraction the temperature is only a little higher when the stress work
is used. This is not because the difference between the mechanical dissipation and the stress
work is small. Figure 5.41 shows the differences on lines of constant z near the contraction.
Before the contraction the stress work is considerably higher than the mechanical dissipation,
particularly for r/R ≤ 0.6 at z/R = −1 where it is about 2.5 time as large. This means that a
part of the mechanical energy is stored as elastic energy for case I, while for case II it is stored
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Figure 5.40: Temperature isolines near the contraction, −8 ≤ z/R ≤ 4, of PS for the situations I-IV of table
5.14. The Deborah number equals De = 200. The isotherms are evenly spaced between the wall temperature
Tw = 463 K (line 1) and the maximum temperature T = 469 K.

as reversible heat. At z = 0 the mechanical dissipation and the stress work have some wiggles
and a relatively large peak at r = 0. The values have not been shown in figure 5.41 because the
large peaks would distort the figure too much. After the contraction the mechanical dissipation
decreases relatively slowly in the centre, because the stored elastic energy is released then. The
change in the stress work is extremely large between z/R = −1 and z/R = 1. In contrary to the
mechanical dissipation, which has to remain positive, the stress work near the centreline has a
rather large negative value. This is caused by the decrease of vz in the z-direction while the
dominant stress τzz is still positive. Near r/R = 1 there is a strong increase near the contraction
of both the mechanical dissipation and the stress work. The differences after the contraction,
however, are only small. Because of the dominance of the convection, however, even the large
differences between the mechanical dissipation and the stress work near the contraction do not
result in large temperature differences.

Due to the temperature differences the stresses, which strongly depend on the temperature,
will be affected. The normal stress τzz and the shear stress τrz at z = 0 have been depicted
in figure 5.42. As expected the magnitude of the stresses is smaller than for the isothermal
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Figure 5.41: Mechanical dissipation (case I) and stress work (case II) at various distances from the contraction
for the PS melt. The mechanical dissipation and the stress work have been scaled with the with the isothermal
wall shear stress τw and the isothermal wall shear rate γ̇w at the outflow.
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Figure 5.42: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for the PS melt. The isothermal and
nonisothermal flows (case I-IV) for De = 200 and Tw = 463 have been depicted. The stresses have been
normalised with the isothermal wall shear stress τw at the outflow.

calculation. The shear stress does not differ much for the four nonisothermal calculations. For
the normal stress the use of the mechanical dissipation or the stress work has little influence.
Compared to the isothermal calculation, however, the normal stresses in the core are consider-
ably lower for the nonisothermal cases. The lower temperatures for case III and IV (with the
thermal expansion term) result in higher normal stresses in the core flow, compared to case I
and II. Table 5.14 shows the influence of the temperature changes on the vortex intensity and
the opening angle. Due to the larger temperature differences between the core flow and the
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Table 5.14: Vortex intensity Iψ , opening angle β, maximum temperature and temperature at the centreline,
both at the outflow boundary, for the PS melt. The second column indicates which terms have been taken into
account. The Deborah number based on the outflow equals De = 200.

Iψ(%) β(deg) Tmax − Tw (K) Tax − Tw (K)
isotherm 5.4 50 - -

I Dve
m 4.6 47 15.2 5.9

II τ
¯̄

: d
¯̄

4.4 47 15.3 5.9
III Dve

m , Tαρṗ 5.3 49 13.1 -0.05
IV τ

¯̄
: d
¯̄
, Tαρṗ 5.1 49 13.3 -0.04

entry corner the vortex intensities decrease. Particularly for case I and II the decrease is con-
siderable. For case III and IV the temperature difference between the vortex and the core flow
is much smaller, which only results in small deviations from the isothermal case. The opening
angles for the nonisothermal calculations only decrease weakly compared to β = 50 deg for the
isothermal one. Along the outflow boundary, where the mechanical dissipation and stress work
are large, the temperature keeps increasing: about linearly with 1.5 K per ∆z = 10R. The
maximum temperatures for all nonisothermal flows are near r/R = 0.8, so that the tempera-
ture gradient at the wall becomes very large. The width of the peak is about 0.4R. Near the
centreline the temperature remains approximately constant in the z-direction for case I and II.
For case III and IV it decreases linearly in the z-direction, about 0.25 K per ∆z = 10R. This
means that there is hardly any diffusion of heat towards the centre of the pipe and that there
the temperature changes are dominated by the pressure change. The maximum temperature
and the temperature at the centreline, both at the outflow boundary, are summarized in table
5.14.

For the second set of calculations the influence of wall cooling has been examined. At the
wall along the inflow section three different temperatures have been imposed: T1 = 433 K,
T1 = 443 K and T1 = 463 K. The wall at the outflow has been kept at T0 = 423 K so that the
resulting temperature jumps at z = 0 are ∆T = 10 K, ∆T = 20 K and ∆T = 40 K. These
three cases will be denoted by A, B and C respectively. The Péclet number of the flows equals
Pe = 1.0 · 103. For the polystyrene melt the isolines of the temperature have been depicted in
figure 5.43. The shape of the boundary layers are similar to the isotropic results for LDPE in
figure 5.36. In the entry corner, where the velocity is relatively small, the upstream diffusion is
large. Near the corner point at r = 1, z = 0 the boundary layer is small and the temperature
gradient perpendicular to the wall is large. Due to the high Péclet number the boundary layer
develops slowly in the outstream section. Because the temperature dependence of the viscosity
and the stresses of the polystyrene melt is much stronger than for LDPE, the influence on the
normal stress τzz and the shear stress τrz is much larger. At z = 0 these stresses have been
depicted in figure 5.44. The stresses are relative to the wall shear stress τw at the outflow for
the isothermal flow of De = 200. For comparison the stresses for the isothermal flow with
De = 3, which corresponds to the Deborah number calculated with the maximum temperature
of 463 K at the inflow boundary, and with De = 200, which corresponds to the Deborah number
calculated with the temperature of 423 K at the outflow boundary. Particularly, the normal
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Figure 5.43: Isotherms near the contraction, −2 ≤ z/R ≤ 5, of the PS melt for the various temperature jumps
of table 5.15. The temperature at the outflow boundary is T0 = 423 K. Eleven contours are evenly spaced from
423 K (line 1) to 463 K (line 12).
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Figure 5.44: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for the PS melt. Except the nonisothermal
flows with the various temperature jumps ∆T , case A-C of table 5.15, the isothermal stresses for De = 3 and
De = 200 have been depicted for comparison. The stresses have been normalized with the isothermal wall shear
stress τw at the outflow.

stress τzz differs from the isothermal stress profile at a Deborah number of De = 200. The
local maximum of τzz, which is present for the isothermal flow with high Deborah numbers,
vanishes for the nonisothermal calculations. In the core region the normal stress for ∆T = 40 K
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corresponds almost to the isothermal flow at a Deborah number of De = 3. Only near the wall,
where the temperature is lower, τzz is significantly larger. The shear stress is also in between
the isothermal values of De = 3 and De = 200. The wiggles are still somewhat larger than for
the isothermal calculation at De = 200, particularly for the highest temperature jump. Then
relatively large wiggles exist near r/R = 0.5, where the wiggles are restricted to the region near
the wall for the other cases.

The resulting temperature and stress profiles result in the streamline patterns in the entry
corner of figure 5.45. The corresponding opening angles β and the vortex intensities Iψ have
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Figure 5.45: Streamline contours of the PS melt for various temperatures of the inflow boundary: successively
T1 = 423 K, T1 = 433 K, T1 = 443 K and T1 = 463 K. The temperature at the outflow boundary is T0 = 423 K.
Seven contours are evenly spaced from zero to the maximum value and from zero to the minimum value.

been given in table 5.15. The nonisothermal flow, with a fixed wall temperature of 423 K
does not have a significant influence on the vortex compared to the isothermal flow. Only the
vortex intensity is somewhat smaller. However, if the inflow boundary is heated, the vortex
intensity and the opening angle decrease considerably. This corresponds to the expectations.
The temperature distribution near the contraction is strongly non-homogeneous: near the axis
of symmetry it is about T1, the temperature at the wall of the inflow section, and near the wall
it is about the wall temperature T0 at the outflow section. A higher temperature results in
smaller relaxation times and, compared to the isothermal flow at De = 200, a smaller Deborah
number in the core flow. For the isothermal flow of table 5.12 a decrease of the Deborah number
corresponded to a decrease of the opening angle and the vortex intensity. However, the vortex
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Table 5.15: Vortex intensity Iψ and opening angle β for different temperatures at the inflow boundary for
the flow of the PS melt with De = 200. The second column contains the Deborah number De(T1) for the
temperature T1 at the inflow boundary.

∆T (K) De(T1) Iψ(%) β(deg)
0 0 200 5.1 50
A 10 53 3.1 38
B 20 17 0.5 25
C 40 3 − −

intensity and the opening angle decrease more than could be expected from this analysis. When
the temperature jump is increased, the difference becomes larger. At the highest temperature
jump of ∆T = 40 K the vortex has even vanished. Probably this is a result of the large
temperature gradient near the wall of the contraction at z = 0. The relatively large difference
in temperature with the main stream cause a much more viscous fluid near the wall (a factor
66 for the highest temperature difference).

5.5 Conclusions

For various flows the influence of the temperature effects has been checked numerically. For
LDPE and PS, two polymers with a different temperature dependency of the material functions
and a different rheological behaviour, calculations have been performed for a fully developed
shear flow, for a Graetz–Nusselt problem and for the flow through a 4:1 contraction, so that a
kind of immobile boundary layer near the wall arises.

For the fully developed shear flow the decrease of the temperature due to the thermal expansion
term was the most important, compared to the results where only the mechanical dissipation
has been taken into account. Particularly for the LDPE melt, for which the thermal expan-
sion coefficient is larger than for PS, the decrease of the temperature near the centreline (until
about the wall temperature) was considerable. For the LDPE melt the decrease of the thermal
conductivity perpendicular to the flow also caused a considerable temperature rise. For LDPE
these large temperature differences did not result in considerable differences in the velocity
profiles. The stress profiles did increase somewhat, but by far not as much as for the PS melt,
where the decrease of the stress could be more then a decade. Then also the velocity profiles
changed. Compared to the isothermal case the velocity at the wall decreases and near the
centreline increases correspondingly. The cooling due to the thermal expansion term slightly
diminished this effect.

For the Graetz–Nusselt problem the influence of the internal heat production was of minor
importance. Due to the dominance of the convection and the cooling at the wall, where the
mechanical dissipation may become large, only the convection and the diffusion are important.
For PS the changes of the flow rate, and thus the Péclet number, resulted in substantial differ-
ences in the temperature and velocity profiles. For the smallest Péclet number the temperature
has soon reached its fully developed profile and the maximum velocity on the centreline is close
to the temperature jump. For increasing flow rate it takes longer and longer before the temper-
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ature profile becomes fully developed. As a consequence the maximum velocity at the axis of
symmetry shifts towards the outflow boundary. For the highest flow rate the temperature at the
outflow was even far from fully developed. However, still smooth solutions were obtained at he
outflow boundary with the help of the special fully developed Neumann boundary conditions.
For the flow of LDPE it was remarkable that the thermal conductivity in the direction parallel
to the flow became very large. The maximum was about 300 times the thermal conductivity
in equilibrium, while the minimum thermal conductivity perpendicular to the flow was about
37 % lower than the equilibrium value.

For the nonisothermal flow through a 4:1 contraction, the temperature changes due to the in-
ternal heat production are small for the polyethylene melt. For the polystyrene melt, however,
the temperature changes may be considerable. Because the stresses depend strongly on the
temperature, the vortex in the entry corner is also influenced. Particularly the vortex intensity
decreases compared to the isothermal flow. The use of the stress work or the mechanical dissi-
pation did not have a large effect on the results. The influence of the cooling due to expansion,
however, changed the results significantly.

If the wall was cooled from the contraction to the outflow, the magnitude of the vortex
and the vortex intensity decreased compared to the isothermal flow. The decrease was even
larger than for the corresponding isothermal Deborah number at the highest temperature in
the flow. Again the effects were larger for the PS than for the LDPE melt. With the largest
temperature difference the vortex even vanished for the polystyrene melt. Compared to an
isotropic thermal conductivity, the anisotropy of the thermal conductivity gave a substantial
different temperature distribution. In the entry corner the diffusion of heat was larger, which
resulted in a larger temperature boundary layer at the start of the outflow section. In the
outflow section, however, the temperature boundary layer developed more slowly because of
the lower thermal conductivity in the direction perpendicular to the flow.
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Concluding remarks and discussion

In this last section it will be checked how far the objectives have been reached. The objectives
mentioned in chapter 1 were twofold. Firstly, the derivation of nonisothermal constitutive
equations describing the flow of viscoelastic fluids and secondly the numerical simulation of the
obtained equations.

From the thermodynamics of irreversible processes general constitutive equations have been
obtained which describe the nonisothermal flow of polymeric fluids. With the introduction
of the internal deformation tensors in the thermodynamics, it is possible to obtain the well-
known multi-mode differential stress models that have been proposed in the literature and
a constitutive equation for the heat flux that is able to describe the anisotropy of the heat
conduction. Most of the attention, however, has been paid to the derivation of the temperature
equation from the balance of energy for viscoelastic fluids. A good temperature equation is
important, because the internal energy production is large due to the high viscosity of polymer
melts and concentrated solutions.

The discussion of the results will be split in two parts. Firstly, the various nonisothermal
effects which resulted from the thermodynamics, the relations with experiments, and the im-
portance of these terms in the numerical simulations, will be discussed separately. Then the
problems in the numerical method for nonisothermal viscoelastic flow will be discussed.

Temperature effects

The various nonisothermal effects resulting from the thermodynamics will be reviewed below.
Where possible the influence of these terms in the numerical simulations of chapter 5 will be
indicated.

Temperature dependence of the relaxation time and the material functions

The relaxation time and the material functions depend strongly (exponentially) on the temper-
ature (see section 2.5.1) and therefore this dependence is of great importance in nonisothermal
flows. For the polystyrene melt, for which the WLF shift factor is valid, the temperature depen-
dence may be extremely large. For the polyethylene melt, for which the Andrade shift factor
is valid, the temperature dependence is less strong. Therefore the effects on the stresses and
the velocity in the numerical simulations are much larger for the polystyrene melt than for the
polyethylene melt. The influence on the velocity field is the most obvious for the fully developed
pipe flow (a considerable increase of the velocity near the centreline and a decrease near the
wall) and for the flow through a 4:1 contraction. The vortex in the entry corner becomes much
smaller when the wall is cooled and even disappears for the highest cooling rate.

153
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Dissipation of mechanical energy

For viscoelastic fluids the mechanical dissipation does not equal the stress work. In section
2.3.3 it has been discussed which part of the mechanical energy is dissipated and which part
of the energy is stored reversibly. The right expressions for the mechanical dissipation of the
viscoelastic models, including the expressions for incompressible models (det b

¯̄
k 6= 1) and for

models with a mixed convected derivative, can be determined with the help of the thermody-
namics. The results have been summarised in appendix B. A warning is in order here, because
in the literature wrong expressions for these type of models have been presented. In the first
place one has to be suspicious of the expressions for the incompressible stress models. The con-
tribution of the isotropic term in the relation between the stress and the internal deformation
might not be taken into account, which results for example in expressions where the mechanical
dissipation does not equal the stress work in steady flows. In the second place one has to be
suspicious of the expressions for models with a mixed convected derivative. The non-dissipative
slip might contribute to the mechanical dissipation then, but this is not allowed.

Particularly for the fully developed flow, where the convective terms vanish, the influence of
the mechanical dissipation is large (a few tens of degrees Kelvin). Although the dissipation of
mechanical energy may be large, for both the Graetz–Nusselt problem and the nonisothermal
flow through a 4:1 contraction the influence is much smaller, because of the dominance of the
convection. Only for the contraction flow of PS without wall cooling the temperature rise was
large at the outflow.

Storage of reversible energy

Besides that a part of the mechanical energy is dissipated, another part of is stored reversibly.
In section 2.3.3 it has been discussed when the reversible energy may be stored as elastic energy
(as for springs) or as reversible entropy (as for rubber bands). For the latter it contributes to
the temperature changes (reversibly). For the neo-Hookean stress models this is completely
determined by the temperature dependence of the shear modulus. For constant shear moduli
all the reversible energy is stored as elastic energy (purely energy elastic). However, if the shear
moduli depend linearly on the temperature, the energy is converted into reversible heat (purely
entropy elastic).

Only a small amount of experiments (and only on a very few polymers) have been per-
formed to determine whether polymeric fluids are purely entropy elastic, purely energy elastic
or something in between. In the purely entropic case the total heat production corresponds
exactly to the stress work. Because the difference between the stress work and the mechan-
ical dissipation may be considerable it is important to know the temperature dependence of
the moduli for a good description of the nonisothermal flow of viscoelastic fluids. Because it
may be difficult to obtain the temperature dependence of the shear modulus from viscometric
data, due to the dominating temperature dependence of the relaxation time and viscosity, it
might better be measured indirectly. Particularly the relaxation experiment described by Sarti
& Esposito (1977/1978) seems a good test for the entropy elasticity, because the temperature
must remain constant then, see section 2.5.1. For the other experiment, where they measure
the temperature change due to the internal heat production during deformation, things are
more difficult because the difference between the mechanical dissipation and the stress work
are small for low deformation rates and vanish in steady flows. In the experiments it is not
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clear if the difference is large enough. For high deformation rates in unsteady flows, however,
it would also be a good test for the energy or entropy elasticity. Another possibility to obtain
the temperature dependence of the shear modulus is to measure the anisotropy of the thermal
expansion in a deformed polymeric material. For solids this type of experiment has for example
been performed by Hellwege et al. (1963), see section 2.5.1. For a neo-Hookean model with a
constant modulus, the thermal expansion would be isotropic. A temperature dependent shear
modulus, however, causes that the material shrinks in the direction of orientation and it ex-
pands in the direction perpendicular to the orientation. It is clear that much more experiments
have to be performed to decide whether a polymeric material is energy elastic, entropy elastic
or something in between.

In the calculations for the PS melt in a 4:1 contraction with a fixed wall temperature the
difference between the stress work and the mechanical dissipation were large near the centreline
of the contraction, where the polymer is deformed as in uniaxial elongation. Due to the large
convective terms, however, the differences in the temperature distribution were relatively small.

The heat capacity
A subject related to the energy or entropy elasticity is the dependence of the heat capacity on
the deformation. As has been shown in section 2.3.3, both effects depend on the existence of
cross terms of the internal deformation and the temperature in the free energy. For the neo-
Hookean models this means that only when the moduli are constant or when the moduli scale
linearly with the temperature and the density, the heat capacity out of mechanical equilibrium
equals the heat capacity in equilibrium. Thus only then the heat capacity can be obtained
directly from tables with values of the heat capacity at constant pressure. Otherwise, such as
for only a linear scaling of the shear moduli with the temperature, the heat capacity depends on
the (internal) deformation. Experiments of Sarti & Esposito (1977/1978) showed that for one
polymeric material the heat capacity varied during deformation and for some others it remained
constant. However, the (elastic) deformation might be too small to obtain measurable effects.
It seems recommendable to do some experiments for higher deformation rates, so that the heat
capacity difference ∆ceq, introduced in section 2.3.3, would be larger.

Temperature changes due to compression and expansion
In section 2.3.3 it has been demonstrated that, just as for gases, the temperature of polymeric
fluids changes during expansion (cooling) and compression (heating). Although the effect is
not as large as for gases, it is often not negligible for polymeric fluids. Not only in compression
or dilatational flows this effect is important, but also in shear flows. In steady shear flows the
magnitude of the compression term is about 20 % of the mechanical dissipation, dependent on
the magnitude of the thermal expansion coefficient (see section 2.6). In axisymmetrical flows
the effect is still more important, because the influence of the cooling term is large near the
centreline, where the mechanical dissipation vanishes.

In a fully developed flow this cooling term also causes an of-centreline temperature maxi-
mum. The larger the magnitude of the thermal expansion coefficient, the more the maximum
moves to the wall and the temperature at the centreline decreases. For LDPE the effects
are larger, because its thermal expansion coefficient is larger than for PS. In the convection-
dominated Graetz–Nusselt problem and the flow through a 4:1 contraction the influence of this
term was small, just as for the mechanical dissipation.
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Anisotropy of the heat conduction tensor

In elongational and shear experiments it is observed that the heat conduction is anisotropic in
a polymeric fluid, see section 2.4. On the one hand the thermal conductivity in the direction
perpendicular to the deformation decreases until a certain lower bound has been reached. On
the other hand the thermal conductivity parallel to the deformation increases considerably. In
the thermodynamics this anisotropy can be modelled by a dependence of the heat conduction
tensor on the elastic deformation (the internal deformation tensors). However, it is difficult to
verify the model with experimental results. First of all, the anisotropy has only been measured
for a few polymeric fluids. Furthermore, the measurements consist of a relatively small amount
of data points either for elongation or for shear flows. This means that it makes no sense to fit
the data for multi-mode models, especially when the (2K + 1) heat conduction coefficients are
assumed to depend on invariants of the internal deformation tensor. It seems more plausible
to take these coefficients as constants. However, then the choice of the stress model becomes
important. Most of the stress models predict the increase of the parallel conductivity and
the decrease of the perpendicular conductivity in uniaxial elongational flows. In shear flows,
however, this type of behaviour may only be described by models having a second normal
stress difference, such as the Giesekus, the Leonov and the modified Leonov model. For the
most simple anisotropic model, with the anisotropy equally distributed over all modes, the two
remaining constants can easily be related to the thermal conductivity in equilibrium and the
asymptotic lower bound of the perpendicular thermal conductivity for high deformation rates.

So what is really needed is a good set of measurements of the anisotropy for commonly used
polymeric fluids. This means that the anisotropy has to be measured in shear and in elongation
flow, because some models predict a different type of behaviour for these flows. Furthermore it
is important to obtain the anisotropy for a wide range of deformation rates. Only then a good
fit can be made with the multi-mode model described in section 2.4.

In the numerical simulations the relatively small anisotropy of the heat conduction tensor for
PS did not have a large influence on the resulting temperature distribution. For the LDPE melt,
however, substantial temperature differences were obtained when the anisotropy was taken into
account. Except the decrease of the thermal conductivity in the direction perpendicular to the
flow, the large values of the parallel thermal conductivity were remarkable.

Nonisothermal rheology

The nonisothermal rheological experiments of Bogue et al. and Sridhar, discussed in section
2.5.2, indicate that the temperature history effect resulting from the temperature dependent
relaxation time is not the only thing that matters in the stress constitutive equation. The
measurements of Sridhar (on a dilute polymer solution in shear) gave opposite results to the
measurements of Bogue et al. (for melts in elongational flow). In the simultaneous heating
and shear experiments the stresses were larger than predicted. In the simultaneous cooling and
elongational experiment the stresses were also larger than predicted. To obtain clearness in this
case the experimental conditions have to be improved and, because of temperature gradients
across the fluid, the results have to be compared with the non-isothermal equations including
the temperature equation.
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Numerical method

Numerical solutions of the flow of viscoelastic fluids could be obtained for flows with high
Deborah, Péclet and Brinkman numbers. However, a few problems arose then.

First, the large temperature differences in the flow give some problems. To obtain a con-
vergent solution method for isothermal problems with high Deborah numbers two iteration
parameters, an iteration viscosity and an extra viscosity, have been introduced by Hulsen &
van der Zanden (1991). For nonisothermal flows with large temperature gradients also an it-
eration diffusivity, see section 4.3.2, is needed to obtain a convergent solution method. For
flows with high Deborah numbers and large temperature gradients a constant iteration vis-
cosity and extra viscosity give some problems. Firstly they have to be chosen very carefully
to obtain a convergent solution method at all and when that succeeds the convergence is very
slow. Particularly the very temperature dependent polystyrene melt gave rise to problems. The
iteration and extra viscosity have to be matched on the lowest temperature, which means that
for the high-temperature regions in the flow they are much too large, which causes a very slow
convergence. Contrary to the Newtonian model, for which a temperature dependent iteration
viscosity gave a considerable acceleration of the convergence rate, a temperature dependent
iteration and extra viscosity did not work for the viscoelastic models. So it seems that this
problem is inherent in this method for nonisothermal viscoelastic flows.

In the temperature equation the calculation of the mechanical dissipation may cause prob-
lems for the models with det b

¯̄
k 6= 1. The internal deformation tensor, which is theoretically

positive definite, may become indefinite due to numerical errors. Because the mechanical dissi-
pation depends on the inverse of the determinant, this may lead to large errors in the mechanical
dissipation. Therefore a method has been developed to calculate the lower bounds of the in-
variants, see section 3.2. For models with a positive lower bound of the determinant of the
internal deformation tensor, the internal deformation tensor may be corrected to a positive
definite tensor. For all models described in appendix A, except the 3D Giesekus model, it is
possible to find such a lower bound. Then only the stress work of the specific mode can be
taken, which makes the Giesekus model less suited for nonisothermal calculations where the
mechanical dissipation term is important.

Another problem in the numerical calculations are the high values of the heat capacity
and the density of polymeric fluids, which give rise to convection-dominated flows. The first
problem concerns the unphysical wiggles for the Galerkin method. As for Newtonian fluids
the SUPG upwinding, reviewed in section 4.3, works well. The discontinuity capturing in
the direction of the temperature gradient did not work for viscoelastic flows with anisotropic
heat conduction. The second problem concerns the outflow boundary conditions. Due to the
dominance of the convection, a very long exit length would be required to avoid large wiggles
for flows with high Péclet numbers. Furthermore, the simple Neumann boundary conditions for
Newtonian fluids (a constant pressure and vanishing normal temperature gradient) do not solve
this problem either. Due to the normal stress differences for viscoelastic fluids the constant
pressure boundary condition does not work. Therefore an approximation of the normal stress
at the outflow boundary has to be calculated somehow. This has been done with the help
of a kind of fully developed stress boundary condition at the governing temperature. This
procedure results in smooth solutions at the outflow, even for flows with high Deborah and
Péclet numbers.
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In short, the main difficulty for the numerical simulation of the nonisothermal flow of vis-
coelastic fluids is not the numerical method itself (for steady flows at least) but the lack of
good experimental results. Particularly experimental results of various polymeric materials
are needed for the anisotropy of the heat conduction, the entropy or energy elasticity and the
dependence of the heat capacity on the deformation. To make a good comparison between the
theory and the experiment these experimental results are needed for high deformation rates.

For the numerical simulations itself it seems interesting to consider flows that are less domi-
nated by convection of heat. The influence of the various thermal effects, such as the dissipation
of mechanical energy, the cooling due to expansion and the storage of reversible energy, will be
much larger then. For the Graetz–Nusselt problem and the flow through a 4:1 contraction these
effects were relatively small near the temperature jump and the contraction. Examples could
be flows without an inflow and outflow boundary, such as the flow in a Couette viscosimeter
and journal bearing lubrication.
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Appendix A

Examples of viscoelastic stress differential models

In this appendix the stress differential equations, which have been implemented in the numerical
code, are summarized. They may be written in terms of the internal deformation tensor. The
modal stress can be found with the help of (2.19)

τ
¯̄
k =

Gk

1 − ξk
(Bkb

¯̄
k − I

¯̄
) . (A.1)

The scalar Bk = 1 for all models, except for the Larson model. For models having the upper-
convected derivative as the convected derivative the parameter ξk vanishes: ξk = 0. A more
detailed description of these models and the specific flows for which these models give reasonable
predictions, can be found in Tanner (1985) or Larson (1988). The modified Leonov model has
been described by Bush (1989).

• The Johnson–Segalman (quasi-linear) model

λkb
¯̄

2

k + b
¯̄
k − I

¯̄
= 0

¯̄
. (A.2)

For the special case ξk = 0 this model reduces to the well-known upper-convected Maxwell
model.

• The Giesekus model
λkb

¯̄

5
k + (I

¯̄
+ αk (b

¯̄
k − I

¯̄
)) · (b

¯̄
k − I

¯̄
) = 0

¯̄
, (A.3)

where the mobility parameters 0 ≤ αk < 1 denote the amount of anisotropic drag, which
has been modelled by a dependency on the internal deformation tensor. For αk = 0 the
drag is isotropic and the model reduces to the upper-convected Maxwell model. The
amount of anisotropy increases with increasing αk.

• The Leonov model

λkb
¯̄

5
k +

1

2

(
b
¯̄
2
k − I

¯̄
− 1

3
(I1,k − I2,k) b

¯̄
k

)
= 0

¯̄
. (A.4)

This model satisfies the incompressibility condition for the internal deformation tensor,
which means that I3,k = 1.

• The modified Leonov model

λkb
¯̄

5
k +

1

2
φk(I1,k + I2,k)

(
b
¯̄
2
k − I

¯̄
− 1

3
(I1,k − I2,k) b

¯̄
k

)
= 0

¯̄
,

φ−1
k (I1,k + I2,k) = 1 +

2αk
π

arctan

(
βk
4

(I1,k + I2,k − 6)

)
, (A.5)
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where αk and βk in the empirical function φk(I1,k + I2,k) are parameters to represent
elongational flows more realistically than the Leonov model. If αk = 0 or βk = 0 the model
reduces to the Leonov model. This model also satisfies the incompressibility condition
for the internal deformation tensor.

• The Phan-Thien–Tanner model

λkb
¯̄

2

k + Yk(I1,k) (b
¯̄
k − I

¯̄
) = 0

¯̄
. (A.6)

Two forms of Yk are frequently used:

– The linear Phan-Thien–Tanner model

Yk(I1,k) = 1 + εk (I1,k − 3) , (A.7)

– The exponential Phan-Thien–Tanner model

Yk(I1,k) = eεk(I1,k−3), (A.8)

where the constants εk ≥ 0 denotes that longer chains in the network of polymers are
destroyed more readily than short ones.

• The Larson model1

λkb
¯̄

5
k +B−1

k (I1,k) (b
¯̄
k − I

¯̄
) = 0

¯̄
,

Bk(I1,k) =

(
1 +

βk
3

(I1,k − 3)

)−1

. (A.9)

Note that the differential equation for the internal deformation tensor is the same as for
the linear Phan-Thien–Tanner model. The constants 0 ≤ βk ≤ 1 denote the extent of
retraction. Polymer chains are supposed to be present in tubelike regions. When the
tube has been deformed the chains rapidly retract within the deformed tube. βk = 0
corresponds to no retraction (affine motion) and βk = 1 to a complete retraction.

1The representation of the Larson model in terms of the internal deformation tensor can be found by sub-
stitution of equation (2.19) in the stress equation described by Larson (1988). The time derivative of the first
invariant appearing then, must be eliminated. This can be done by taking the trace of the stress equation and
substitution of (2.19). Elimination of the time derivative gives equation (A.9).
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The mechanical dissipation of stress differential models

In this appendix a summary will be given of the expression for the mechanical dissipation in
(2.64) for the viscoelastic differential models described in appendix A. In fact the results for
the differential models of appendix A are identical to the results of a method proposed by
Jongschaap (1991,1994)1. For that method the positive mechanical dissipation is calculated by
splitting the equations in an even and odd part with respect to a macroscopic time reversal.

As will be shown next, the positiveness of the entropy production, and thus the mechanical
dissipation, together with the positive definiteness of the internal deformation tensor puts some
constraints on the viscosity parameters of the models:

ηs ≥ 0,

ηk ≥ 0. (B.1)

For some non-linear models the positiveness of the dissipation also puts some restrictions on
the parameters of the non-linear terms. These restrictions will be mentioned separately for the
different models.

• The Johnson–Segalman (quasi-linear) model

Dve
m = 2ηsd

¯̄
: d
¯̄

+
K∑
k=1

Gk

2(1 − ξk)2λk

(
I1,k + tr b

¯̄
−1
k − 6

)
, (B.2)

for ξk 6= 1. With the help of linear irreversible thermodynamics the mechanical dissipation
of the linear model, with the material derivative instead of the convected derivative:

λk ḃ
¯̄k

+ (b
¯̄
k − I

¯̄
) = 0

¯̄
, (B.3)

can be calculated exactly: 2λk/GkD
ve
m,k = tr (b

¯̄
k − I

¯̄
)2 = tr b

¯̄
2
k − 2I1,k + 3. This is dif-

ferent from expression (B.2), which equals 2λk/GkD
ve
m,k = tr

(
b
¯̄
−1
k · (b

¯̄
k − I

¯̄
)2
)
. For small

deviations from equilibrium b
¯̄
k = I

¯̄
+B

¯̄
k, with small B

¯̄
k, the quadratic terms in the con-

vected derivative of the quasi-linear model are small and in the first order approximation
it reduces to the linear model. The mechanical dissipation of the linear model then re-
duces to 2λk/GkD

ve
m,k = B

¯̄
2
k and the mechanical dissipation of the quasi-linear model to

2λk/GkD
ve
m,k = B

¯̄
2
k + O(B

¯̄
3
k).

1Leonov (1992) also gives expressions for the mechanical dissipation of some differential stress models. For
the models with I3,k 6= 1 his expressions are in error, because he doesn’t take into account the isotropic term in
2.19. As a consequence the mechanical dissipation doesn’t equal the stress work in fully developed flows then.
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Decomposition on the principal axis immediately shows that, for a positive definite in-
ternal deformation tensor, the term between the brackets in (B.2) is non-negative (the
function x + 1/x − 2 is non-negative for x > 0). Then it follows from Dve

m ≥ 0 that
Gk/λk = ηk/λ

2
k should be non-negative.

• The Giesekus model

Dve
m = 2ηsd

¯̄
: d
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+
K∑
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Gk

2λk

(
(1 − αk)

(
I1,k + tr b
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k − 6

)
+ αk (b

¯̄
k : b

¯̄
k − 2I1,k + 3)

)
. (B.4)

As for the Johnson–Segalman model the term I1,k + tr b
¯̄
−1
k − 6 is always non-negative

for a positive definite internal deformation tensor. Decomposition on the principal axis
also shows that the last term in (B.4) between the brackets is non-negative (the function
x2−2x+1 is non-negative for x > 0). This means that if Gk/λk = ηk/λ

2
k is non-negative,

it follows from Dve
m ≥ 0 that 0 ≤ αk ≤ 1. This condition is fulfilled by the constraint

given in appendix A for the Giesekus model.

• The Leonov model

Dve
m = 2ηsd

¯̄
: d
¯̄

+
K∑
k=1

Gk

4λk
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b
¯̄
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¯̄
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3

(I2,k − I1,k)
)
. (B.5)

With the help of the decomposition on the principal axis, and using I3,k = 1 and the
results of section 3.2.2 that I1,k ≥ 3 and I2,k ≥ 3, it can be shown that the term between
the brackets in (B.5) is non-negative. From Dve

m ≥ 0 it then follows that Gk/λk = ηk/λ
2
k

should be non-negative.

• The modified Leonov model

Dve
m = 2ηsd

¯̄
: d
¯̄
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4λk
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3
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)
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As for the Leonov model the term between the brackets is always non-negative, because
I1,k ≥ 3 and I2,k ≥ 3. This means that when Gk/λk = ηk/λk is non-negative it follows
from Dve

m ≥ 0 that the function φk(I1,k + I2,k) should be non-negative. From (A.5), the
definition of φk, it then follows that αkβk ≥ 0.

• The Phan-Thien–Tanner model
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: d
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−1
k − 6

)
, (B.7)

for ξk 6= 1. As for the Johnson–Segalman model the term I1,k + tr b
¯̄
−1
k − 6 is always

non-negative for a positive definite internal deformation tensor. From the positiveness of
the dissipation it then follows that εk ≥ 0 for the linear model, which corresponds to the
constraint in appendix A. For the exponential model no constraint on εk can be obtained,
because the exponential function Yk is always positive.
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• The Larson model
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After substitution of the definition of Bk, (A.9)2, and reordering of the terms, it fol-

lows that the term between the brackets can be written as (1 − βk)
(
I1,k + tr b

¯̄
−1
k − 6

)
+

βk
(
tr b

¯̄
−1
k I1,k/3 − 3

)
. As for the Johnson–Segalman model the term I1,k + tr b

¯̄
−1
k − 6 is

always non-negative for a positive definite internal deformation tensor. Furthermore it is
easy to show that tr b

¯̄
−1
k I1,k/3 − 3 is non-negative. Then it follows that for 0 ≤ βk ≤ 1,

which corresponds to the condition mentioned in appendix A, the restriction that the
dissipation has to be non-negative is fulfilled.

For plane flow the Giesekus stress model with αk = 1
2

equals the Leonov stress model (I1,k =
I2,k). The mechanical dissipation for the Giesekus model then becomes

Dve
m = 2ηsd

¯̄
: d
¯̄

+
K∑
k=1

Gk

4λk
(b
¯̄
k : b

¯̄
k − 3) , (B.9)

which equals the mechanical dissipation for the Leonov model for plane flow.



Appendix C

Material functions of the modified Leonov model

Bush (1989) claims that the material functions of LDPE melt I may be fitted with a seven-mode
modified Leonov model. He gives the parameters αk = 3 and βk = 4 for all modes. Figure
C.1 shows the shear viscosity, the first normal stress coefficient, and the elongational viscosity
for the reference temperature T = 423 K. These material functions have been calculated
numerically, by solving the fully developed flow equations described in chapter 3. The material
functions show relatively large wiggles. This kind of behaviour is not in agreement with the
experimental data of LDPE used by Bird et al. (1987a) to fit the eight-mode Giesekus model.

Figure C.1: Material functions of LDPE calculated
with the seven-mode modified Leonov model de-
scribed by Bush (1989). Shear viscosity η and first
normal stress coefficient Ψ1 as a function of the shear
rate, and the elongational viscosity ηE as a function
of the elongation rate.

Figure C.2: Calculated shear viscosity η of the first
mode of the seven-mode modified Leonov model, de-
scribed by Bush (1989), as a function of the shear
rate.

For the modified Leonov model it is impossible to calculate the shear viscosity explicitly as
a function of the shear rate. However, it is possible to show that for small shear rates the shear
viscosity increases. For convenience only a one-mode modified Leonov model will be considered.
Then the derivative of the shear viscosity is given by

dη

dγ̇
= G

db12/γ̇

dγ̇
=
G

γ̇

(
λ(1 − b212)

b12dφ/db12 + φ+ 2λγ̇b12
− b12

γ̇

)
, (C.1)
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where the function φ defined in (A.5), its derivative with respect to b12, and the shear rate may
be written as a function of b12 only:

φ−1 = 1 +
2α

π
arctan


β


 1√

1 − b212
− 1




 ,

dφ

db12
= −φ2 2αβ

π

1

1 + β2

(
1 − 1/

√
1 − b212

)2

b12

(1 − b212)
3/2

> 0,

γ̇ =
φ

λ

b12

1 − b212

. (C.2)

To write φ as a function of b12 only the relation b11 + b22 = 2/b22 = 2/
√

1 − b212 has been used.
The relation between b12 and I1 follows easily from the first two equations in (3.48) and I3 = 1.
For small λγ̇ holds b12 ' λγ̇. The derivative of the viscosity (C.1) then equals approximately

dη

dγ̇
' λG

γ̇

(
1 − (λγ̇)2

1 + (2 − 3αβ/π) (λγ̇)2
− 1

)
, (C.3)

which is positive for αβ > π.
Figure C.2 shows the behaviour of the shear viscosity for one mode. For the first mode only,

the shear viscosity has been depicted. Before the shear viscosity becomes less than the zero-
shear-rate viscosity at about λγ̇ ' 1.0, there is a hump in the shear viscosity with a maximum
at λγ̇ ' 0.5. The maximum is about 60 % higher than the zero-shear-rate viscosity.

Numerical calculations for various values of β gave the following results for the shear viscosity
and the first normal stress coefficient. If β is decreased until αβ = 2 the shear viscosity and
the first normal stress coefficient are monotonically decreasing functions of the shear rate. If β
is decreased until αβ = 3 the shear viscosity is still a monotonically decreasing function of the
shear rate. The first normal stress coefficient, however, increased for small λγ̇. The maximum
is about 10 % larger then the value of Ψ1 at γ̇ = 0. If β is decreased until αβ = 3.15 the shear
viscosity also increases for small shear rates.

The numerical calculations of the shear viscosity show that one has to be cautious by
choosing the parameters α and β. To avoid shear thickening the restriction αβ ≤ π has to be
fulfilled. To avoid an increase of the first normal stress coefficient αβ still has to be smaller.
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