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Abstract
A combined finite element / streamline integration method is presented for nonisothermal

flows of viscoelastic fluids. The attention is focused on some characteristic problems that arise
for numerical simulation of flows with high Deborah and Péclet numbers. The two most im-
portant problems to handle are the choice of an outflow boundary condition for not completely
developed flow and the treatment of the dissipative term in the temperature equation. The
ability of the numerical method to handle high Deborah and Péclet numbers will be demon-
strated on a contraction flow of an LDPE melt with isotropic and anisotropic heat conductivity.
The influence of anisotropic heat conduction and the difference between the stress work and
mechanical dissipation will be discussed for contraction flows.

Keywords: nonisothermal viscoelastic flow; differential stress models; combined finite element /
streamline integration; outflow boundary conditions; dissipation; anisotropic heat conduction

Introduction

Almost all modern industrial processes include nonisothermal flow of polymeric materials. Although
the material functions of polymers highly depend on temperature, the attention in the area of
numerical simulation has mainly been focused on isothermal flows. And when nonisothermal effects
are taken into account, often a simplified temperature equation is assumed. For example, it is often
assumed that the heat conduction is isotropic and that the internal heat production equals the
stress work. This may be a good approximation for flows with low Deborah numbers, but for high
Deborah numbers the anisotropic heat conduction due to orientation of the polymer chains, see for
example van den Brule (1995), and the storage of mechanical energy may play a role. Because in
polymer processing one often deals with high Deborah number flows it is interesting to be able to
predict these nonisothermal effects.

Recently, Hulsen and van der Zanden (1991) developed a numerical code for steady, isothermal
flow of viscoelastic fluids that is able to handle high Deborah numbers. For an LDPE melt, they
could reach a Deborah number of 150. For nonisothermal flows at high Deborah numbers, in
combination with high Péclet numbers, some characteristic problems arise. The aim of this paper
is to describe the extension of the code of Hulsen and van der Zanden (1991) for nonisothermal
flows, to discuss the problems that arise at high Deborah and Péclet numbers, and to show how to
handle these numerically.
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First we will describe the governing equations for nonisothermal viscoelastic fluid flow. Next
we will discuss the numerical method that we use to solve these equations. Then we will apply the
numerical method to a contraction flow of an LDPE melt and we will discuss the influence of the
various terms in the temperature equation.

Governing equations

For the equations of motion and the stress constitutive equation we use well-known equations, see
for example Bird et al. (1987). We shall restrict ourselves to the steady flow. The balance of mass
then equals:

∇ · (ρv) = 0, (1)

where ρ is the density and v the fluid velocity.
The balance of linear momentum equals

ρv · ∇v + ∇p = ∇ · τ , (2)

where p is the thermodynamic pressure and τ the extra-stress tensor, which vanishes in equilibrium.
The extra-stress tensor has to be specified by a constitutive equation. We will assume that it consists
of a solvent part and a polymer part

τ = 2ηsd + τp, (3)

with ηs the Newtonian solvent viscosity that may depend on temperature, d = (L + LT )/2 the
Euler rate-of-deformation tensor with LT the velocity gradient, and τ p the polymer stress.

For the polymer stress we will assume a differential model of the type

τp = G (b − I) , (4)

v · ∇b − L · b − b · LT = − 1
λ

g(b), (5)

where G is the shear modulus, b the configuration tensor, I the unit tensor, λ the relaxation time
of the fluid, and g a nonlinear isotropic tensor function of the configuration tensor. Although not
all differential models are covered by this equation, we will restrict ourselves to it because more
extensive equations do not give rise to extra difficulties in the numerics of nonisothermal flow.
For the Giesekus model, which we will use for our computations, the isotropic tensor function
equals g(b) = (I + α(b − I)) · (b − I). For reasons of simplicity the polymer stress is assumed
to consist of only one mode. However, the stress may consist of multiple modes, i.e. the polymer
stress equals τ p =

∑K
k=1 τ k, where each model stress is described by (4) and (5) with the index

k the mode number. The relaxation time of the fluid depends exponentially on the temperature,
and can be described by λ = λrefaT , with λref the relaxation time at some reference temperature
and aT the Arrhenius or WLF shift factor, see for example Ferry (1981). The shear modulus G
depends weakly on the temperature. We will assume that G is proportional to ρT γ , with T the
absolute temperature. The temperature scaling is well-known in rubber elasticity, see for example
Treloar (1975). Due to the strong temperature dependence of the viscosity and relaxation time on
temperature, the scaling can usually be neglected for the stress in (4). However, in the temperature
equation this scaling may be important. Furthermore, for the scaling G ' ρT γ the thermodynamic
pressure only depends on density and temperature, see Wapperom and Hulsen (1997). So it is
independent of the configuration tensor b and thus also of the polymer stress τ p.

The temperature equation for viscoelastic fluids has been derived from the thermodynamics in
Wapperom (1996) and Wapperom and Hulsen (1997):

ρcp,b v · ∇T = Q+ Tβv · ∇p−∇ · φq, (6)
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where cp,b is the heat capacity at constant pressure and constant configuration tensor b and β the
thermal expansion coefficient. It can be shown that cp,b approximately equals its equilibrium value,
i.e. for b = I for which it is usually denoted by cp, see Wapperom and Hulsen (1997).

The internal heat production term Q consists of a positive irreversible part, the mechanical
dissipation Dm, and a reversible part, a contribution caused by changes in the entropy due to
orientation of the polymer chains. For the stress model (4), (5) the internal heat production term
Q equals

Q = γτ : d + (1 − γ)Dm, (7)

Dm = 2ηsd : d +
1
2λ

(
τ p · b−1

)
: g, (8)

where γ is the exponent of the temperature dependence of G ' ρT γ , as discussed above. For γ = 0
the internal heat production term Q reduces to the dissipation Dm and the fluid is called energy
elastic. For γ = 1, Q reduces to the stress work τ : d and the fluid is called entropy elastic. See
also Braun (1991). We will only consider these two cases. Other values of γ are just a linear
combination of these terms and therefore do not cause extra difficulties. The difference between
the stress work and the mechanical dissipation is usually large in developing flows at high Deborah
numbers, i.e. v · ∇b is large in Eq. (5). A more detailed discussion and the expressions for Dm for
various stress models can be found in Wapperom (1996) or Wapperom and Hulsen (1997).

The pressure term is usually not taken into account for viscoelastic fluids. It represents the effect
that the temperature of every (compressible) material increases during compression and decreases
during expansion. Due to the high viscosity of polymeric fluids it is usually not small, not even
in shear flows. Then v · ∇p is, just as the stress work, proportional to ηV 2/L with η, V and L a
characteristic viscosity, velocity and length. Typical values for Tβ of viscoelastic fluids are in the
range 0.1 < Tβ < 0.25, see van Krevelen and Hoftyzer (1976), so that the order of magnitude is
about 10 to 25% of the stress work. So even in shear flows this term cannot be neglected a priori.
Note that the trace of the polymer stress, does not contribute to the pressure term, but only to
the heat production term Q.

For the heat flux φq we will assume a Fourier type of constitutive equation:

φq = −κ(b, T ) · ∇T, (9)

where κ is the heat conduction tensor which may be anisotropic due to orientation of the polymer
chains. In simple shear and elongation flows it is observed that the thermal conductivity increases
in the direction of orientation and decreases in the direction perpendicular to the orientation, see for
example Choy et al. (1981) and Wallace et al. (1985). The physical model behind the anisotropy is
that energy can be transported more readily through the backbone of the polymer chains than from
one chain to another. The anisotropy can be described by a dependence of the heat conduction
tensor on b that is a measure for the orientation. We will assume a linear relation between the heat
conduction tensor and the configuration tensor:

κ = κeqI + κ1(b − I), (10)

with κeq the equilibrium thermal conductivity that is usually tabulated and κ1 a constant, see for
example van den Brule (1995). For high Deborah numbers the configuration tensor b is far from
unity, so that the heat conduction tensor may differ considerably from the equilibrium value, for
not too small values of κ1.

As noted above, we have p = p(ρ, T ) or equivalently ρ = ρ(p, T ), the balance of mass becomes

−β ∂ρ

∂T

∣∣∣∣
p
Ṫ + κT

∂ρ

∂p

∣∣∣∣
T

ṗ = −∇ · v, (11)

3



where κT is the isothermal compressibility. For polymers the order of magnitude of the compress-
ibility is small, 10−10 Pa < κT < 10−9 Pa, so that the ṗ term will be neglected in the balance of
mass. The order of magnitude of the thermal expansion coefficient is 10−4 K−1 < β < 10−3 K−1

for polymers. For large Ṫ , or v · ∇T for steady flow, the thermal expansion term might be impor-
tant. However, because of the high Péclet numbers for flows of polymeric fluids, v · ∇T is usually
small and we will neglect this term henceforth. Then the balance of mass (11) reduces to the
incompressibility condition

∇ · v = 0, (12)

and the only term concerning the temperature dependence of the density is the Tβv · ∇p term in
the temperature equation. Note that ∇p does not include any terms with invariants of the stress
τ , because of p = p(ρ, T ).

The numerical method

In this section we will describe the numerical method that we use to solve the system of partial
differential equations described in the previous section.

In order to use different solution methods for the elliptic part of the equations (a finite element
method for the balance equations) and the hyperbolic part (a streamline integration method for
the differential equation for the configuration tensor), we will decouple the system of equations.
We will solve these decoupled equations with the help of an iterative method. An additional
advantage over solving the whole system at once is that less memory is needed, because only two
small system matrices are required (for velocity and temperature) instead of one big system matrix
(for velocity, temperature and all the modal stresses). Particularly for multi-mode models, which
are often needed to obtain a good description of the fluid behaviour, a decoupled method is needed
to avoid excessive use of memory. On the other hand, however, for high Deborah numbers the rate
of convergence may be low due to the splitting and the iterated solution is somewhat less accurate.
Therefore a large number of relatively cheap iterations has to be performed to obtain a converged
solution. Dependent on the problem the number of iterations is between 30 and 200.

The iterative scheme
The outline of the iteration process that we use to solve the decoupled equations is as follows:

1. Start with an initial field for the velocity, the configuration tensor and the temperature.
This may be a result of a previous calculation. If there is no starting field of a previous
simulation available, a zero velocity, a zero stress (b = I), and a reasonable initial guess
for the temperature (for example the temperature of a Dirichlet boundary condition or the
reference temperature) may be taken as the initial field.

2. Perform an iteration step. An iteration step (i + 1) of the iteration process consists of the
following four substeps, which are performed after each other

• Calculate the updated velocity field, by solving a matrix-vector equation for the equa-
tions of motion (12) and (2): Av∆V i+1 = −Rv(V i,T i,Υi). The discretisation method
and the implementation in the iterative scheme will be discussed briefly further on.

• Calculate the updated temperature field, by solving a matrix-vector equation for the
temperature equation (6): AT∆T i+1 = −RT (V i+1,Pi+1,T i,Bi). The discretisation
method and the implementation in the iterative scheme will be discussed further on.

• Calculate the updated configuration tensor field, by solving an equation of the form
(5): Bi+1 = f(V i+1,T i+1,Bi) and calculate the polymer stress Υi+1. The discretisation
method and the implementation in the iterative scheme will be discussed briefly further
on.

• Calculate an approximation of the normal stress σn at the outflow boundary. This step
will be explained in more detail further on.
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V, T , B, Υ and P are vectors with the nodal point values of the discretised velocity, the
temperature, the configuration tensor, the polymer stress and the pressure.

3. Repeat step 2 until the solution has converged.

Next we will briefly describe the solution methods for the equations of motion and the stress
constitutive equation, because they are almost identical to the solution methods for isothermal
flows. Then we will focus on the numerical method for the temperature equation and the outflow
boundary conditions.

The equations of motion
The numerical method to solve the equations of motion and the stress constitutive equation is
essentially the same as the method described by Hulsen and van der Zanden (1991) for isothermal
viscoelastic flow. Therefore, we will only give a short overview of this part of the solution method.
The full details are described in Hulsen and van der Zanden (1991).

To discretise the equation of motion, we use the standard Galerkin method with the Crouzeix–
Raviart element (P+

2 − P1), i.e. seven velocity nodes and one pressure node with the pressure and
two derivatives. The pressure derivatives and the velocities in the centre point can be eliminated
on element level. The pressure in the centre point will be eliminated with the help of the penalty
method. Instead of the divergence equation (12), a slightly perturbed equation εpp + ∇ · v = 0 is
solved. In discretised form it becomes

εpDP = LV, (13)

where the penalty parameter εp is a small parameter, D the pressure mass matrix and L the
continuity matrix. For our calculations we have used εp∆p ' 10−6, where ∆p is the maximum
pressure difference in the flow. For an extensive description of the Crouzeix–Raviart element and
the penalty method, refer to Cuvelier et al. (1986). After applying the Gauss divergence theorem
to the Galerkin terms of both the divergence of the stress and gradient of the pressure and after
elimination of the pressure, a matrix-vector equation of the following form is obtained:

Nv(V) + (ηs(T )Sv + Cv)V +Q(Υ) = Fv , (14)

where Nv is a nonlinear operator due to the convective acceleration, Sv a linear operator due to
the viscous stress, Cv = ε−1

p LTD−1L the penalty matrix, Q a function of the viscoelastic stress and
Fv contains the contributions of the natural boundary conditions.

To solve the discretised equations of motion (14) we use an incremental formulation:

Aiv∆V i+1 =
(
Mv(V i) + ηit(T i)Sv + Cv

)
∆V i+1 = −Rv(V i,Υi,T i), (15)

where the Picard iteration matrix Aiv contains contributions of a linearization of the convective
terms Mv with the velocity gradient on level i + 1 and the velocity on level i, a viscous matrix
ηitSv and the penalty matrix Cv. The iteration viscosity ηit is only a relaxation parameter that
slows down the iteration process, but is necessary to obtain a convergent solution method. For
isothermal calculations ηit = η0 or ηit = 2η0, where η0 is the zero-shear-rate viscosity, is often a
good choice. For nonisothermal calculations the spatial temperature distribution may be strongly
non-homogeneous. This results in large differences of the viscosity in the flow. To take into account
this temperature effect for the iteration viscosity, a similar temperature dependence of ηit = ηit,refaT
may be taken. For very simple flows of viscoelastic fluids and for Newtonian flows, this gave
a considerable acceleration of convergence. However, for viscoelastic fluids in a 4:1 contraction
no convergence could be obtained, unless ηit,ref was increased considerably. No acceleration of
convergence could be obtained in this way. The increment of the velocities is defined by ∆Vi+1 =
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V i+1−V i. The residual of the equations of motion Rv(V i,Υi,T i) depends on the discrete velocities
V i, the stress Υi and the temperatures T i of a former iteration step:

Rv(V i,Υi,T i) =
(
Nv(V i) + ηs(T i) + ηco(T i)

)
SvV i + CvV i +Q(Υi − 2ηco(T i)D̄i) − Fv.(16)

From the vector Q with the contributions of the viscoelastic stress, an extra diffusive term, based on
the nodal point averages of the rate-of-deformation tensor D̄i, has been subtracted. An analogous
term based on the non-averaged velocity gradients has been added to the contribution of the solvent.
The extra viscosity ηco is necessary to avoid almost zero effective viscosities, see Hulsen and van
der Zanden (1991). For isothermal calculations ηco = η0 − ηs is often a good choice. As for the
iteration viscosity a temperature dependent ηco only gave an acceleration of convergence in simple
flows.

For detecting convergence both the increment and the residual have to be small:

maxj |∆V i+1
j |

maxj |V i+1
j |

≤ εv,inc,
||Rv(V i,Υi,T i)||f
||Rv(V i,Υi,T i)||t

≤ εv,res,

where the maximum norm |.| has been taken over all nodal points j. The norm || · ||f denotes
the Euclidean norm over the free degrees of freedom, without the essential boundary conditions.
The norm || · ||t denotes the Euclidean norm over the total degrees of freedom, including the
essential boundary conditions. εv,inc and εv,res are small parameters. In all our calculations we take
εv,inc = εv,res = O

(
10−3

)
.

The stress constitutive equation
A stress differential model can be written as an ordinary differential equation for the configuration
tensor, by applying the method of characteristics. For a steady flow the characteristics are equal
to the streamlines. Equation (5) can then be written as

db

ds

ds

dt
= G(v,LT , b, T ), (17)

where s is a streamline parameter and G a tensor function that depends on the constitutive model.
On the whole the nonisothermal streamline integration method is similar to the isothermal stream-
line integration method described by Hulsen and van der Zanden (1991). It only differs in the
following aspects. Due to the (strong) temperature dependence of the time constant λ, the tensor
function G in (17) is a function of temperature. Therefore the temperature along the streamline has
to be known. These temperatures are obtained by quadratic interpolation of the nodal point values
of the element in which the part of the streamline is. Then the stepsize depends on the tempera-
ture as well, because it is based on the stability region of the linearised form of (17). Furthermore,
the maximum travel time (magnitude of the particle trajectory) and the maximum integration
length have been limited by 3λrefaT , evaluated at the end point of the streamline, instead of the
3λref for the isothermal calculations. This avoids too long and too short maximum travel times
and integration lengths in case of large temperature differences in the flow. Finally, after solving
the differential equation for the configuration tensor, the temperature is needed to calculate the
polymer stress (4), because the modulus G may depend on temperature.

The temperature equation
One of the main aspects in the temperature equation is the dominance of the convective term for
most flows, due to the high value of ρcp,b/κ = O(107) m−2 · s, for flows of polymeric fluids. To
handle the dominance of the convection, the streamline upwind Petrov–Galerkin (SUPG) method
has been used, see for an extensive description Brooks and Hughes (1982) or Hughes and Brooks
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(1982). For this method all terms are multiplied by a discontinuous test function in the direction of
the flow ψu = τv ·∇ψ, integrated over all element interiors and added to the Galerkin formulation.
The upwind function τ determines the amount of upwind and ψ is the test function. Then an
equation of the following form results:

∫
Ω

(ρcp,b v · ∇T −Q)ψ + (κ · ∇T + Tβpv) · ∇ψdΩ +

N∑
e=1

∫
Ωe

(ρcp,b v · ∇T −∇ · (κ · ∇T ) −Q− Tβv · ∇p)ψudΩe =

∫
Γ

(n · κ · ∇T + Tβpn · v)ψdΓ, ∀ψ ∈ Ψ, ∀ψu ∈ Ψu, (18)

where Ω is the integration area with boundary Γ, Ωe the interior of an element and N the number of
elements. The Gauss divergence theorem has been applied to the Galerkin terms of both the second
derivative of the temperature and the pressure term. The integrands of the boundary integrals have
to be prescribed along boundaries with natural boundary conditions.

Next we will focus on the numerical implementation of the terms that are usually not taken
into account in numerical simulations of polymeric fluids: the anisotropy of the heat conduction
tensor, the dissipative term, and the pressure term.

The heat conduction term
The heat flux has three contributions in (18), two from the Galerkin test functions and one from the
SUPG test functions. To the latter term the Gauss divergence theorem can not be applied, because
the upwind test function ψu depends on the gradient of the test function ψ, which is a piecewise
polynomial, and is therefore discontinuous across the element boundaries. The implementation of
the anisotropy is straightforward and does not give any serious problems.

Calculation of the mechanical dissipation
For γ 6= 1 the internal heat production term Q is not equal to the stress work, and the mechanical
dissipation has to be calculated. This may lead to serious problems. For many stress models the
expression for the mechanical dissipation, (8), contains a term with tr b−1 = I2/I3. Theoretically
this term should not give any problems, because the configuration tensor is positive definite. How-
ever, due to numerical approximation errors the positive definiteness may be lost. Particularly if
I3 becomes close to zero this may lead to very large numerical errors or even arithmetic overflows.
The causes and the ways to solve these problems will be discussed next.

A first cause of the indefiniteness of a configuration tensor is that due to the (quadratic)
interpolation of a (positive definite) configuration tensor from the nodal points to the integration
points the positive definiteness may be lost. Particularly, large gradients in an element may cause
indefinite configuration tensors in the integration points. This occurs for example at the start-up
from a zero-velocity initial field with fully developed boundary conditions at the inflow. These large
errors can be avoided when the mechanical dissipation is first calculated in the nodal points and
then interpolated to the integration points. However, this procedure reduces the accuracy of the
calculation of the finite element integrals and will therefore be restricted to the integration points
where b is indefinite.

A second cause is that during the streamline integration the configuration tensor in some nodal
point has become indefinite due to numerical approximation errors. This occurs especially in
regions where large gradients are present, for example near sharp corners. To avoid nonlinear
instabilities in the streamline integration, the configuration tensor is then corrected with a 2D
isotropic term to a semi-positive definite tensor, as described in Hulsen and van der Zanden (1991)
and sketched in Fig. 1. However, a vanishing determinant is rather disastrous for the inverse of the
configuration tensor and some other correction method should be applied. Therefore we use the
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Figure 1: Correction of the configuration tensor in 2D. b1 and b2 are the principal values of b. The solution of the
model lies in the dashed area, which is bounded by two lines with constant I3. The solid arrow is the projection on
the first quadrant used by Hulsen and van der Zanden (1991). The dashed arrow is a projection on the lower bound
Imin
3 .

results of Wapperom and Hulsen (1995), who have shown that for most of the well-known stress
models it is possible to find a positive lower bound for the determinant Imin

3 . Then we correct the
configuration tensor, with a 2D isotropic term, to a positive definite tensor with determinant I3,min.
For most of the models the lower bound is Imin

3 = 1, which corresponds to the value in equilibrium.
For the 2D Giesekus model, however, the lower bound depends on the parameter α of that model,
see Hulsen (1988). For the 3D Giesekus model and the FENE-P model it is not possible to find
such a lower bound and one has to proceed differently. For these models we then take the stress
work instead of the mechanical dissipation of the viscoelastic model Dp

m, or if a multiple mode
model is used we take the stress work of the mode instead of the dissipation of the mode.

A very small positive value of the determinant may also cause large numerical errors in the me-
chanical dissipation. Therefore the correction has to be performed for small positive determinants
as well.

Calculation of the pressure
The pressure is piecewise linear per element. It is discontinuous over the element boundaries and
therefore integrated by parts. In the equations of motion the pressure gradient in the centre point
of an element has been eliminated with the help of the centre point velocities of that element.
It can easily be recomputed on element level with the nodal point velocities, see Cuvelier et al.
(1986). The pressure in the centre point has been eliminated on element level with the help of
the penalty method. It can be recomputed with the inverse of the operation used to eliminate the
pressure in the equations of motion (13). The pressures in the integration points of an element
are then obtained from a linear interpolation of the pressure and its derivatives in the centre point
of that element. The boundary integral with the pressure only contributes to the temperature
equation at an inflow or outflow boundary, where natural boundary conditions are imposed. Only
for viscoelastic models with a vanishing second normal stress difference the pressure is constant in
fully developed shear flows. Otherwise the boundary integral has to be evaluated. We will discuss
its implementation in more detail in the section about outflow boundary conditions.

Discretisation method
Substitution of the finite element approximation in the temperature equation (18) results in a
matrix-vector equation of the form

NT (V,T ) + ST (B,T )T = FT (V,T ,B,P), (19)

withNT a nonlinear operator due to the convective term and ST an operator due to heat conduction.
ST may depend on the configuration tensor and linearly on the temperature, via the heat conduction
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tensor. The right-hand-side vector FT consists of contributions of the natural boundary conditions
and the internal heat production Q.

To solve the discretised temperature equation (19) an incremental formulation has been used:
(
κitS

it
T + ST (Bi,T i) +MT (V i+1,T i)

)
∆T i+1 = −RT (V i+1,Bi,T i,Pi+1), (20)

where all of the matrices and the right-hand-side vector contain contributions of the upwind scheme.
The Picard iteration matrix consists of the convective matrix MT , the diffusive matrix ST and
an extra diffusive matrix κitS

it
T . The iteration diffusivity κit slows down the iteration process,

but is sometimes necessary to obtain a convergent solution method. A constant and isotropic
iteration diffusivity κit = κeq is often sufficient. The increment of the temperature is defined by
∆T i+1 = T i+1 − T i and the residual RT (V i+1,Bi,T i,Pi+1) of the temperature equation equals

RT (V i+1,Bi,T i,Pi+1) = ST (Bi,T i)T i +NT (V i+1,T i) − FT (V i+1,Bi,T i,Pi+1). (21)

For detecting convergence both the increment and the residual have to be small:

maxj |∆T i+1
j |

maxj |T i+1
j |

≤ εT ,inc,
||RT (V i+1,Bi,T i,Pi+1)||f
||RT (V i+1,Bi,T i,Pi+1)||t

≤ εT ,res,

where the maximum norm |.| has been taken over all nodal points j. The norms || · ||f and || · ||t
again denote the Euclidean norm over the free and total degrees of freedom. εT ,inc and εT ,res are
small parameters. In all our calculations we take εT,inc = εT,res = O

(
10−3

)
.

Outflow boundary conditions.

In principle it is possible to impose the Dirichlet boundary conditions of a fully developed flow at the
outflow of a nonisothermal viscoelastic shear flow, as is usually done for isothermal calculations.
However, if the Dirichlet boundary conditions at the outflow do not match with the flow, large
wiggles may arise near the outflow. For nonisothermal flows with high Péclet numbers, very long exit
lengths would be required, before the flow is fully developed. For example solving the temperature
equation for a viscous fluid flowing in a tube with radius R and the temperature jumping at the
wall of the inflow, the exit length L has to fulfil L/R ≥ 0.68Pe to avoid an oscillatory numerical
solution, see Cuvelier et al. (1986), p. 56.

Due to the high values of the density and heat capacity and the small thermal conductivity
(ρcp,b/κ = O(107) m−2 · s) for polymeric fluids, Péclet numbers between O(103) and O(104) are not
unusual. To avoid the wiggles also exit lengths between O(103R) and O(104R) would be necessary.
For a viscoelastic fluid the situation may even become worse due to the decrease of the thermal
conductivity in the radial direction due to the anisotropy of the heat conduction tensor. The large
exit lengths can (possibly) be avoided with a severe mesh refinement near the outflow boundary.
Both possibilities, however, give rise to the use of more unknowns and consequently a (strong)
increase of computation times and the requirement of a large memory capacity.

To avoid wiggles due to imposing at the outflow Dirichlet boundary conditions that do not fit
to the flow, the standard approach for viscous models is to impose natural boundary conditions
that correspond to the fully developed flow instead. Natural boundary conditions are not explicitly
satisfied by the solution, but are satisfied in a weak sense, so there is more freedom to adapt to
a boundary condition that does not correspond exactly to the flow in the neighbourhood of the
boundary. Because there is a strong coupling between the temperature equation and the equations
of motion and stress constitutive equation the velocity and stresses are far from fully developed
as well. Therefore natural boundary conditions have to be imposed for both the the equations of
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motion and the temperature equation. For the equations of motion of viscous fluids a constant
normal stress (σn = n · σ · n = −p0, the ambient pressure) and a vanishing tangential velocity are
the fully developed flow natural boundary condition. For the temperature equation a vanishing
normal heat flux φq,n = n·φq = 0, which equals n·∇T = 0, is the fully developed natural boundary
condition.

For viscoelastic fluids, however, the fully developed natural boundary conditions are not as
straightforward as for viscous fluids. A constant normal stress σn along the outflow boundary
does not correspond to fully developed flow, because viscoelastic fluids have normal stresses. For
these fluids σn = −p + τp,n where τp,n = n · τp · n is a function of the shear rate and therefore
varies along the outflow boundary. For viscoelastic fluids with a non-zero second normal stress
difference the pressure varies along the outflow boundary as well. For high Deborah numbers, the
difference between the axis of symmetry (zero normal polymer stress) and the wall (maximum) is
large, so that a constant σn will lead to large wiggles or convergence problems. Thus we need an
approximation of the normal stress profile σn along the outflow boundary.

Because the velocity and particularly the stress profiles may strongly depend on temperature,
which will at the outflow boundary be far from its fully developed profile, the real fully developed
profiles for both quantities do not give a reasonable approximation if the temperature is not fully
developed. In order to impose a boundary condition for the equations of motion that fits to the
flow, the basic idea is that in an exit section the velocity and stress develop slowly because of the
slowly developing temperature (high Péclet numbers). This means that the flow is approximately
fully developed at the local temperature distribution in radial direction. For this, we solve for
each iteration a 1D fully developed flow problem with the radial temperature distribution the FEM
temperature T i+1 at the outflow, i.e. we solve the shear rate γ̇ from:

τrz = −µr +
d

r
, τlm = τlm(γ̇,T i+1), l,m = r, z,

p = −2µz + τrr −
∫ R

r

τrr(s)
s

ds+ p0, γ̇ =
dw

dr
, (22)

where µ and d are constants which have to be determined from the boundary conditions at the end
points of the outflow boundary and p0 is an integration constant, which remains undetermined for
incompressible flows. Note that the constitutive equation for the stress has reduced to a nonlinear
algebraic equation, which is easy to solve. The obtained σn is then used for the boundary integral
for the equations of motion. This method only requires the solution of a 1D nonlinear problem
along the outflow boundary, so that the related CPU time is negligible compared to the FEM and
streamline integration parts. Furthermore it does not influence convergence rate in a negative way
and it fits perfectly in the easy treatment of boundary integrals for finite element methods.

For a viscoelastic fluid with anisotropic heat conduction a vanishing normal heat flux φq,n = 0
does not exactly correspond to the fully developed natural boundary condition. For convenience it
will be assumed now that the normal direction corresponds to the z-direction and the tangential
direction to the r-direction. For a fully developed flow, T = T (r) and thus ∂T/∂z = 0, the rz-
component of the heat conduction tensor then gives a contribution to the heat flux in the normal
direction: φq,n = κrz∂T/∂r. For isotropic heat conduction this term vanishes. For anisotropic heat
conduction an approximation of this term on the outflow boundary is needed. However, preliminary
calculations showed that this is a small term and φq,n = 0 is sufficient.

If the cooling due to thermal expansion is taken into account there is also a contribution from the
boundary integral, resulting from the integration by parts of the pressure term, in the temperature
equation. Then the integrand Tβpn ·v has to be evaluated at the outflow boundary. We obtain the
pressure in the same way as for the equations of motion, i.e. from equation (22). For the normal
velocity and the temperature we take the FEM approximations (at the current iteration step) at
the outflow boundary.
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Numerical calculations

In this section we will present the results of numerical simulations of a contraction flow for a
polyethylene melt (melt I of the IUPAC workshop). With the isothermal code, good correspondence
with experimental results for LDPE has been obtained in Hulsen and van der Zanden (1991). Our
main goal is to show that the numerical method described in the previous section is able to handle
flows with high Deborah and Péclet numbers.

Choice of the test problem
Except the temperature equation itself and a good numerical method to solve it, a number of other
things are important for the numerical simulation of nonisothermal viscoelastic flow. We will briefly
discuss this below and we will indicate the consequences of it on the choice of our test problem.

• The temperature boundary conditions. In general the internal heat production term Q is large
in a small boundary layer near the wall. Because near the wall the convection is small, it
then depends on the boundary conditions whether the influence on the temperature is large.
Imposing a fixed temperature at the wall than minimizes the temperature increase. Therefore
a severe cooling will be needed in the experimental setup. Of course, the fixed temperature
at the wall also minimizes the influence of the dissipation or stress work on the temperature.

• The choice of the polymeric fluid. Polymeric fluids show much difference in their thermal
behaviour. The anisotropy may differ considerably for different polymers. Experimental
results show a reduction of 40% for the thermal conductivity perpendicular to the deformation
for polyethylene, while for Plexiglas PMMA the reduction is only about 2%, see Choy et al.
(1981). The temperature dependency of the viscosity and relaxation times differs considerably
for various polymers. A strong dependence (WLF shift factor) has much more influence on
the velocity and stresses than a moderate dependence (Arrhenius shift factor). The value of
the thermal expansion coefficient may differ considerably so that the influence of this term
also depends on the polymeric fluid used.

• Lack of experimental data. Particularly two properties must be mentioned: the anisotropy
of the heat conduction and the temperature dependence of the shear modulus given by the
exponent γ which determines the internal heat production term Q. For many polymers
nothing is known about these properties. If something is known about the anisotropy, only a
few data points are given, so that a good fit with a multi-mode model (κ1,k different for all
modes and eventually dependent on invariants of bk) does not make much sense. Furthermore,
a lot of the measurements are below the melting point and the properties are only measured
until a limited elongation ratio, say about ε = 5. What these properties are exactly for high
deformation rates in the fluid state is not completely clear yet. For example: is there any
difference between the values of γ and κ1 for the different modes or are they all the same.
It might be well possible that the the anisotropy is more related to the modes with high
relaxation times.

• Influence of the viscoelastic model. Various viscoelastic models may predict different results.
For an anisotropic heat conduction model with constant coefficients for example, a decrease
of the thermal conductivity perpendicular to a shear flow can only be predicted for models
with a non-zero second normal stress difference. Of course also the dissipation, stress work
and the difference between them depend on the viscoelastic model used. A good model for
the viscoelastic stress is therefore indispensable in nonisothermal simulations.

• Influence of the nondimensional numbers. Obviously, the Deborah number is very important
for the difference between the dissipation and the stress work and the anisotropy. For low
Deborah numbers the behaviour of the fluid is still dominated by viscous responses (b ' I)
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and nothing significantly happens for these terms. The Péclet number plays an important
role on the actual effect on temperature of the various terms in the temperature equation.
For very high Péclet numbers there is just not enough time to influence the temperature,
even if these terms are large.

• Influence of the geometry. In long tubes for example the temperature has more time to
develop than in a geometry with a small axial distance. Another example is the presence of
inflow and outflow boundaries. Then the temperature is just convected through the outflow
boundary. If such boundaries are not present, like in journal bearing, the influence on the
temperature solution of the heat production terms (and also the difference between the stress
work and dissipation) and the thermal diffusion will be much larger.

Because the stress behaviour is also very important in the temperature equation, we have chosen
a polymer that is relatively well characterised, and for which a good eight-mode Giesekus model
exists: the LDPE melt I of the IUPAC workshop. Only for γ there is no experimental data available.
Therefore we have taken γ = 0 for which Q equals the mechanical dissipation and γ = 1 for which
Q equals the stress work. For the anisotropy model, we have just taken equal distribution for every
mode in the multi mode model. A disadvantage (for a strong influence on stresses) of this fluid is
that the temperature dependence of the viscosity and relaxation times is only moderate.

For the geometry, we have chosen for the contraction flow, because Hulsen and van der Zanden
(1991) obtained results for the eight-mode Giesekus model that agreed well with experimental data.
A consequence of the choice of this geometry is that the Péclet number is large, so that the influence
of the various terms can be small, even if the terms themselves are large. Because not much is
known about the exact temperature boundary condition and because it may strongly influence the
temperature near the wall, we have chosen for a prescribed temperature.

The numerical results will therefore contain as much physical input as possible. However, the
influence of some terms in the temperature equation may not be that large for this problem. For
other situations, as explained above, these may be important.

Fluid parameters
For our numerical simulations we will use an LDPE melt that can be described by an eight-mode
Giesekus model with ηs equal to zero, see Bird et al. (1987). In Table 1 we give the data for this
model. The temperature dependence of the relaxation times can be described by an Arrhenius shift
factor 10log

(
λk

λk,ref

)
= 10log aT = C

(
1
T − 1

Tref

)
. We have summarised the shift constants and the

other parameters that are needed for a nonisothermal flow in Table 2. The zero-shear-rate viscosity
at the reference temperature of Tref = 423 K is η0,ref = 5.105 · 104 Pa·s. The mean relaxation
time at the reference temperature is λ0,ref =

∑K
k=1 λk,refηk,ref/η0,ref = 58.75 s. We will assume a

constant heat capacity cp,b, a thermal conductivity independent of temperature, and a constant
density, except for the term Tβv · ∇p in the temperature equation. Furthermore we have taken
γ = 0. However, due to the dominance of convection in the flows we will discuss, a choice of γ = 1
would hardly change the results.

Above the melting temperature no detailed measurements of the anisotropy of the heat con-
duction tensor for LDPE are available in the literature. Measurements of Wallace et al. (1985)
at Tref = 433 K showed that for an HDPE melt κ⊥, the thermal conductivity perpendicular to
the flow, decreases asymptotically until about 40% of the equilibrium thermal conductivity. Mea-
surements of Choy et al. (1978) below the melting temperature Tm showed that the perpendicular
thermal conductivity of an HDPE melt for a stretching ratio of ε = 6, is about 30−40% of the
thermal conductivity in equilibrium. For an LDPE melt the decrease of the κ⊥ is of the same order.
Because all these data show a considerable decrease of the perpendicular thermal conductivity for
polyethylene melts, we have also taken into account a fairly large anisotropy, see Table 3. The
minimum perpendicular thermal conductivity is then κ⊥,min = κ0 = 0.28 · κeq, because bk,⊥ → 0
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Table 1: Viscoelastic properties of LDPE at T = 423 K.
Successively the mode number, the modal viscosity, the
modal relaxation time and the non-dimensional parame-
ter αk are given. The data are from Bird et al. (1987).

k ηk(Pa·s) λk(s) αk
1 1.00 · 103 103 0.03
2 1.80 · 104 102 0.05
3 1.89 · 104 101 0.2
4 9.80 · 103 100 0.5
5 2.67 · 103 10−1 0.4
6 5.86 · 102 10−2 0.3
7 9.48 · 101 10−3 0.2
8 1.29 · 101 10−4 0.1

Table 2: Thermal properties of LDPE at T = 423 K.
Successively the density, the linear thermal expansion co-
efficient, the heat capacity, the thermal conductivity in
equilibrium and the shift constant for the Arrhenius shift
factor are given. The data have been obtained from Bird
et al. (1987).

ρref 7.80 · 102 kg·m−3

β 7.02 · 10−4 K−1

cp,b 2.54 · 103 J·kg−1 ·K−1

κeq 2.41 · 10−1 W·m−1 ·K−1

Tref 4.23 · 102 K
C 1.95 · 103 K

Table 3: Heat conduction constants of LDPE in
(W·m−1 ·K−1) for all modes k.

κ0 8.92 · 10−2

κ1,k 2.17 · 10−2

for large λkγ̇ and λk ε̇. Because the modes with a small relaxation time almost do not contribute
to the anisotropy this value will not be reached. The lowest value in the numerical simulations is
about κ⊥,min = 0.7 · κeq, which shows that only the first three modes contribute to the decrease of
the perpendicular heat conductivity.

For our flow example we will use two non-dimensional numbers. The first is the Deborah number
defined by

De =
λ0V

L
, (23)

where λ0 is a mean relaxation time at a reference temperature. The second is the Péclet number
defined by

Pe =
ρrefcp,bV L

κeq
. (24)

Due to the high viscosity of polymeric fluids, the Reynolds number does not play an important
role. In the flow geometries we will discuss we have Re ' 10−7.

Flow through a contraction
The isothermal flow through an axisymmetrical contraction is one of the benchmarks for viscoelastic
computations. This flow consists of a fully developed flow at the upstream boundary, a sudden
contraction and a fully developed flow at the downstream boundary. We will take the flow through
a 4:1 contraction as an example, because it is the most studied contraction flow in the literature.

The geometry of the contraction flow and the temperature boundary conditions that we have
used, are depicted in Fig. 2. The inflow length will be taken 20 R and the outflow length 60 R,
where the radius at the outflow has been taken R = 5 mm. This type of flow is dominated by
convection. Preliminary calculations showed that for a wall temperature of Tw = 463 K, a Deborah
number of De = 50, a Péclet number of Pe = 523, and the anisotropy of the heat conduction taken
into account, the maximum temperature rise at z = 0 was about 0.15 K. At the outflow boundary
the maximum temperature rise was about 0.7 K, however it was still developing and far from its
fully developed profile. Of course, these small temperature rises do not have a significant effect on
the flow. If the flow rate was increased until De = 200, no convergence could be obtained. Probably,
this problem is caused by the very high values and the wiggly behaviour of the zz-component of
the first mode of the internal deformation tensors near the contraction. If the heat conduction was
assumed to be isotropic, or if the anisotropy caused by the first mode was omitted, it was no problem
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to obtain a convergent solution method. Because it is unclear whether such very high values of
the parallel heat conduction is a model deficiency, we will take the Deborah number De = 50 in
the nonisothermal calculations, although this is probably not the maximum Deborah number for
which convergence can be obtained. In order to demonstrate the ability of our scheme to handle
large temperature differences in the flow, we imposed a temperature jump at the wall. The wall
near the inflow has been kept at a fixed temperature T1, the other part of the fixed wall has been
kept at a fixed temperature T0 ≤ T1. We will take ∆T = 10 K and ∆T = 40 K in our simulations.
All dimensionless numbers, unless explicitly stated, are based on the outflow conditions, i.e. the
outflow radius and the temperature T0 and average velocity at the outflow. For the equations of
motion we will assume that the no-slip boundary condition holds on the fixed wall. At the inflow
boundary fully developed Dirichlet boundary conditions will be prescribed for the velocity, the
stress modes and the temperature. At the outflow boundary a vanishing tangential velocity and
the fully developed Neumann boundary conditions for the normal stress and the temperature will
be imposed. See the section about the outflow boundary condition for the details. As mentioned
earlier it has been found that such a type of boundary conditions are necessary to avoid wiggles or
extreme exit lengths.

The calculations have been performed on a mesh with 5587 grid points. The part of the mesh
near the contraction has been depicted in Fig. 3. Near the sharp corner, where the gradients
are large, the mesh is relatively fine. Towards the outflow and inflow boundary we have taken a
much coarser mesh, because the gradients are much smaller there. For the problem with anisotropy,
De = 50, and a temperature jump of ∆T = 10 K and ∆T = 40 K we needed 123 and 136 iterations.
Without the anisotropy, we needed 62 and 56 iterations, respectively.

Figure 2: Flow geometry, definition of the opening angle δ and temperature boundary conditions for the 4:1 contrac-
tion. The fixed wall near the inflow (dashed line) has been kept at temperature T1. The other part of the wall (solid
line) has been cooled to T0.

Figure 3: A part of the finite element mesh, −10 ≤ z/R ≤ 3, near the sharp corner of the 4:1 contraction.

A characteristic phenomenon of contraction flows of viscoelastic fluids is that a vortex may
exist in the entry corner. Two features of this vortex will be examined. Firstly, the opening angle
δ of the vortex, defined in Fig. 2. Secondly, the vortex intensity Iψ which equals the ratio of the
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amount of fluid flowing in the vortex and in the main flow, and is defined by

Iψ =
ψsep − ψcen

ψax − ψsep
, (25)

where ψsep is the value of the stream function at the separating streamline, ψcen the value at the
centre of the vortex and ψax the value at the axis of symmetry.

To get a good understanding of the nonisothermal effects we will shortly examine the influence of
the viscoelasticity (isothermal), before we will present the results of the nonisothermal calculations.

Isothermal flow
The isothermal flow through a 4:1 and a 5.75:1 contraction for the eight-mode Giesekus model of
Table 1, has already been calculated in Hulsen and van der Zanden (1991). They have shown that
the size of the computed vortex in the edge before the contraction agrees well with experimental
results. The size of the vortex strongly depends on the flow.

Hulsen and van der Zanden (1991) argue that the growth of the vortex is a mechanism to fulfil
the balance of linear momentum in the axial direction:

1
r

∂rτrz
∂r

+
∂τzz
∂z

' 0, (26)

where the (small) term with the pressure gradient has been neglected. With a larger vortex the
build-up of the dominant term in this equation, τzz, before the contraction can be more gradually.
Equation (26) indicates that the ratio of the elongational stress and the shear stress is important
for the size of the vortex. The isothermal flow through the 4:1 contraction has been calculated for
the four Deborah numbers of Table 4. For the computations the iteration viscosity has been taken

Table 4: Vortex intensity Iψ and opening angle δ for various Deborah numbers (isothermal).

De Iψ(%) δ(deg)
3 2.9 28

15 10.0 43
50 10.9 52

200 11.1 53

ηit = 2η0 and the extra viscosity ηco = η0.
Notice that for relatively small Deborah numbers the opening angle δ is already considerable:

δ = 28deg for De = 3. For increasing Deborah number the opening angle keeps increasing till
δ = 53deg for the highest Deborah number of De = 200. However, for the two highest Deborah
numbers the differences are relatively small. The corresponding opening angles δ and the vortex
intensities Iψ for the various Deborah numbers have been given in Table 4. Similarly, the increase
of the vortex intensity is large for the low Deborah numbers. For the two highest Deborah numbers
there is hardly any difference. The strong increase for the low Deborah numbers can be explained
by examining the stresses at the contraction.

The normal stress τzz and the shear stress τrz at z = 0, have been depicted in Fig. 4. The
stresses are relative to the wall shear stress τw at the outflow for a Deborah number of De = 200.
Particularly between De = 3 and De = 50 the increase of τzz is relatively large. Only for the
lowest Deborah numbers the normal stress is almost constant over the whole region. For De = 15
a small local maximum arises near r/R ' 0.7. The local maximum is more clear for the two
highest Deborah numbers, where the maximum normal stress is about two times as large as the
normal stress at the centreline and at the wall. Also the magnitude of the shear stress decreases
more for the low Deborah numbers, although less than τzz. For all Deborah numbers τrz remains
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Figure 4: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for various Deborah numbers. The stresses are
relative to the wall shear stress for De = 200 at the outflow.

approximately linear in the core region. Only near the wall there is a sharp decrease preceded by
a small increase for the two highest Deborah numbers.

Nonisothermal flow
For the computations we used ηit = 2η0 for the iteration viscosity and ηco = η0 for the extra
viscosity, both at the temperature of the wall at the outflow. For the iteration diffusivity we
used κit = κeq. In this section we will focus on the anisotropy of the heat conduction tensor.
First, however, we will briefly discuss the difference between the dissipation and the stress work
in the flow. Although we already noted that the influence of the internal heat production terms
on the temperature is small for our test problem, we will briefly discuss the difference between the
dissipation and the stress work first.

Fig. 5 shows the difference between the dissipation and the stress work for a flow of De = 50
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Figure 5: Mechanical dissipation and stress work at various distances from the contraction. The mechanical dissipation
and the stress work have been scaled with the wall shear stress τw and the wall shear rate γ̇w at the outflow.

on lines of constant z near the contraction. Before the contraction the stress work is considerably
higher than the mechanical dissipation, particularly for z/R = −1 where it is about two times as
large. This means that a part of the mechanical energy production is stored. After the contraction
the mechanical dissipation decreases relatively slowly, because then the stored energy is released.
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Contrary to the mechanical dissipation, which has to remain positive, the stress work near the
centreline becomes negative. This is caused by the decrease of vz in the z-direction while the
dominant stress τzz is still positive. However, because of the dominance of the convection for
this problem, using either the mechanical dissipation (γ = 0) or the stress work (γ = 1) as heat
production term Q, does not result in considerable differences in the temperature. However, Fig. 5
also shows that the difference between the mechanical dissipation and the stress work is not small.
For flows with lower Péclet numbers or heat flux boundary conditions for the temperature equation
the difference is much more important.

In order to demonstrate that the code is able to handle large temperature differences in the
flow, we will impose a temperature jump at the wall. For the temperature jumps we will take
∆T = 10 K and ∆T = 40 K. To examine the influence of the anisotropy, we will distinguish
4 cases: ∆T = 10 K with isotropic heat conduction (case I), ∆T = 10 K with anisotropic heat
conduction (case II), ∆T = 40 K with isotropic heat conduction (case III) and ∆T = 40 K with
anisotropic heat conduction (case IV). The isothermal flow at De = 50 will be denoted by case 0.
The Péclet number for all calculations is Pe = 93.

For the four cases the resulting temperature distributions near the contraction have been de-
picted in Fig. 6. The results can be explained by considering the corresponding anisotropy of the
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Figure 6: Temperature isolines near the contraction, −5 ≤ z/R ≤ 6, for various temperature jumps without and with
the anisotropy of the heat conduction tensor. Case I: ∆T = 10 K without anisotropy, II: ∆T = 10 K with anisotropy,
III: ∆T = 40 K without anisotropy, IV: ∆T = 40 K with anisotropy. The ten isotherms are evenly spaced between
the maximum temperature, 403 K or 433 K, and the minimum temperature 393 K.

heat conduction tensor. The rr-, rz- and zz-components of κ for ∆T = 10 K have been depicted
in Fig. 7. In the entry corner the conduction of heat upstream is much larger when the anisotropy
has been taken into account. This is caused by the large values of κzz in the entry corner as can
be seen from the small figure in Fig. 7. Along the wall of the outflow a temperature boundary
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Figure 7: Isolines near the contraction, −5 ≤ z/R ≤ 6, for κrr, κrz and κzz. The temperature jump equals ∆T = 10 K
(case II of Table 5). The lines are evenly spaced below and above the isotropic value of the concerned quantity. The
isotropic value corresponds to line 8 for κrz and κzz and to line 10 for κrz. The minimum (line 1) and maximum
(line 17) values are: 0.68 ≤ κrr/κeq ≤ 204, −143 ≤ κrz/κeq ≤ 3.2, 0.74 ≤ κzz/κeq ≤ 791. For the figures of the
entry corner, −3 ≤ z/R ≤ 0 and 1 ≤ r/R ≤ 4, the minimum (line 1) and maximum (line 9) values are evenly spaced
between: 0.68 ≤ κrr/κeq ≤ 24, −16 ≤ κrz/κeq ≤ 3.2, 0.74 ≤ κzz/κeq ≤ 89.

layer develops. At z = 0 the boundary layer for the anisotropic cases is about two times as large as
for the isotropic cases. Because the cold front develops farther outside the vortex, the convective
transport of heat in the core flow provides a larger temperature boundary layer at z = 0. Due to
the reduced thermal conductivity in the direction perpendicular to the flow in the outflow section
(where the polymer chains are oriented in the direction of the flow), the boundary layer develops
much slower for the anisotropic cases (the minimum is just below 0.7κeq, indicating that only the
first three to four modes are active). At z/R ' 6 (the top side of the pictures in Fig. 6) the sizes of
the boundary layers are almost equal. The magnitude of the rz-component of the heat conduction
tensor is large (and negative) near the separation line of the vortex, indicating that the polymer
chains are oriented in the direction of the flow.

The results for the heat conduction tensor for the temperature difference ∆T = 40 K showed
the same type of behaviour. The main difference was that for the latter the thermal conductivity
in the zz-direction is much lower. This is due to the lower temperature in the core flow, which
causes a lower relaxation time and therefore less orientation of the polymer chains. The thermal
conductivities in the rr-direction are of comparable magnitude.

Due to the higher temperature near the centreline (still approximately equal to the temperature
of the inlet), the magnitude of the stresses is smaller compared to the isothermal flow for De = 50.
The influence on the normal stress τzz and the shear stress τrz at z = 0 has been depicted in
Fig. 8. The stresses are relative to the wall shear stress τw at the outflow for the isothermal flow of
De = 200. For comparison the stresses for the isothermal flows with De = 15 and De = 50 have also
been given. The latter corresponds to the Deborah number with λ0 evaluated at the temperature
of the outflow boundary. The first almost corresponds to the Deborah number with λ0 evaluated at
the temperature of the inflow boundary for ∆T = 40 K, De(T1) = De(463 K) = 17. Particularly,
the resulting normal stresses τzz at z = 0 are considerably smaller than for the isothermal case
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Figure 8: Normal stress τzz/|τw| and shear stress τrz/|τw| at z = 0 for various temperature jumps ∆T with and
without the anisotropy of the heat conduction tensor (see Table 5). The isothermal stresses for De = 15 and De = 50
have been depicted for comparison. The stresses are relative to the isothermal wall shear stress τw at the outflow.

at De = 50 and larger than the isothermal case at De(T1). Only at the wall all stresses for
the nonisothermal calculations are almost equal to the stresses for the isothermal calculations at
De = 50. The shear stress shows the same type of behaviour, except that the differences are
somewhat smaller.

Compared to the influence of the temperature jump, the anisotropy only has a small influence on
the stresses at the contraction, although Fig. 6 shows that the temperature at z = 0 is considerably
lower when the anisotropy of the heat conduction tensor has been taken into account. With
increasing magnitude of the temperature jump the differences increase, but only for ∆T = 40 K
the magnitude of the stresses near r/R = 0.8 are significantly larger when the anisotropy has been
taken into account.

In view of the isothermal results for the stresses in Fig. 4, one would expect that the decrease of
the stresses in the nonisothermal flow also decreases the opening angle. This is indeed the case. The
resulting opening angles δ and the vortex intensities Iψ have been given in Table 5. The opening

Table 5: Vortex intensity Iψ, opening angle δ and the Deborah number at the temperature at the inflow boundary.
For the various temperature jumps at the wall, the influence of the anisotropy of the heat conduction tensor has been
given. The Deborah number based on the outflow equals De = 50.

∆T (K) Iψ(%) δ(deg) De(T1)
0 isotherm 10.9 52 50

I 10 isotropic 10.4 50 38
II 10 anisotropic 10.9 50 38
III 40 isotropic 6.8 42 17
IV 40 anisotropic 7.9 43 17

0 isotherm 10.0 43 15

angle does not differ much from the isothermal calculations, with the Deborah number evaluated at
the temperature of the wall at the inflow. The vortex intensities, however, may become considerably
smaller. For the isothermal calculations at De = 15 the vortex intensity was Iψ = 10% and for
the nonisothermal calculations with ∆T = 40 K it was about 7-8%. The local decrease of the
temperature in the entry corner, increases the viscosity of the fluid there. If the force of the core
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flow on the vortex increases less, the temperature is close to T = T1 in almost the complete core
flow, this results in a decrease of the vortex intensity. Figure 6 shows that for the anisotropic cases
the temperature in the main flow is decreased much more, which results in a higher viscosity in the
main flow and thus a larger vortex intensity.

Conclusions

In this paper we have addressed the main problems of the simulation of nonisothermal flow of
viscoelastic fluids at high De and Pe numbers.

To handle the outflow boundary condition, a boundary condition that fits to the flow has to
be found. Therefore, an equivalent for the Neumann boundary conditions for viscous fluids is
developed, where the approximation of the normal stress at the outflow is obtained with the help
of the fully developed flow equations. Another important aspect is the numerical calculation of the
dissipation. Even if this term is not large, it may have disastrous effects in the numerical scheme
when positive definiteness of the configuration tensor is lost. Then a term with the inverse of b
may inflate the dissipative term. For a number of models this can be avoided by correcting the
configuration tensor to a positive definite tensor.

The example problem of a contraction flow for an LDPE melt shows the capability of the
numerical method at high Deborah and Péclet numbers. We found that the difference between the
mechanical dissipation and stress work can be large. Due to the high Péclet number and the choice
of Dirichlet boundary conditions, however, the influence on the temperature of the internal heat
production terms was small for our example problem. For flows where the internal heat production
is important the difference between the stress work and dissipation will be important.

Compared to the isotropic case, the anisotropic heat conduction gave a considerable increase
in the heat conduction upstream in the vortex This resulted in a larger boundary layer at the
contraction. However, due to the decrease of the thermal conductivity perpendicular to the flow
for the anisotropic case, the boundary layer then develops much slower in the outlet section.

Furthermore, we found that the parallel component of the heat conduction tensor may become
very large. Whether this is a model deficiency or a real effect needs further experimental research
at high deformation rates.
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