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Abstract

A finite element program has been used to analyze the wire-coating process of an

MDPE melt. The melt is modelled by a nonisothermal Carreau model. The emphasis is

on predicting an accurate temperature field. Therefore, it is necessary to include the heat

conduction in the metal parts. A comparison is made with the results of a simulation that

models the heat conduction in the metal head by means of a Biot boundary condition. The

influence of the wire velocity, inlet temperature and power-law index will be examined.
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1 Introduction

The coating of metal wires by extrusion is an important process for cable companies. Empir-

ical optimization of the process is often difficult, expensive and time consuming. Therefore

numerical simulations have become more popular. In recent years various papers have been

presented on the numerical simulation of the wire-coating process. Caswell & Tanner [1]

started with simulation of isothermal flow, using the finite element method. Later on non-

isothermal effects have been taken into account by [2], [3], [4], [5] and [6]. A good prediction

of the temperature is important, because the viscosity depends strongly on temperature and

because too high temperatures may cause degradation or too early cross-linking of the poly-

mer. Relatively little attention has been paid to thermal boundary conditions. In the die, the

temperature is usually controlled at some distance from the metal head-polymer interface.

This temperature is then assumed as boundary condition on that surface, see [2], [3] and [4].

However, due to the high viscous dissipation near the metal head, that boundary condition

is rather unrealistic. Therefore, in a key development on the modelling of wire coating oper-

ations Mitsoulis et al. [5] have formulated a more realistic boundary condition. They showed

that such a temperature boundary condition results in a considerable temperature rise at

the metal head-polymer interface. That boundary condition is based on the 1D problem of

steady heat conduction in radial direction through a metal head of fixed inner and outer

radius, assuming no axial heat conduction and fixed temperatures at the inner and outer

radius. The result is formulated in the form of a 1D Biot condition. While this represents a

major improvement in the temperature boundary condition over the the fixed temperature

condition, it is not a priori clear how good this one is. The metal head-polymer interface

does not have a constant radius and the temperature along that interface is not constant.

Consequently axial heat conduction in the metal head could be substantial. Furthermore, the

boundary condition can not be applied at the inner radius of the polymer channel, because

the temperature is not controlled in the interior and therefore the temperature at the inner

radius of the 1D problem is not known.

In this article we will take into account the heat conduction in the metal parts as well,

by including these in the domain of solution and solving extra finite element equations for

the temperature in the metal head and wire. We will focus on the temperature and pressure

drop and compare the results with the boundary conditions previously used.
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2 Geometry

For the coating problem the standard geometry we will use, is sketched in Fig. 1 (not real

scale). The coordinates of the various points are given in Table 1. The geometry consists of

a polymer channel, a metal head and a copper wire [7].

The copper wire is pulled with a constant speed and coated with a thin layer of hot

polymer at line IJ. At the free boundary the polymer melt is cooled by means of a water bath

from point G till H. At the first part of the free boundary, from point F to G, the polymer

is surrounded by air. Initially, the polymer melt is also cooled via the copper wire, because

the copper wire usually has a much lower temperature.

3 Governing equations

3.1 Equations for the polymer melt

The mathematical model we have used to describe the nonisothermal flow of polymeric fluids

is well-known, see for example [8] Sec. 1.2 and 4.1.

For steady and incompressible flow the balance of mass and the balance of linear momen-

tum become

∇ · vvv = 0, (1)

ρvvv · ∇vvv + ∇p = ∇ · σσσ, (2)

where vvv is the velocity, ρ the fluid density, p the pressure and σσσ the extra-stress tensor.

The extra-stress tensor σσσ has to be specified by a constitutive equation. For viscous fluids

σσσ is related to the Euler rate-of-deformation tensor ddd by

σσσ = 2ηddd, (3)

where η is the viscosity and ddd = (∇vvv + (∇vvv)T )/2. For the dependence of the viscosity on

shear rate, we will use the Carreau model:

η = η0

(
1 + 2λ2|ddd : ddd|

)n−1
2 , (4)

where η0 is the zero-shear-rate viscosity, n the power-law index and λ a time constant that

determines the length of the viscosity plateau for low shear rates. The viscosity η0 and the

time constant λ depend strongly on temperature. We describe the temperature dependence

by an Arrhenius shift factor aT :

log10

(
λ

λref

)
= log10

(
η0

η0,ref

)
= log10 aT = C

(
1
T

− 1
Tref

)
, (5)
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where the subscript ref denotes a quantity at reference temperature Tref , the absolute tem-

perature is denoted T and C a constant.

For steady incompressible flow of a viscous fluid the temperature equation becomes

ρcpvvv · ∇T = 2ηddd : ddd + ∇ · (κ∇T ), (6)

where cp is the heat capacity at constant pressure and κ the thermal conductivity.

3.2 Equations for the metal parts

The copper wire is pulled with a constant speed Vw. However, the temperature of the copper

wire is not known a priori. Although the thermal conductivity of the copper wire is much

larger than that for the polymeric fluid, it is not expected that a constant temperature

boundary condition is very accurate. Due to the large temperature difference between the

polymer and the wire, and the small diameter of the wire the temperature will certainly

change. Therefore, we solve an extra temperature equation for the copper wire

ρccp,cVw
∂T

∂z
= ∇ · (κc∇T ), (7)

where ρc is the density, cp,c the heat capacity and κc the thermal conductivity of the copper

wire. For the calculations we will assume constant physical properties.

In the given equipment the temperature is controlled at the outer boundary of the metal

head. Due to mechanical dissipation in the polymer flow, the temperature near the metal

head-polymer interfaces, the lines AF and LQ in Fig. 1, will rise. To take into account the

resulting heat conduction in the metal head, we will also solve the temperature equation in

the metal head:

∇ · (κh∇T ) = 0, (8)

where κh is the thermal conductivity of the metal head. We will assume a constant κh.

3.3 Numerical method

To solve the system of equations we have used the finite element package SEPRAN [9]. We

have used standard numerical methods, so we will describe them very briefly. For the equa-

tions of motion the Crouzeix–Raviart element has been used, in combination with the penalty

method to fulfil the balance of mass (1), see [10] p. 263. The free boundary is computed with

the help of the film method described in [11]. For the temperature the standard quadratic

element has been used. To handle the high Péclet numbers SUPG upwinding has been used,

as described in [12]. The resulting discretized system of equations has been solved by an

iterative method, using a simple successive substitution scheme.
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4 Material properties

4.1 Properties of medium density polyethylene ME 4425

The polymer used for coating is the medium density polyethylene (MDPE) melt ME 4425.

For the viscosity of ME 4425 for the small-amplitude oscillatory shear flow, data have been

made available by NKT Cables A/S. The magnitude of the complex viscosity |η∗| is known

as function of frequency in the range 6 · 10−2 s−1 < ω < 2 · 102 s−1, at three different

temperatures: T = 433 K, T = 463 K and T = 493 K. To find the viscosity as function of

the shear rate, the Cox–Merz rule has been applied (see for example [8]):

η(γ̇) = |η∗(ω)|ω=γ̇ . (9)

Fig. 2 shows the data points and the curves of the Carreau model with an Arrhenius shift

factor. The parameters used for the model are given in Table 2. The correspondence between

the Carreau model and the experimental data is good in the power-law region. For low shear

rates (frequencies) the viscosity is overpredicted by the Carreau model. Probably, this is not

very important because the shear rates are very high in coating flows. Unfortunately, no data

could be made available for ω > 2 · 102 s−1 which is more severe drawback. The more so as

we will show in Sec. 6 that a good fit of the viscosity at high shear rates is very important for

the resulting pressure drop and maximum temperature, and that for the coating flow very

high shear rates of O (104 s−1) are not unusual. The temperature dependence of the MDPE

melt is similar to LDPE, for which the same shift constants apply [8] p. 140.

Other properties that were available for ME 4425 are given in Table 2 as well. For the

thermal properties that could not be made available, we have taken the values of LDPE. For

the temperature dependence of the heat capacity we have used the linear relation

cp(T ) = cp(Tref) (1 + αc(T − Tref)) , (10)

with the values for LDPE cp(Tref) = 2.57 · 103 J · kg−1 · K−1 and αc = 1.0 · 10−3 K−1, see [8]

Table 4.4-2 and [13] Table 9.7.

The thermal conductivity is only known at T = 297.5 K. For polyethylene melts the

thermal conductivity usually decreases with increasing temperature until a certain lower

bound. Therefore, we have used the linear relation

κ(T ) = κ(Tref) (1 + ακ(T − Tref)) , (11)

for T < 400 K and a constant thermal conductivity of κ = 0.26 W · m−1 · K−1 above this

temperature. For the thermal conductivity at the reference temperature Tref = 297.5 K the
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measured value of Table 2 has been used. For the temperature dependence of the thermal

conductivity this gives ακ = −2.0 · 10−3 K−1.

The flow rate at the inflow can be calculated with the help of an overall mass balance.

To obtain a coating layer of thickness Rc = RH − RI we need a flow rate at the inlet of

Qi = πVi(R2
A − R2

Q) =
ρo

ρi
πVo(R2

H − R2
I ), (12)

where the R-subscripts refer to the points in Fig. 1 and i and o denote the inlet and outlet. The

velocity Vo equals Vw, the velocity of the wire. The difference in density at inlet conditions

of p = O(107) Pa and T = 463 K and outlet conditions of p = 105 Pa and T = 293 K is

about ρo/ρi = 1.14 for LDPE. We will also use this value for the MDPE melt and adjust Qi

to obtain Rc = 0.7 mm according to Eq. 12. Because we assume incompressible flow, this

means that the thickness of the coating layer resulting from the computations is somewhat

larger than Rc = 0.7 mm. On the other hand, we obtain more accurate (higher) velocities in

the die than we would obtain with the flow rate based on the outlet conditions and a ratio

of ρo/ρi = 1.

4.2 Other material properties

For the numerical simulation of the coating flow, the material properties of the surrounding

metal parts and fluids are needed as well. We have obtained those properties from [14].

The properties of the metal parts are given in Table 3. Because these properties are

not very sensitive to temperature changes, we will take them constant in the numerical

simulations. The head is iron based. For the thermal conductivity we will take the value of

iron at 500 K. For the copper wire we will take the properties at T = 400 K.

For the boundary conditions at the free surface, see Sec. 5, we need the properties of

water and air. The necessary properties at T = 373 K and p = 105 Pa, are summarized in

Table 4 for water and in Table 5 for air.

5 Boundary conditions

At the boundaries of the geometry sketched in Fig. 1, boundary conditions have to be specified

for the equations of motion and the temperature equation. Next, we will discuss these

boundary conditions with the emphasis on the temperature boundary conditions.

• at the inlet of the polymer: Fully developed velocity profile with given flow rate

Qi, and fixed temperature T = Tp. Unless explicitly stated, we will take Tp = 463 K.
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• at the inlet of the copper wire: Fixed temperature T = Tc. In our computations

we will take Tc = 383 K.

• at the metal head-polymer interface: Vanishing velocity vvv = 000 and continuous

temperature and normal component of the heat flux. For comparison we will also

consider the case where the heat conduction in the metal head is not included explicitly,

but modelled by the Biot boundary condition κnnn ·∇T = −h(T −T0) as used in [5]. The

parameter h is determined with the help of the analytical solution of the steady 1D heat

conduction problem in a metal tube with constant temperatures at the inner radius R1

and outer radius R2. For our coating problem T0 is the controlled temperature (equal

to the inlet temperature Tp) at the outer radius of the metal head R2 and

h =
κm

R1

1
lnR1/R2

. (13)

Because the inner radius of the outer part of the metal head is not constant it is not

clear what has to be taken for R1. For our calculations we will take R1 = 1.8 mm,

which corresponds to the radius at point F, and R1 = 13.4 mm which corresponds

to the averaged radii of point A and F. This results in h = 9.9 · 103 W · m−2 · K and

h = 3.2 · 103 W · m−2 · K respectively. The value R1 = 1.8 mm is chosen to obtain

a good boundary condition near the zone with the highest dissipation, at the metal

head before point F. At the inner boundary it is much more difficult to apply the Biot

boundary condition, because the temperature is not controlled at the inner part of

the metal head. Therefore, we will take as boundary condition T = Tp with Tp the

temperature of the polymer at the inlet, just as in [5].

• at the free surface: For the coating geometry of NKT Cables A/S, the first 0.35 m the

polymer is surrounded by air. Then the polymer is cooled in water for about 30-40 m.

The boundary conditions for the equations of motion are a vanishing normal velocity

vvv ·nnn = 0 and a vanishing normal and tangential stress. For the temperature boundary

condition we will take a Biot condition of the form

κnnn · ∇T = −hm(T − T0), (14)

where T0 is the temperature of the surroundings and hm a heat-transfer coefficient.

The transfer of heat from the polymer wire will be modelled by free convection from a

long horizontal cylinder. Except for a very small distance near point F, the diameter

is constant (if density effects are neglected) and the coated wire is approximately a
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long horizontal cylinder. The heat-transfer coefficient is given in terms of the non-

dimensional Nusselt number:

Num =
hmD

κf
, (15)

where hm is the heat-transfer coefficient for the total surface of the cylinder, D the

diameter of the cylinder and κf the thermal conductivity in the film around the cylinder.

A subscript f denotes that a quantity has to be evaluated at the film temperature, for

which usually the average of the polymer temperature and the temperature of the

surroundings is taken: Tf = (Tp + T0)/2.

The Nusselt number for free convection from long horizontal cylinders equals (see [15]

p. 413):

Num = 0.518 · (GrPr)0.25, (16)

for GrPr > 104, where the Prandtl number Pr and the Grashof number Gr are defined

by

Pr =
cp,fηf

κf
, (17)

Gr =
D3ρ2

fgβf∆T

η2
f

, (18)

where g is the acceleration due to gravity and ∆T a characteristic temperature dif-

ference, the difference between the temperature of the polymer and the surroundings

∆T = Tp − T0. If we take Tp = 463 K and T0 = 293 K we obtain for the film tem-

perature Tf = 378 K, which is just in the vapor phase at atmospheric pressure. So, it

seems likely that the water is boiling at the first part of the water cooling. Cooling by

a boiling fluid is a much more complicated problem [15]. Therefore, we will assume a

non-boiling fluid with film temperature Tf = 373 K for the properties of water. The

thermal expansion coefficient that we use is based on the densities at 372.9 and 373 K.

Using the properties of water of Table 4 and D = 2.8 · 10−3 m and ∆T = 170 K,

gives Pr = 1.6 and Gr = 3.5 · 105. From (15) and (16) we obtain for the heat-transfer

coefficient hm = 3.4 · 103 W · m−2 · K. For air we find with the help of Table 5 that

Pr = 0.69 and Gr = 1.7 · 102, so that GrPr < 104. For the heat-transfer coefficient we

obtain hm = 27 W · m−2 · K, see [15] p. 413.

• at the outer part of the metal head: In the metal head the temperature is controlled

at the outer boundary, corresponding to the line XY in Fig. 1, where we will assume

a fixed temperature T = Th. Unless explicitly stated, we will take Th = 463 K. This
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temperature will also be assumed (by lack of a better, measured, boundary condition)

at the line AX, which is in the interior of the metal head. However, it is not likely

that small variations of the temperature on this boundary have a large influence on the

polymer temperature. At the line FY where the metal head is in contact with the air,

we will assume a similar natural boundary condition as for the polymer-air interface.

For a thin vertical plate the Nusselt number equals

Num = 0.59 · (GrPr)0.25, (19)

for 104 < PrGr < 109, see [15] p. 414. The characteristic length D is the height of the

plate. Although our plate is not thin, we will use this formula by lack of a better one.

For air we find with D = 5.32 · 10−2 m: Pr = 0.69 and Gr = 1.1 · 106. This gives a

heat-transfer coefficient of hm = 11 W · m−2 · K−1.

• at the inner part of the metal head: At the line RQ which is in the interior of

the metal head we will assume (by lack of a better, measured, boundary condition)

T = Th, just as for the boundary AX of the outer part of the metal head. It is also

difficult to find a good boundary condition on the contact line with the air, because

the surrounding air is in a small closed chamber. We will assume a Biot boundary

condition for the temperature κhnnn ·∇T = −h(T −T1). It is likely that the temperature

in the chamber is determined by the temperature of the metal head, because its extent

is much larger than that of the copper wire. Therefore, we will take T1 = Th with Th the

controlled temperature in the outer part of the head. For the heat transfer coefficient

we will take h = 1 W · m−2 · K−1. It is not clear what the influence of this boundary

condition is or whether it is very important.

• at the boundary JK: In the real geometry this is a small free boundary. However,

to avoid complications with the free boundary, we will assume a fixed wall, i.e. vvv = 000.

This means that we introduce a jump in the velocity at the point J, where the axial

velocity equals Vm. Locally, this may lead to an unrealistic solution (large negative

pressures), see also [1]. However, this is only restricted to a small region next to the

point J. As temperature boundary condition we will take the same boundary condition

as for the contact line of the metal wire and the the metal head with the surrounding air

in the chamber: κnnn ·∇T = −h(T −Th) with h = 1 W · m−2 · K−1 and Th the controlled

temperature.
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• at the copper wire-polymer interface: continuous temperature and normal com-

ponent of the heat flux, and no-slip boundary condition for the velocity, i.e. a constant

tangential velocity vvv · ttt = Vw and a vanishing normal velocity vvv ·nnn = 0 at line IJ.

• at the axis of symmetry of the copper wire: vanishing normal heat flux κcnnn·∇T =

0 at line VW.

• at the surface of the copper wire within the die: As for line RK of the inner part

of the metal head, it is difficult to find a good temperature boundary condition on the

line UJ. We will assume a similar boundary condition as for the inner boundary of the

metal head: κcnnn · ∇T = −h(T − Th) with h = 1 W · m−2 · K−1 and Th the controlled

temperature. Due to the high speed and the low residence time of the wire in the

chamber, the choice of h is probably not very important.

• at the outlet of the polymer: vanishing normal stress, vanishing tangential velocity

vvv · ttt = 0, and vanishing normal heat flux κnnn · ∇T = 0, at line HI.

• at the outlet of the copper wire: vanishing normal heat flux κcnnn · ∇T = 0 at line

IW.

6 Results

In this section we present the results of a simulation including the heat conduction in the

metal head. We will compare the results with the case the heat conduction in the metal head

is modelled by a boundary condition. Furthermore, we will discuss the effect of the power-law

index n, the temperature of the polymer at the inlet and the wire velocity.

6.1 Influence of the temperature boundary condition

To investigate the influence of the heat conduction in the metal head on the temperature

near the wall, we have compared the results of a simulation including the metal head with

numerical simulations without the metal head. For the latter case we have used the boundary

condition (13) at the outer radius of the polymer channel.

Fig. 3 shows the radial temperature distributions in the polymer channel at various z-

coordinates for the case that the metal head is taken into account. Results are displayed as

function of the local radial coordinate in the channel: r∗(r, z) = [r − Ri(z)]/[Ro(z) − Ri(z)],

where Ri and Ro denote the inner and outer radius of the polymer channel, respectively.

A severe temperature rise occurs due to mechanical dissipation near the die walls. At the

inner wall this effect is much larger than at the outer wall of the polymer channel, because
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the temperature is controlled at the outer radius of the metal head. The latter results in a

cooling effect at the outer wall of the polymer channel. The temperature rise is restricted

to a thin boundary layer near the channel walls. In the centre of the polymer channel the

temperature remains unchanged due to the dominance of convection, as can be observed more

easily from Fig. 4, which displays temperature isolines in the die and polymer channel. This

allows one to discern the heat transport, perpendicular to the isolines, in the polymer and

the metal head. Fig. 5 reflects the isolines near the die exit in more detail. Particularly near

the inner wall the temperature gradients are very steep. Also note that the isolines in the

polymer intersect the die wall under a small angle and bend away almost perpendicularly in

the metal head. This is caused by the fact that the thermal conductivity of the metal head

is much larger than that of the polymer.

Fig. 6 shows the radial temperature distributions at various z-coordinates outside the

head. First, the polymer is strongly cooled at the free boundary and at the copper wire

(z = 1000 mm). For larger values of z the maximum temperature of the polymer fluid is at

the copper wire-polymer interface and for large values of z the temperature profile is almost

linear.

Figs. 7 and 8 show the radial temperature distributions at the same z-coordinates with

the heat flux boundary condition (13) at the wall with R1 = 1.8 mm and R1 = 13.4 mm

respectively. For the case with R1 = 13.4 mm the temperatures at the outer wall are too

high near the end of the die (z = −5 mm and z = 0). However, the maximum temperatures

at a small distance from the outer wall are hardly influenced. For the no-flow zone near

point D the temperature is too low. This is caused by the too strong cooling on the line DE:

although this line is almost perpendicular to the direction of the heat conduction (about the

r-direction) the same boundary condition is applied. The similar effect can be observed for

the case with R1 = 1.8 mm. For this case the temperature profile near the outer wall for

z = 0 corresponds better to Fig. 3. For other z-values, however, the temperature profiles

obtained with R1 = 13.4 mm are better. The temperature profiles outside the head resemble

closely to the ones in Fig. 6 and are therefore not shown.

Results for the maximum temperature and the position of it and the total pressure drop

are given in Table 6. For comparison the results for an adiabatic boundary condition at the

outer wall of the polymer channel are given as well. Note that the maximum temperature

for the simulation that do not include the metal head is at or near point F, while for the

simulation including the metal head it is at the inner wall. For the latter the temperature
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at point F is about 490 K as can be seen in Fig. 6. The pressure drop is large at the end of

the converging section, near point L. Nevertheless, the influence of the different temperature

profiles at that place on the pressure drop is relatively small, even for the adiabatic case,

because the temperature rise is only large in a narrow region near the wall close to points

L and F. The temperatures at the exit are not influenced by the presence of a metal head

in the computations. For all four cases the temperature at the wire-polymer interface is

Twire,ex = 346 K and at the water-polymer interface Twater,ex = 298 K. We conclude from

Table 6, that a careful simulation of the conduction in the metal head is essential for the

estimation of the maximum temperature in the process.

6.2 Influence of the power-law index

We have investigated three different power-law indices: n = 0.4, n = 0.47 and n = 0.55. The

viscosity functions are given in Fig. 9.

Results for the maximum temperature (just before point L at z = −0.29 mm, r =

1.57 mm), the temperatures at the metal wire-polymer interface and the polymer-air interface

at the exit, and the total pressure drop are given in Table 7. The influence on the temperatures

at the exit is small. However, both the maximum temperature and the pressure drop are very

sensitive to the power-law index. Due to the higher viscosity for higher n the dissipation, and

thus the temperature near the wall, and the pressure drop may increase considerably. Thus

a good fit of the viscosity at high shear rates is indispensable for a correct prediction of the

pressure drop and maximum temperature.

6.3 Influence of the inlet temperature

To investigate the influence of the inlet temperature at the polymer channel we have used

three different temperatures Tp = 463 K, Tp = 483 K and Tp = 503 K. The temperature of

the head Th has been adjusted similarly.

Results for the maximum temperature (just before point L at z = −0.29 mm, r =

1.57 mm), the temperatures at the metal wire-polymer interface and the polymer-air interface

at the exit, and the pressure drop are given in Table 8. Due to a higher inlet temperature,

the maximum temperature of course increases. However, less than the difference in the inlet

temperature, because of the lower viscosity at higher temperatures (and thus a lower viscous

dissipation). Due to the lower viscosity at higher temperatures, the pressure drop decreases

with increasing inlet temperature. The influence of the temperature on the pressure drop

is larger than for the temperature boundary conditions discussed in Sec. 6.1, because there
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only the temperature close to the walls was affected. Thus a good approximation of the

inlet temperature seems to be important, both for the pressure drop and the maximum

temperature.

6.4 Influence of the wire velocity

To investigate the influence of the wire velocity, we have have taken Vw = 10 m · s−1, Vw =

20 m · s−1 and Vw = 50 m · s−1. Simultaneously, we adjusted the flow rate, so that the

thickness of the coating layer remained equal.

Results for the maximum temperature (just before point L at z = −0.29 mm, r =

1.57 mm), and the position of it, the temperatures at the metal wire-polymer interface and

the polymer-air interface at the exit, and the total pressure drop are given in Table 9. The

higher speeds give a much larger viscous dissipation near the walls, which results in very high

maximum temperatures near point L. The increasing temperatures at the exit are caused by

the higher Péclet numbers (higher wire velocity) outside the die. Furthermore, a higher wire

velocity results in much higher pressure drops, although the viscosity strongly decreases due

to shear thinning and the higher temperatures.

7 Conclusions

The wire-coating process of the polyethylene melt ME4425 has been analyzed numerically.

For the prediction of the temperature rise due to dissipation, the temperature boundary

conditions are very important, particularly at the walls. Due to the strong viscous dissipation

near the walls and the dominance of convection in the centre of the polymer channel, the

polymeric fluid is only heated near the walls. A large part of the fluid still has about the

same temperature at the end of the die as at the inlet, so that the inlet temperature is

important as well. Near the outer radius of the polymer channel a reasonable agreement

with the temperature of simulations including the heat conduction in the metal head can be

obtained with the help of a Biot boundary condition, at least if the outer boundary of the

polymer channel does not contain sections that are about parallel to the radial direction. For

the inner wall such a boundary is not possible, because the temperature is not controlled at

the inner radius of the metal head. The temperature at the inner wall can be much larger

than at the outer wall, so that it is important to take into account the heat conduction in

the inner part of the metal head for a good prediction of the maximum temperature.

Although the various boundary conditions influence the (maximum) temperature consid-

erably, the influence on the pressure drop is rather small. To obtain accurate predictions of
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the pressure drop, and of course also for the maximum temperature, a good fit of the viscosity

and the inlet temperature are very important. Increasing the production speed seems to be

limited by the maximum temperature in the polymeric fluid. At high wire speeds viscous dis-

sipation results in a very large temperature near the inner wall, well above the temperatures

at which the polymer starts to cross-link and degrade.
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Table 1: Radial and axial coordinates (r, z) in mm of points A-Y in Fig. 1.

point r z

A 25.00 −61.0

B 25.00 −45.0

C 17.75 −31.0

D 17.75 −29.0

E 16.75 −29.0

F 1.80 5.0

G - 35.0

H - 4.00 · 104

I 0.70 4.00 · 104

J 0.70 0.0

K 1.00 0.0

L 1.45 0.0

M 15.37 −35.5

point r z

N 15.37 −33.0

O 16.37 −33.0

P 23.00 −45.0

Q 23.00 −61.0

R 8.00 −61.0

S 8.00 −35.0

T 1.00 −10.0

U 0.70 −61.0

V 0 −61.0

W 0 4.00

X 55.00 −61.0

Y 55.00 5.0



Table 2: Properties of ME 4425. Density at T = 423 K, thermal conductivity at T = 297.5 K,

and viscosity constants used to fit shear viscosity in Fig. 2 with Carreau model and Arrhenius

shift factor.

ρ 7.85 · 102 kg·m−3

κ 3.3 · 10−1 W·m−1 ·K−1

η0 5.014 · 104 Pa·s
n 0.47 −
λ 1.25 · 101 s

Tref 4.23 · 102 K

C 1.95 · 103 K



Table 3: Properties of iron (metal head) at 500 K and copper (wire) at 400 K. Data from

[14], p. 3-96, 3-130 and 3-261.

κh 0.61 · 102 W·m−1 ·K−1

ρc 8.89 · 103 kg·m−3

cp,c 3.97 · 102 J·kg−1 ·K−1

κc 3.92 · 102 W·m−1 ·K−1



Table 4: Properties of water at T = 373 K and p = 105 Pa. Data from [14], p. 3-70, 3-243

and 3-252.

ρw 9.58 · 102 kg·m−3

βw 6.89 · 10−4 K−1

cp,w 4.22 · 103 J·kg−1 ·K−1

κw 0.68 W·m−1 ·K−1

ηw 0.26 · 10−3 Pa · s



Table 5: Properties of air at T = 378 K and p = 105 Pa. Data from [14], p. 3-163 and 3-250.

ρa 9.4 · 10−1 kg·m−3

βa 2.5 · 10−3 K−1

cp,a 1.01 · 103 J·kg−1 ·K−1

κa 3.2 · 10−2 W·m−1 ·K−1

ηa 2.2 · 10−5 Pa · s



Table 6: Maximum temperature and coordinates, temperature at wire-polymer interface at

exit, temperature at water-polymer interface at exit, and pressure drop for various tempera-

ture boundary conditions.

Thermal boundary condition z(mm) r(mm) Tmax(K) ∆p(105 Pa)

Conduction in metal head included −0.29 1.57 504 117.5

Adiabatic boundary condition 4.79 1.89 523 114.6

Biot boundary condition (R1 = 1.8 mm) 5.00 1.80 490 120.3

Biot boundary condition (R1 = 13.4 mm) 5.00 1.80 496 119.3



Table 7: Maximum temperature and coordinates, temperature at wire-polymer interface at

exit, and temperature at water-polymer interface at exit for various power-law indices.

n Tmax(K) Twire,ex(K) Twater,ex(K) ∆p(105 Pa)

0.40 487 345 298 69.6

0.47 504 346 298 117.5

0.55 536 348 298 207.0



Table 8: Maximum temperature and coordinates, temperature at wire-polymer interface at

exit, temperature at water-polymer interface at exit, and total pressure drop for various

temperatures at inlet.

Tinlet(K) Tmax(K) Twire,ex(K) Twater,ex(K) ∆p(105 Pa)

463 504 346 298 117.5

483 518 351 299 98.9

503 532 355 299 84.1



Table 9: Maximum temperature, temperature at wire-polymer interface at exit, temperature

at water-polymer interface at exit, and total pressure drop for various wire velocities.

Vw (m · s−1) Tmax(K) Twire,ex(K) Twater,ex(K) ∆p(105 Pa)

10 504 346 298 117.5

20 537 384 303 155.6

50 618 445 312 222.2



Figure 1: Sketch of flow geometry for coating of a metal wire.

Figure 2: Shear viscosity as function of shear rate for various temperatures, and Carreau

model with parameters from Table 2. 3: 433 K, +: 463 K, 2: 493 K, dotted line: Carreau

model at 433 K, ·− line: Carreau model at 463 K, · − line: Carreau model at 493 K.

Figure 3: Temperature distribution in polymer channel at various z-coordinates as function

of the local radial coordinate r∗; heat conduction in metal head taken into account.

Figure 4: Temperature distribution in the die; 0.7 < r < 28 mm, −61 < z < 5 mm, eight

contour lines distributed linearly between T = 462 and 404 K.

Figure 5: Temperature distribution near the die exit; 0.7 < r < 5 mm, −3 < z < 5 mm,

eight contour lines distributed linearly between T = 462 and 404 K.

Figure 6: Temperature distribution outside polymer channel at various z-coordinates as

function of the local radial coordinate r∗; heat conduction in metal head taken into account.

Figure 7: Temperature distribution in polymer channel at various z-coordinates as function

of the local radial coordinate r∗; heat conduction in metal head modelled by Eq. (13) with

R1 = 1.8 mm.

Figure 8: Temperature distribution in polymer channel at various z-coordinates as function

of the local radial coordinate r∗; heat conduction in metal head modelled by Eq. (13) with

R1 = 13.4 mm.

Figure 9: Viscosity functions for various values of power-law index n in Carreau model.

n = 0.4: dashed line with small dashes, n = 0.47: dashed line with large dashes, n = 0.55:

solid line.
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