
A new transpose split method for

three-dimensional FFTs: performance on an

Origin2000 and Alphaserver cluster

P. Wapperom 1 A.N. Beris ∗
Department of Chemical Engineering,

University of Delaware,
Newark, DE 19716, USA

M.A. Straka

National Center for Supercomputing Applications
4131 Beckman Institute
405 N. Mathews Ave.

Urbana, IL 61801

Abstract

We discuss a new transpose split method for parallel computations of three-dimensional
Fourier transforms. By splitting the data along two dimensions over the processors
it allows for a higher degree of parallelization than the original transpose split
method. The traditional transpose split method involves one alltoall communica-
tion. The new method involves two communication steps in which each processor
performs an ”alltoall” communication in groups.

The performance of the new method has been evaluated using MPI on an Ori-
gin2000 and an Alphaserver cluster and compared with the traditional transpose
split method. We found that the extra communication step introduced in the new
method only slightly increases communication time. However, an efficient paral-
lelization depends critically on how fast the communications can be performed.

Key words: Parallel 3D Fourier/Chebyshev transform; Fast Fourier transform;
MPI; pseudospectral direct numerical simulation; transpose split method

∗ Corresponding author.
Email address: beris@che.udel.edu (A.N. Beris).

1 Current address: Department of Mathematics, Virginia Tech, Blacksburg, VA
24061, USA

Preprint submitted to Elsevier Science 6 July 2005

1 Introduction

An essential element of three-dimensional pseudospectral fluid dynamics calcu-
lations such as encountered in direct numerical simulations (DNS) of turbulent
flows [8,7] is that those are performed alternatively in physical and spectral
space. More specifically, non-linear terms in the equations are calculated at
the nodal points in the physical space using the nodal values of the variables
and their derivatives, whereas the derivatives themselves and the solution of
Poisson-type problems are obtained in spectral space from the spectral coeffi-
cients. As such the calculations involve a large amount of Fourier/Chebyshev
transforms from physical to spectral space and vice versa. Fourier transforms
can be performed efficiently using the fast Fourier transform (FFT) [3] involv-
ing O(N logN) operations. Similarly, Chebyshev transforms can be reduced
to Fourier transforms and carried out by FFTs as well. FFTs are usually the
most time-consuming part of pseusospectral calculations, since the algebraic
equations can be solved very efficiently in spectral space.

Nowadays, it is common to use parallel implementations of spectral methods to
facilitate three dimensional calculations. All components of a pseudospectral
DNS code parallelize trivially, as needing only local processor data, except the
FFTs, which need to combine eventually all data. A commonly used algorithm
to parallelize multidimensional FFTs is the transpose split method [2,5,9,1]. A
three-dimensional FFT is calculated by distributing data along one direction
over the processors, thus involving one communication. However, this limits
the number of processors that can be used to the minimum array length in
one of the dimensions. Particularly for cases involving only a small number
of grid points in one of the (neutral) directions this may severely limit the
efficiency of the algorithm.

In this paper we discuss an extension of the transpose method, which allows to
split multiple directions over the processors. We apply the method to a turbu-
lent straight-channel flow, which involves a 3D Fourier/Chebyshev transform.
Furthermore, the performance of this transform is evaluated separately and
in the full code, and compared with the traditional transpose split method on
an Origin2000 and an Alphaserver cluster.

2 Method

The turbulent channel flow we discuss here, has one non-periodic (shear) y-
direction and two periodic directions x (streamwise) and z (spanwise). The
transformation from spectral to physical space involves in sequence a Cheby-
shev transform in y, a complex-to-complex Fourier transform in z, and a

2

complex-to-real Fourier transform in x direction. We will denote the num-
ber of nodes in the x, y, and z-direction by Nx, Ny, and Nz, respectively.
The Chebyshev transform is obtained by an FFT involving Ny −1 points [10],
so that Ny − 1 should be factorizable in terms of low prime numbers for an
efficient FFT.

For the parallelization of the three-dimensional Fourier/Chebyshev transform,
we have chosen to use non-overlapping communications and computations.
Recently, Dubey and Tessera [6] reported that overlapping gave very little
benefit and that it even increases the overall execution time because of the
extra overhead. Additionally, we use alltoall type of communications which
were found to perform better than communications using separate send and
receives [6].

In [1] the parallelization of the transform was performed by the traditional
transpose split method. At the start of the transform, each processor contains
all data in the y and z direction and (Nx/2)/Nproc data of the x direction, see
Fig.1. Schematically, this method involves the following steps

Fig. 1. Data allocation for the original transpose split method in spectral space.
The kx, ky, and kz denote the mode numbers in x, y, and z direction, respectively,
and i indicates which mode numbers kx each processor contains.

(1) Each processor performs Nz × (Nx/2)/Nproc one-dimensional Chebyshev
transforms in y-direction and reorders data for z transform.

(2) Each processor performs Ny × (Nx/2)/Nproc one-dimensional complex-to-
complex FFTs in z-direction and reorders data array for communication.

(3) All processors are synchronized using mpi barrier and data communica-
tions are performed to effectively transpose the data using mpi alltoall

3

on all processors.
(4) Each processor reorders data for FFTs and performs Ny ×Nz/Nproc one-

dimensional complex-to-real FFTs in x-direction.

At the end of a three-dimensional Fourier/Chebyshev transform, every pro-
cessor contains all data in the x and y direction and Nz/Nproc data in the
z direction, see Fig. 2. The maximum number of processors is limited to

Fig. 2. Data allocation for the original transpose split method in physical space; i
indicates which nodal point numbers in the z direction each processor contains.

min(Nx/2, Nz). Particularly for cases where either Nx or Nz is much smaller
than Ny, this severely limits the number of processors that can be used.

To overcome this limitation, we have extended the transpose split method to
allow for the distribution of a second direction over the processors. The extra
cost is, of course, an additional communication. Schematically, we have the
following procedure for a 3D transform from spectral to physical space:

(1) Each processor performs Kzx one-dimensional Chebyshev transforms in
y-direction and reorders data for communication.

(2) The processors are synchronized using mpi barrier and data communica-
tions are performed to effectively transpose the data using mpi alltoall in
groups.

(3) Each processor reorders data for FFTs, performs Kyx complex-to-complex
FFTs in z-direction, and reorders data for communication.

(4) The processors are synchronized using mpi barrier and data communica-
tions are performed to effectively transpose the data using mpi alltoall in

4

groups.
(5) Each processor reorders data for FFTs and perform Kyz complex-to-real

FFTs in x-direction.

In the above scheme, Kyz, Kzx, and Kyx denote the number of one-dimensional
transforms that have to be performed in the x, y, and z direction, respectively.
The data allocation and the one-dimensional FFTs at step 1, 3, and 5 is
illustrated in Fig. 3. The transformation from physical to spectral space is

Fig. 3. Data allocation for the new transpose split method during a FFT transform
from spectral to physical space. Indicated with black lines are the data contained in
one of the processors during the three stages of the transformation. At the coordinate
axes, ky, y, kz, z, and kx, x denote the transformations from spectral to physical
space in the respective coordinate directions.

simply the mirror of this procedure. For further reference, we will denote the
group alltoall in step 2 by yz alltoall and in step 4 by zx alltoall. Note that
for the traditional transpose method we only have a zx alltoall (step 3) that
involves all processors.

For the extended transpose method, we restrict ourselves to cases where the
following criteria are met

Nproc

Nx/2
= integer

Kzx =
Nx/2 × Nz

Nproc
= integer

Kyx =
Nx/2 × N+

y

Nproc

= integer

Kyz =
N+

y × Nz

Nproc
= integer

where, to facilitate data communication, N+
y ≥ Ny has to be chosen such that

the above requirements are fulfilled. The elements Ny +1 to N+
y are filled with

zeroes.

5

In step 1 we have chosen to first distribute the data along the x-direction over
the processors. Thus if Nproc > Nx/2, processor 1 holds all y data for z data
1 till Kzx and x data 1. Processor 2 has all y data for z data Kzx + 1 till
2Kzx and x data 1 etc. After a transform from spectral to physical space, each
processor holds all x data for a selected number of y and z data.

Also note that in the YZ and ZX alltoall, it is not necessary for a proces-
sor to communicate with all other processors. For this we have divided the
processors into groups using mpi comm split. In the YZ alltoall, Nx/2 trans-
pose communications, each of which involves Nproc/(Nx/2) processors. In the
ZX alltoall, Nproc/(Nx/2) transpose communications, each of which involves
Nx/2 processors. For the example of Nx/2 = 32 and 64 processors, the YZ
alltoall involves communication between processor 1 and 2, 3 and 4, ..., 63 and
64, forming 32 groups of 2 processors each. The ZX alltoall involves commu-
nication of all even processors mutually and of all odd processors mutually,
thus forming two communication groups of 32 processors each. Note that each
processor communicates with a total of 32 other processors in the two commu-
nication steps together, while for the traditional transpose split method every
processor communicates with all, 63, other processors.

3 Results

The most time-consuming part of pseudo-spectral calculations is the three-
dimensional Fourier/Chebyshev transform. For this we have investigated the
scalability of this transform separately in a test code that performs a ”do
loop” of 1050 transforms from spectral to physical space and vice versa. The
total number of transforms in the test code, 2100, was chosen such that it
corresponds to 100 time steps of a straight channel calculation (where, per
time step, there exist 12 transforms from spectral to physical space and 9
from physical to spectral). The performance of the straight-channel code is
discussed at the end of this section. All calculations have been performed
on an Origin2000 with 128 processors and an Alphaserver cluster with 256
processors.

Optimizing on a single processor has been performed on the Origin2000. It has
been found crucial to perform cache optimization to attain best performance,
particularly when each processor has a large amount of data. The key is to
perform as many operations as possible on an array while it is still in cache,
since bringing data into cache takes a multiple of the actual computation time.
The advantage of using the cache has most convincingly been demonstrated
in computer runs reported in [4]. If we take the Chebyshev transform in the
spectral-to-physical transform in appendix A as an example, this means that
both the Chebyshev call and the reordering of the array are inside the loop

6

over the Kzx arrays. First performing all Kzx Chebyshev transforms and then
reordering the large array in a separate loop resulted in a considerable increase
of CPU time due to cache misses. On the Alphaserver cluster we used the
publicly available FFTW routines (http://www.fftw.org) in the Fourier and
Chebyshev transforms. On the Origin, we found the FFT routines of the SCS
library faster and we have used these instead. Since the MPI communication
time far outweighs the FFT time, we have not felt it necessary at this point
to attempt further FFT optimization on the Alphaserver, such as using the
native Compaq math library routines. Similarly, we have not exhausted the
available compiler options which might yet yield some further optimization.

A highly optimized code with relatively few cache misses is essential to obtain
fair performance ratios. Programs with bad cache usage profit more in the
computational part due to smaller array sizes and therefore fewer cache misses.
This may compensate for a possible bad communication performance for large
values of Nproc. Therefore, we have timed every FFT and Chebyshev transform,
barrier, and alltoall communication separately (see appendix A), to check the
performance of both the computational and communication parts of the code.
The timings of the FFT routines also include the loops to copy to and extract
from the communication arrays.

The computations on an SGI Origin2000 have been performed at the National
Center for Supercomputing Applications (NCSA). This Origin2000 consists of
64 nodes with two 250 MHz processors each. For the computations on the
Alphaserver cluster, we used the Terascale Compaq Alphaserver Cluster at
the Pittsburgh Supercomputing Center which comprises 64 ES40 nodes. Each
computational node contains four 667 MHz processors and a Quadrics inter-
connection network connects the nodes. Henceforth, we refer to this system
as Terascale Computing System (TCS). All parallel jobs have been run in
dedicated mode to avoid large fluctuations in communication time which are
present when the system is shared with other users. Furthermore, the distri-
bution of the processors over the computational nodes is important to obtain
best communication performance. Assigning only one processor per memory
outperformed the multiple processors per memory runs. Taking two processors
per memory on the TSC, resulted in a doubling of the communication time.
This is a result of the hardware implementation which allows, at a time, only
one of the processors to communicate with a processor that does not belong to
that memory. Taking two processors per node on the Origin, also resulted in an
increased communication time. Its magnitude, however, strongly depends on
the number of data and number of processors and varied between a marginal
increase and a doubling of the communication time.

All timings reported below are obtained with mpi wtime, which measures
wall clock times. To check mpi wtime we compared with CPU and system
time obtained from etime on the Origin2000 and found good agreement. The

7

exact location of the timing calls in the program can be found in the Fortran
program in appendix A.

3.1 xyzfft test runs

For the test code which only times the three-dimensional transforms from
spectral to physical space and vice versa, we have performed two series of
calculations for various values of Nproc. For the first one (case a) we used
Nx = Nz = Nproc which involves two groups of Nproc/2 processors in the zx
communication and Nproc/2 groups of two processors in the yz communication.
For the second case (b) we employed Nx/2 = Nz = Nproc which involves only
one traditional alltoall communication. For case a and b, N+

y equals Ny + 1
and Ny, respectively. To increase the data size we have increased the value
of Ny. These three-dimensional Fourier transform calculations have a ratio of
computations and communications between 20 and 40.

For the yz alltoall communication, the total amount of data that one processor
sends to all Nproc/(Nx/2) processors belonging to the same group is

Ndata = Kzx × Kyx × Nproc

Nx/2
=

N+
y × Nz × Nx/2

Nproc

,

where one data (one complex number) consists of 16 bytes. In a zx alltoall
communication, the total amount of data that one processor communicates to
all Nx/2 processors belonging to the same group is

Ndata = Kyz × Nx/2 =
N+

y × Nz × Nx/2

Nproc

.

Note that the same amount of data is involved, but compared to the yz alltoall
we now have a different number of groups of a different number of processors.
Henceforth, the quantity Ndata is used as a measure for the amount of trans-
mitted data.

The performance ratio E is defined by

E =
T (1)

Nproc × T (Nproc)
(1)

where T (Nproc) denotes the computational time per processor for a compu-
tation involving Nproc processors and T (1) the computational time involving
a single processor. The values of T (1) have been estimated by extrapolation

8

of the multi-processor results, since the computational part scales practically
linearly.

Performance ratios for various Nproc and Ndata are displayed in Fig. 4 for the
Origin2000 and TCS. For small Ndata, we found very poor performance ratios

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E

Ndata

8
16
32
64

(a)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E

Ndata

8
16
32
64

(b)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E

Ndata

8
16
32
64

(c)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E

Ndata

8
16
32
64

(d)

Fig. 4. Performance ratios as function of data size for various Nproc; (a) Origin case
a, (b) Origin case b, (c) TCS case a, (d) TCS case b.

of the order of 10%. The initial increase is mainly caused by the fact that
less data than the maximum bandwidth are transmitted. For large Ndata a
good performance of about 70% is obtained on the Origin for the 8 processor
case. For the 64 processor case, however, this drops to 40%. Also note that for
small Ndata on the Origin, surprisingly, the performance ratios for case a are
much worse than for case b. On the TCS this is absent. What is remarkable
there is the poor performance ratios for all cases. This is due to the faster
processors, while the data transfer rate is of the same order. For all programs
using a substantial data communication, the faster and faster processors make
parallelization less and less efficient when data transfer rates remain relatively
low.

The barriers only take a substantial time for small data sizes as can be observed

9

in from Fig. 5. On the Origin, the new transpose split method spends con-

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ba

r /
T

(N
pr

oc
)

Ndata

8
16
32
64

(a)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ba

r /
T

(N
pr

oc
)

Ndata

8
16
32
64

(b)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ba

r /
T

(N
pr

oc
)

Ndata

8
16
32
64

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ba

r /
T

(N
pr

oc
)

Ndata

8
16
32
64

(d)

Fig. 5. Relative barrier times as function of data size for various Nproc; (a) Origin
case a, (b) Origin case b, (c) TCS case a, (d) TCS case b.

siderably more time in barriers than the traditional transpose split method,
particularly for large Nproc. On the TCS this behavior is absent. There the
extremely poor performance for case b with Nproc = 64 and low data sizes is
remarkable. For some unknown reason, the alltoall communication and barrier
for small data sizes fluctuate heavily per processor and take a multiple of the
time needed for the large data sizes. Recalculation of the small data size cases
showed the same trends. We conclude from Fig. 5 that lumping can decrease
the barrier times significantly for small Ndata.

For a communication step, we define a corresponding data transfer rate Rdata

in Mb/s as

Rdata = 16 × 10−6Nfft × Ndata

Tc
,

where Nfft is the number of 3D transforms, Tc the time per processor spent
in an alltoall communication. The decrease of the data transfer rate for larger

10

Nproc can be clearly observed in Fig. 6, where we plotted the data transfer rate

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
da

ta
 (M

b/
s)

Ndata

8
16
32
64

(a)

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
da

ta
 (M

b/
s)

Ndata

8
16
32
64

(b)

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
da

ta
 (M

b/
s)

Ndata

8
16
32
64

(c)

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
da

ta
 (M

b/
s)

Ndata

8
16
32
64

(d)

Fig. 6. Data transfer rates for zx communication as function of data size for various
Nproc; (a) Origin case a, (b) Origin case b, (c) TCS case a, (d) TCS case b.

(in Mb/s) of the zx alltoall, i.e. counter 25 in the Fortran program in appendix
A. (Remember that for case a, two groups of Nproc/2 are communicating Kyz

data to all processors in the group, while for case b, where Nx is doubled, Kyz

data are sent to all Nproc processors.) However, for the TCS the decrease is
much less than for the Origin. We remark in passing that when we look at the
data transfer rate against the amount of data that one processor sends to one
other processor, (increasing Ndata by a factor two when Nproc is increased by
two in Fig. 6), the transfer rate only slightly decreases for the TCS, particularly
for case b. On the Origin2000, for small data sizes, the data transfer rates for
case a are very low compared to case b. This reverses for large data sizes.
For the TCS, this behavior is absent, and the data transfer rates for case
a always outperform the traditional transpose split method. Lumping may
considerably improve the data transfer rates for small data size. For large
data size, however, the data transfer rate reaches a plateau value and any
speed-up achieved through lumping will only be marginal.

11

In Fig. 7 we compare for 64 processors the total communication time for case
a and b. For small data sizes we observe anomalous behavior on both systems

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
co

m
m

 (s
)

Ndata

64a zx
64a yz

64b

(a)

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
co

m
m

 (s
)

Ndata

64a zx
64a yz

64b

(b)

Fig. 7. Communication time for zx and yz communication as function of data size;
(a) Origin, (b) TCS.

so that we have to remain inconclusive. For large enough data size we find, on
the Origin, that the traditional and new alltoall perform very similar. Then
the increase in communication time is the yz communication only, which is
relatively small. For the TCS, the zx communication of case a is considerably
faster than for case b. The overall communication time however remains larger
than for the traditional transpose split method.

3.2 DNS runs

To validate the new transpose split method in a real flow calculation, we
have timed a direct numerical simulation of turbulent flow in a straight chan-
nel using a pseudospectral code based on that developed by Sureshkumar
et al. [9] and Beris and Dimitropoulos [1]. As discretization we took a stan-
dard test case as used in these references: Nx × Ny × Nz = 64 × 65 × 64
(Nx/2 × N+

y × Nz = 32 × 66 × 64 complex data in the transpose). The tra-
ditional transpose split method allows a maximum number of 32 processors
where as the new method allows a maximum of 32×64 = 2048 processors. The
DNS calculations are different from the transform timings in the sense that
we keep the total amount of data fixed, so that the data size Ndata decreases
with increasing number of processors. Timings are given for 100 time steps
on the Origin2000 and TCS. Per time step, 21 transforms (12 from spectral
to physical space and 9 from physical to spectral) have to be computed, so
that this is equivalent to the timings for the test code described above. We
distinguish between 8, 16, 32, and 64 processors, for which Ndata = 16640,
8320, 4160, and 2112, respectively. The traditional transpose split method
has been used for up to 32 processors, while the new transpose split method

12

needs to be used for the 64 processor case. Figure 8 displays the timings of
the total calculation (excluding I/O and initialization), the three-dimensional
transforms, the communications, and the time spent in FFT routines. The

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70

T
(s

)

Nproc

Ttot
Tspps
Tfft

Tcomm

(a)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

T
(s

)

Nproc

Ttot
Tspps
Tfft

Tcomm

(b)

Fig. 8. DNS of turbulent flow: total time, 3D transform time, time in
FFT/Chebyshev routines, communication time (including barriers); (a) Origin, (b)
TCS.

difference between the total time and the time spent in the three-dimensional
transforms represents the time for the additional computations compared to
the test program (building right-hand side vectors and solve matrix-vector
equations). The time for the three dimensional transforms consists of a com-
putational part Tfft and a communication part Tcomm. We observe that the
computational part on both the Origin and TCS practically scale as 1/Nproc.
The scaling of the communication part, however, is much less, particularly
for the higher values of Nproc as was already observed for the test code. Ad-
ditionally, we now have a decrease in data size with increasing number of
processors, resulting in decreased data transfer rates (see Fig. 6, for 8, 16, 32,
and 64 processors, we have Ndata = 16640, 8320, 4160, and 2112, respectively).
The latter effect, however, can be compensated for by lumping of various ar-
rays into one bigger array or when finer discretizations are used. As a result,
the overall performance, scales well up to 32 processors, i.e. for the original
transpose method. However, for the 64 processor case (with the new transpose
split method), the scaling deteriorates, particularly for the Origin. Because of
this reason, we have not timed the code with Nproc larger than 64, although
the method allows up to Nz × Nx/2 = 64 × 32 processors.

As remarked earlier, the performance of the computations depends crucially
on the number of processors that are allocated on each computational node.
In Fig. 9 we have plotted the timings for the 64 processor calculation on the
TCS with 1, 2, or 4 processors allocated on each node. Doubling the number
of processors allocated on each node practically doubles the communication
time, because at each time only one of the processors can communicate with
a processor on another node. The doubling of the communication time also

13

0

2

4

6

8

10

12

14

1 2 3 4

T
(s

)

Nproc

Ttot
Tspps
Tfft

Tcomm

Fig. 9. DNS of turbulent flow; dependence on number of processors per node on
TCS: total time, 3D transform time, communication time (including barriers), time
in FFT/Chebyshev routines.

results in a doubling of the total time since the computation time, which
remains constant, is only a fraction of it. For computations with a considerable
alltoall data communication it is thus essential that multiple processors do not
share one communication line.

4 Concluding remarks

We have discussed a new transpose split method for three-dimensional Fourier
transforms. The traditional transpose split method splits data in one of the
dimensions over the processors and involves a single alltoall communication
performed between all processors. By splitting data along two dimensions over
the processors, the new method allows for the use of more processors even
when one of the periodic directions involves few Fourier modes. In terms of
implementation, the new method involves an additional communication step
and alltoall communications are no longer to all processors but are localized
in groups. The performance has been evaluated for a test code comprising
the three-dimensional Fourier transform only and in a full DNS of turbulent
flow. To detect system peculiarities, all calculations have been performed on
an Origin2000 and Alphaserver cluster, which have two and four processors
per computational node, respectively.

Performances of the new method have been compared with the traditional
transpose split method for various numbers of processors and data sizes. To
obtain a better communication performance is was essential to allocate only
one processor per node; using n processors per node results in n times the com-
munication time of a single processor per node. For the test code we found

14

a considerable decrease in performance with increasing number of processors.
This was caused by the relatively poor scaling of the communication time.
Except for low data sizes on the Origin2000, the new transpose communica-
tion was faster than the traditional one with the same data size. Nevertheless,
performance ratios are not high (similar conclusions of course can be drawn
using the traditional transpose split method), particularly when the number
of processors increases beyond 32 or 64. The main cause is a relatively slow
communication compared to computation. Additionally, the data transfer rate
decreases with increasing number of processors so that the performance de-
creases accordingly. Overlapping of communications and computations will not
improve things since the communication time is dominant for a large number
of processors.

Applications of the new transpose split method lie in the area of direct nu-
merical simulations of turbulent flows, where three-dimensional fast Fourier
transforms are used to transform from physical to spectral space. As an ex-
ample we have discussed direct numerical simulation of turbulent flow in a
straight channel. The transpose split method becomes more powerful when
the number of data points in one of the directions is especially short com-
pared to the other two directions. This is typically the case for simulations
in wavy channels, where the number of nodes in the spanwise direction is
much lower, thus limiting the number of processors that can be used with
the traditional transpose split method. Another application is weather fore-
casting where finite difference schemes are used at the moment for reasons of
efficiency. To use a much better spectral approximation, one needs both fast
communications and a scheme that allows to take full advantage of large pro-
cessor arrays containing thousands of processors. The latter is exactly what
the new transpose split method can achieve.

In a real flow simulation with fixed data size, the performance decreases with
increasing number of processors due to a smaller data array per communica-
tion. In direct numerical simulations in straight channels, the latter effect can
be compensated for by lumping of arrays of different variables for the commu-
nication transfer. Most important, however, for a good scalability of parallel
codes with a reasonable amount of data transfer (here a ratio of computations
and communications between 20 and 40), are faster communications. As the
processor speed increases, it makes good sense to also increase the sustainable
communication rate of the network.

Acknowledgements

This work is supported by the NSF grant CTS-9981388. We are grateful to
the National Center for Supercomputing Applications (NCSA) and the Pitts-

15

burgh Supercomputing Center for providing the computational resources on
the Origin2000 and National Science Foundation Terascale Computing Sys-
tem, respectively. The authors would also like to acknowledge the help of
Randolf Oswald in preparing Figures 1-3.

A Fortran code of three-dimensional Fourier/Chebyshev transform

Below we have included the relevant Fortran code for the three-dimensional
Chebyshev/FFT spectral-to-physical transform. The various parts are timed
with the calls to the subroutines perfon and perfoff. The physical-to-spectral
transform is the mirror, except for a scaling factor.

The communicators yz comm and zx comm for the yz and zx communication
involving the grouping are easily obtained with mpi comm split as follows

icol = (myproc*Nx/2) / Nproc

call mpi comm split(mpi comm world, icol, myproc, yz comm, ierr)

ngroup zx = Nproc/(Nx/2)
ih = myproc / ngroup zx
icol = myproc - ih*ngroup zx
call mpi comm split(mpi comm world, icol, myproc, zx comm, ierr)

where myproc denotes the rank of the processor in mpi comm world. The
Fortran code for the transform reads

subroutine xyzfftsp(as, ap)
complex*16 as(Ny, Kzx)
real*8 ap(Nx, Kyz)
complex*16 a1s(Ny), a1(N+

y), a2(Nz), a3(Nx/2 + 1), a2s(Nz)
integer yz comm, zx comm
common/cbpar1/ yz comm, zx comm
integer kproc yz, kproc zx
parameter (kproc yz = Nproc/(Nx/2), kproc zx = Nx/2)
complex*16 catyz(Kzx, Kyx,kproc yz), cat2yz(Kzx, Kyx,kproc yz)
complex*16 catzx(Kyz ,kproc zx), cat2zx(Kyz ,kproc zx)

C++
C chebyshev back-transform in y-direction and reordering of arrays
C add zeros for proper data communication
C++
call perfon(41)
isign = 1

16

do k = 1, Kzx

do iy = 1, Ny

a1s(iy) = as(iy,k)
enddo
call cheb(a1s, a1, Ny, isign)
do iy = Ny + 1, N+

y

a1(iy) = dcmplx(0.0d0,0.0d0)
enddo
do iproc = 1, kproc yz

do iyeff = 1, Kyx

iy = iyeff + (iproc-1)*Kyx

catyz(k,iyeff,iproc) = a1(iy)
enddo

enddo
enddo
call perfoff(41)

C++
C alltoall between y and z transform
C++
nt = Kyx ∗ Kzx

call perfon(16)
call mpi barrier(yz comm, ierr)
call perfoff(16)
call perfon(6)
call mpi alltoall(catyz, nt, mpi double complex, cat2yz, nt,

mpi double complex, yz comm, ierr)
call perfoff(6)

C++
C FFT back-transform in z-direction and reordering of arrays
C++
call perfon(42)
isign = 1
do k = 1, Kyx

do iproc = 1, kproc yz
do izeff = 1, Kzx

iz = izeff + (iproc-1)*Kzx

a2(iz) = cat2yz(izeff,k,iproc)
enddo

enddo
call myzzfft(isign, Nz, a2, a2s)
do iz = 1, Nz

iproc = ((iz-1) + (k-1)*Nz) / Kyz

17

izy = iz + (k-1)*Nz - iproc*Kyz

catzx(izy,1+iproc) = a2(iz)
enddo

enddo
call perfoff(42)

C++
C alltoall between z and x transform
C++
nt = Kyz

call perfon(15)
call mpi barrier(zx comm, ierr)
call perfoff(15)
call perfon(25)
call mpi alltoall(catzx, nt, mpi double complex, cat2zx, nt,

mpi double complex, zx comm, ierr)
call perfoff(25)

C++
C FFT transform in x direction and reordering of arrays
C++
call perfon(43)
isign = 1
do k = 1, Kyz

do ix = 1, Nx/2
a3(ix) = cat2zx(k,ix)

enddo
call myzrfft(isign, Nx, a3, ap(1,k))

enddo
call perfoff(43)

return
end subroutine xyzfftsp

References

[1] A. N. Beris, C. D. Dimitropoulos, Pseudospectral simulation of turbulent
viscoelastic channel flow, Comp. Meth. Appl. Mech. Eng. 180 (1999) 365–392.

[2] C. Calvin, Implementation of parallel FFT algorithms on distributed memory
machines with a minimum overhead of communication, Parallel Computing 22
(1996) 1255–1279.

[3] J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex

18

Fourier series, Mathematics of Computation 19 (1965) 297–301.

[4] C. H. Crawford, C. Evangelinos, D. J. Newman, G. E. Karniadakis, Parallel
benchmarks of turbulence in complex geometries, Comp. Fluids. 25 (1996) 677–
698.

[5] P. Dmitruk, L. P. Wang, W. H. Matthaeus, R. Zhang, D. Seckel, Scalable
parallel FFT for spectral simulations on a Beowulf cluster, Parallel Computing
27 (2000) 1921–1936.

[6] A. Dubey, D. Tessera, Redistribution strategies for portable parallel fft: a case
study, Concurrency Computat.: Pract. Exper. 13 (2001) 209–220.

[7] P. Moin, J. Kim, On the numerical simulation of time-dependent viscous
incompressible fluid flows involving solid boundaries, J. Comput. Phys. 35
(1980) 381–392.

[8] S. A. Orszag, L. C. Kells, Transition to turbulence in plane Poiseuille and plane
Couette flow, J. Fluid Mech. 96 (1980) 159–205.

[9] R. Sureshkumar, A. N. Beris, R. A. Handler, Direct numerical simulation of
turbulent channel flow of a polymer solution, Phys. Fluids 9 (1997) 743–755.

[10] P. N. Swarztrauber, Symmetric FFTs, Mathematics of Computation 47 (1986)
323–346.

19

