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Synopsis 

 

Fiber suspension theory model parameters for use in the simulation of fiber orientation in 

complex flows are, in general, either calculated from theory or fit to experimentally 

determined fiber orientation generated in processing flows.  Transient stress growth 

measurements in startup of shear flow and flow reversal in the shear rate range, γ  = 1 to 

10 s-1, were performed on a commercially available short glass fiber-filled polybutylene 

terephthalate using a novel “donut-shaped” sample in a cone-and-plate geometry.  

Predictions using the Folgar-Tucker model for fiber orientation, with a “slip” factor, 

combined with the Lipscomb model for stress, were fit to the transient stresses at the 

startup of shear flow.  Model parameters determined by fitting at γ  = 6 s-1 allowed for 

reasonable predictions of the transient stresses in flow reversal experiments at all the 

shear rates tested.  Furthermore, fiber orientation model parameters determined by fitting 
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the transient stresses were compared to the experimentally determined evolution of fiber 

orientation in startup of flow.  The results suggested that fitting model predictions to the 

stress response in well defined flows could lead to unambiguous model parameters 

provided the fiber orientation as a function of time or strain at some shear rate was 

known. 
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I.  Introduction 

 

Parts made from short glass fiber composites are typically manufactured using 

injection or compression molding where the composite melt is forced into a mold cavity 

which results in the formation of a layered fiber microstructure [Advani and Sozer 

(2003)].  Depending on the complexity of the part and the mold filling process, local 

variations can arise in the fiber orientation which can severely affect the mechanical, 

thermal and insulative properties of the part.  As a result, it is highly desirable to be able 

to predict the flow behavior of the composite fluid in connection to the fiber orientation 

to optimize mold design and processing conditions to maximize the part performance.   

The simulation of the flow of fiber suspensions has been the subject of many 

publications over the past three decades.  Subsequently, we give a brief introduction to 

the concepts relevant to this work, but for concept specifics the reader is referred to the 

works of Lipscomb et al. (1988), Bay and Tucker (1992a), and Chung and Kwon (2002b) 

for simulations in complex flow field geometries and Dinh and Armstrong (1984), Petrie 
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(1999), and Sepehr et al. (2004a) for predictions in simple flow field geometries. We also 

note that fiber suspension theory has two components, an equation describing the 

evolution of fiber orientation, and an equation for stress.  For some cases, such as dilute 

suspensions, the two equations may be combined to form a constitutive equation.  

However, in most situations they are solved separately and therefore, are discussed 

independently.   

The theoretical framework for the evolution of fiber orientation begins with the 

pioneering work of Jeffery (1922).  Jeffery mathematically described the motion of a 

single ellipsoidal particle suspended in a Newtonian fluid subjected to a Stokes flow 

field.  This theory is easily extended to blunt-ended particles, such as fibers, using an 

equivalent aspect ratio, of which various empirical relations have been suggested 

[Bretherton (1962); Cox (1971)].  For non-dilute fiber suspensions Folgar and Tucker 

(1984) included a term to Jeffery’s equation similar in formulation to isotropic diffusivity 

but proportional to the velocity gradient to account for fiber interaction influencing the 

degree of fiber alignment.  Currently, there is no theoretical approach to calculate the 

interaction coefficient, CI, in the F-T model.  For complex flow simulations, CI has been 

determined by fitting simulation results to experimentally determined fiber orientation, 

which may not be a practical or efficient approach [Bay and Tucker (1992b)].  Empirical 

relations have been proposed by Bay (1991) and Phan-Thien et al. (2002) which indicate 

that CI is a function of fiber volume fraction and aspect ratio.  However, these relations 

have not been confirmed. 

The contribution from the fiber to the bulk extra stress for dilute suspensions (φ < ar
-2, 

where φ is the volume fraction) arises from the hydrodynamic drag of the suspending 
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fluid over the fiber and is well established [Hand (1961); Giesekus (1962); Batchelor 

(1970)].  In non-dilute suspensions inter-particle hydrodynamic and contact forces can 

significantly influence the dynamic behavior of the fiber and the stresses.  The theories of 

Batchelor (1971), Evans (1975), Dinh and Armstrong (1984), and Shaqfeh and 

Fredrickson (1990) attempt to account for enhanced stress as a result of inter-particle 

hydrodynamic interaction.  The most commonly used theories in complex flow 

simulations are that of Dinh and Armstrong (1984), and Shaqfeh and Fredrickson (1990). 

Sepehr et al. (2004a, 2004b) found the best agreement between simulations of the 

stress growth functions and experimental results for a non-dilute suspension occur when 

the model parameters were empirically adjusted to fit the results, and when a slip 

parameter was added to the F-T model (F-T-S).  However, the feasibility of determining 

unambiguous material parameters by fitting was not discussed.  Wang et al. (2008) 

discussed an approach to determining material parameters by fitting to the transient 

rheology, but the authors were unable to fit both the transient shear stress growth 

coefficient and the transient first normal stress difference simultaneously.  As a result, the 

predictions were only fit to the transient shear stress growth coefficient without 

discussion of whether the parameters were unambiguous.  Furthermore, we note that the 

stress growth experiments used in the comparison by Sepehr et al. (2004a, 2004b) and for 

fitting by Wang et al. (2008) were performed in a rotational rheometer with parallel disk 

geometry in which there is a varying shear rate from the center of the plates to the rim.  

Recent results have shown that the inhomogeneous shear field in the parallel disk 

geometry induces excessive fiber-fiber interaction in concentrated fiber suspensions 

[Eberle et al. (2008a)].  This can have a severe effect on the magnitude of the stress 
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growth overshoot peak and width of the overshoot.  Also, in the model predictions 

presented by both Sepehr et al. (2004a, 2004b) and Wang et al. (2008) the initial fiber 

orientation was assumed random.  However, recent results clearly show that the initial 

fiber orientation in rheometer samples can be closer to a planar random orientation as a 

result of the sample deformation history which can have a large impact on the transient 

predictions [Eberle (2008)]. 

The addition of the slip parameter to the F-T model renders the equation non-

objective.  In other words, the solutions of the equation may be dependent on the external 

frame of reference [see, for example, Tanner (2000)].  However, the physical aspects of 

the predictions, in the case of simple shear flow, are still acceptable and have shown to 

agree with experimental rheological and simple shear injection molding data [Huynh 

(2001)].  Recently, Wang et al. (2008) have proposed an objective model called the 

reduced-strain closure (RSC) model, which has an analogous purpose of the F-T-S model 

to reduce the rate of fiber reorientation.  Similar to the F-T-S the RSC model is 

phenomenological, but focuses on the concept of reducing the growth rates of the 

eigenvalues without modifying the rotation rates of the eigenvectors.   

For this work the F-T-S model is chosen and not the RSC because of the simple 

formulation and because only simple shear flow is considered.  In a previous paper we 

showed the F-T-S can be used to accurately describe the evolution of fiber orientation in 

simple shear flow [Eberle (2008); Eberle et al. (2008b)].  However, we do note that the 

same concepts of determining material parameters via fitting transient rheological data 

could apply to the RSC model.  The objective of this paper is to define an approach for 

determining unambiguous model parameters for the F-T-S model combined with the 
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Lipscomb stress equation by fitting model predictions to transient shear rheological 

experiments performed using a donut sample in a cone-and-plate (CP) rheometer.  In 

particular, stress growth measurements in the startup of simple shear flow and flow 

reversal were performed on a 30 wt% short glass fiber filled polybutylene terephthalate 

(PBT-30) at various shear rates.  The transient rheology is discussed with the intention of 

determining at which shear rate the rheological material functions should be measured 

and then fit.  The Lipscomb model combined with the F-T-S model for fiber orientation, 

with experimentally determined initial conditions for fiber orientation, are fit to the stress 

growth behavior at a shear rate of 6 s-1.  The same model parameters are later used to 

predict the stress growth behavior at other shear rates.  The equation for fiber orientation 

using the fit model parameters is directly compared to measurements of fiber orientation 

in startup of flow. 

 

II. Theory 

 

A. Orientation Tensors 

 

The use of orientation tensors have become the conventional method for describing 

the average orientation state of a distribution of fibers.  The second- and fourth-order 

orientation tensors, A and A4, respectively, have been defined as the second- and fourth-

moments of the orientation distribution function, ( ), tψ u  [Advani and Tucker (1987)]: 

 

( ) ( )∫= uuuuA dtt ,ψ                                              (1) 
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( ) ( )4 ,t ψ= t d∫A uuuu u u                                          (2) 

 

where u is a unit vector parallel to the backbone of each fiber.  A is symmetric and has a 

trace equal to 1.  For a completely random orientation state A = 1/3 I, where I is the unity 

tensor and in the limit that all the fibers are perfectly aligned in the x1 direction the only 

non-zero component of A is A11 = 1.  

 

B. Orientation Evolution Equation 

 

The common approach to predicting the motion of a single fiber begins with Jeffery’s 

equation derived for non-Brownian axisymmetric particles [Jeffery (1922)].  For a large 

population of similar, non-interacting particles whose orientation is represented with the 

orientation tensors, the time evolution of A can be written as [Advani and Tucker 

(1987)], 

 

( ) ( 4
D 2 :
D

B
t

= ⋅ − ⋅ + ⋅ + ⋅ −
A W A A W D A A D D A )                         (3) 

 

where DA/Dt is the material derivative, B is a constant that depends on the aspect ratio, 

ar, of the particle B = (ar
2 – 1)/ (ar

2 + 1), W = [(∇v )t - ∇v]/2 is the vorticity, D = [ ∇v + 

(∇v )t]/2 is the rate of strain tensor and ∇v = ∂vj/∂xi.  For fibers, it is common to assume 

the particle’s aspect ratio approaches infinity, in which case B→1.  The time rate of 
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change of A in Eq. (3) is governed purely by the macroscopic flow field and does not 

include Brownian motion effects, gravity, or particle interactions, i.e. hydrodynamic or 

direct contact.  For non-dilute suspensions, Folgar and Tucker (1984) hypothesized that 

fiber interaction acted similarly to isotropic diffusion and as a result added a diffusion-

like term to Jeffery’s equation, and can be written as, 

 

( ) ( ) (4 I
D 2 : 2 3
D

C
t

γ= ⋅ − ⋅ + ⋅ + ⋅ − + −
A W A A W D A A D D A I A)            (4) 

 

where CI is the interaction coefficient and γ  is the scalar magnitude of D.  The F-T model 

allows for the control of the steady state fiber orientation through the magnitude of CI but 

the rate of fiber reorientation is still dominated by the flow field for typical values of CI 

in the range of 0.016 - 0.0001 [Bay (1991)].  Bay (1991) developed an empirical 

expression for concentrated suspensions (φ > ar
-1), 

 

( )I 0.0184exp 0.7148C raφ= −                                           (5) 

 

Eq. (5) predicts that CI decreases for increasing φar, a result explained by a proposed 

caging effect.  Phan-Thien et al. (2002) proposed a model in which CI increases with 

increasing φar as, 

 

( )I 1.0 expC M N aφ r⎡ ⎤= − −⎣ ⎦                                             (6) 
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where M and N are constants.  Phan-Thien et al. (2002) determined M = 0.03 and N = 

0.224 by fitting Eq. (6) to experimental data by Folgar and Tucker (1984) for various 

suspensions of Nylon fibers subject to simple shear flow.  The slip parameter proposed 

by Sepehr et al. (2004a) can be incorporated into the F-T model, as follows, 

 

( ) ( ) (4 I
D 2 : 2 3
D

C
t

α γ⎡ ⎤= ⋅ − ⋅ + ⋅ + ⋅ − + −⎣ ⎦
A W A A W D A A D D A I A)              (7) 

 

where the slip coefficient, α , is some value between 0 and 1.  As a note, the slip 

parameter proposed by Sepehr et al. (2004a) is essentially equivalent to the strain 

reduction factor proposed by Huynh (2001) used in complex flow simulations. 

To solve Eq. (4) or (7) a closure approximation is needed to express the fourth-order 

tensor A4 in terms of the second-order tensor.  Many closure approximations have been 

proposed including the quadratic [Doi and Edwards (1988)], hybrid [Advani and Tucker 

(1987)], eigenvalue-[Cintra and Tucker (1995)], and invariant-based optimal fitted 

[Chung and Kwon (2002a)].  A good review of their accuracy can be found in the works 

of Advani and Tucker (1990), and Chung and Kwon (2002b).  For this work we use the 

invariant-based orthotropic fitted (IBOF) closure approximation with the fifth order 

polynomial coefficients for its high degree of accuracy compared to the quadratic and 

hybrid closures, and computational efficiency compared to the eigenvalue-based closures.  

A complete description of the IBOF, its accuracy and polynomial coefficients can be 

found elsewhere [Chung and Kwon (2002b)]. 

 

C. Stress Equation 
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A general expression for high aspect ratio non-Brownian particles can be derived 

from the theories of Hand (1961) and Giesekus (1962) and is commonly referred to as the 

Lipscomb model [Lipscomb et al. (1988); Sepehr et al. (2004b)]: 

 

12 2 2s s sp c N 4φ φ= − + η + η ηI D D + D : Aσ                              (8) 

 

where σ is the total stress, p is pressure, ηs is the suspending medium viscosity, c1 is a 

material constant, and N is a dimensionless parameter that represents the coupling 

between hydrodynamic stress and fiber orientation.  The third term on the right hand side 

of Eq. (8) is the viscosity enhancement as a result of the fibers, and is similar to the 

enhancement term for a dilute suspension of spheres proposed by Einstein (1906).  

Lipscomb et al. (1988) gave c1 to be equal to 2 for the limiting case of ar → ∞, but we 

choose to use it as a fitting parameter.  The fourth term on the right hand side of Eq. (8) is 

the contribution to stress from the hydrodynamic drag of the fluid as it flows past a 

particle.  Using Eq. (8) the shear stress growth coefficient, η+, and the first normal stress 

growth function, N1
+, can be written as, 

 

+
12 s 1 s s 1212/ 2c Nσ γ φ φη = = η + η + η A                                       (9) 

 

( )1 1211 12222 sN N A Aφ γ+ = η −                                             (10) 

 

where the fourth-order tensor components are a function of time.   
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Subsequently, we define various theories for calculating the material coefficient N for 

comparison to those which were determined by fitting.  For dilute suspensions (φ << ar
-2) 

N can be calculated from the theories of Batchelor (1971): 

 

( ) ( )
2
r

r3ln 2
aN f

a
ε= ,   ( ) 21 0.64 1.659

1 1.5
f εε ε

ε
+

= +
−

,   ( ) 1
rln 2aε

−
⎡ ⎤= ⎣ ⎦           (11) 

 

and  Lipscomb et al. (1988): 

 

2
r

r2 ln
aN

a
=                                                            (12) 

 

Equation (8) can also be adapted to semidilute theories (ar
-2 << φ << ar

-1) by replacing N 

for the dilute case to one that accounts for inter-particle hydrodynamics such as the Dinh 

and Armstrong (1984) model: 

 

( )
2
r

3ln 2 /
aN

h D
= , in which 

( )
( )

12

1
2

random

aligned

nL
h

nL

−

−

⎧
⎪= ⎨
⎪⎩

                        (13) 

 

where h is the inter-particle spacing given for a completely random and aligned fiber 

orientation, D is the fiber diameter, and n is the number of fibers per unit volume.  

Shaqfeh and Fredrickson (1990) derived an expression for dilute and semidilute 

suspensions: 
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( ) ( )
2
r4 1

3 ln 1/ ln ln 1/ "
aN

Cφ φ
⎧ ⎫⎪ ⎪= ⎨ ⎬+ +⎪ ⎪⎩ ⎭

                                    (14) 

 

where C” is a constant which for randomly oriented fibers is C” = -0.66 and for aligned 

fibers C” = 0.16.  As a note, semidilute suspension theories typically neglect the third 

term on the right side of the equals in Eq. (8).  As a result, when the fibers completely 

align themselves in the flow direction, as predicted by Jeffery’s equation with λ = 1, N1
+ 

approaches zero and η+ approaches the suspending medium viscosity, η.   

 

III. Experimental 

 

A. Materials 

 

It was of a primary importance to the practical relevance of this work to use a 

composite fluid of industrial significance.  In keeping with this material objective, a 30 

wt% (volume fraction, φ = 0.1766) short glass fiber filled polybutylene terephthalate, 

(PBT-30), provided by GE Plastics under the trade name Valox 420 was used.  To 

examine the effect of fiber concentration on the rheological behavior, PBT-30 was 

diluted to concentrations of 4.07, 8.42, 15, 20 and 25 wt%.  Compounding was 

accomplished by passing dry blended amounts of PBT-30 and the neat matrix through the 

extruder section of an Arburg Alrounder 221-55-250 injection molder at an rpm of 200.  

To maintain a uniform shear and thermal history between concentrations the PBT-30 was 
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also passed through the extruder before testing.  The extrudate was collected before 

entering the runner of the mold and pelletized.  The pellets were then compression 

molded for rheological testing to a cone-and-plate geometry sample at 260 oC.  

Precautions were taken to minimize the degree of thermo-oxidative degradation of the 

PBT matrix by drying the materials at 120 oC for a minimum of 12 hours in a vacuum 

oven at a pressure smaller than 0.4 in Hg before sample extrusion, molding or testing.  

To characterize the glass fiber within the suspension, pyrolysis was performed on the 

PBT-30 pellets at 500 oC after extrusion to separate the fibers from the matrix.  The fiber 

length was determined by randomly measuring the length of 1,000 fibers.  The number 

average and weight average fiber length of PBT-30 was found to be Ln = 0.3640 and Lw = 

0.4388 mm, respectively.  The same fiber length measurement was performed on all the 

diluted concentrations and was found to be slightly higher for these concentrations, and 

within 0.3640 ≤ Ln ≤ 0.3740 and 0.4388 ≤ Lw ≤ 0.4578 mm.  In general, the average fiber 

length increased slightly for decreasing fiber concentration, and is attributed to attrition 

from abrasive contact between fibers, which is more prevalent at higher concentrations.  

The fiber diameter was determined directly from images taken of fiber cross sections 

using a confocal laser microscope, discussed later, and the average diameter of 1,000 

fibers was found to be D = 12.9 μm.  This relates to a number average aspect ratio for 

PBT-30 of ar  ≅ 28.2.   

 

B. Rheological Measurements 
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All rheological measurements were performed on a Rheometrics Mechanical 

Spectrometer (RMS-800) at 260 oC.  To minimize the degree of thermo-oxidative 

degradation, all experiments were performed in a nitrogen environment with a freshly 

loaded pre-formed sample.  Rheological measurements on the PBT matrix and the glass 

fiber-filled PBT were performed with 25 mm and 50 mm cone-and-plate fixtures, 

respectively, both of which had a 0.1 radian cone angle.  For the fiber-filled PBT, donut 

shaped samples were used to eliminate the interaction of the fibers with the plate walls 

near the center of the plates where the rheometer gap is small compared to the fiber 

length.  The dimensions of the donut sample can be seen in Fig. 1 before sample loading.  

A detailed discussion of the donut sample design and testing can be found elsewhere 

[Eberle (2008); Eberle et al. (2008a)].  After each experiment the void space at the center 

was measured to account for sample loading as the gap was adjusted to proper 

dimensions.  The hole diameter varied slightly, 23.8 ± 0.5mm and was accounted for 

when calculating the stresses for each run. 

In this work we are primarily interested in the transient rheological behavior at the 

startup of shear flow and flow reversal following startup of flow.  In the flow reversal 

experiments a sample was subject to startup of flow in the clockwise (CW) direction.  

When the stresses reached a steady state the flow was removed and reapplied in the 

counter clockwise direction (CCW) at the same shear rate.  The quiescent period between 

flows in the CW and CCW directions was roughly 10 s.  The experiments were limited to 

a maximum shear rate of γ  = 10 s-1 due to transducer overload.  For the measurements, 

η+ and N1
+ were calculated as functions of torque, M(t), and normal force, F(t), from the 

following equations adapted from Macosko (1994): 
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( ) ( ) ( 13 3
12

3
/

2 o i

M t
t σ γ

πγ )R R
−+ +η = = −                                        (15) 

 

( ) ( ) ( 12 2
1

2 z
o i

F t
N t R R

π )−+ = −                                                   (16) 

 

where Ro and Ri are the outer and inner radius of the sample, respectively.  The 

experimental reproducibility was found to be ± 5% for η+ and ± 7% for N1
+. 

 

C. Measurement of Fiber Orientation 

 

The flow induced fiber microstructure within the rheological samples was 

characterized using confocal laser microscopy in a similar approach to that proposed by 

Lee et al. (2002).  Donut samples composed of PBT-30 were deformed using the RMS-

800 at γ  = 1 s-1 for a specified amount of time.  To prepare the rheometer samples for 

imaging, quartered sections were imbedded in epoxy to aid in sample integrity.  The 

embedded samples were then sanded to a specific plane depth, and polished to a final 

abrasive particle size of 0.3 μm aluminum oxide (Al2O3) following standardized 

techniques [Sawyer and Grubb (1995)].  A schematic drawing of the polished planes and 

locations where the images were taken can be found in Fig. 2.  Each sample was imaged 

at two planes, perpendicular to the neutral direction x3 and perpendicular to the flow 

direction x1.  A series of images were taken at three locations at distances of 4.0, 6.25, 

and 8.5 mm from the outer edge denoted by PD-1, PD-2 and PD-3, respectively.  Images 
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in the neutral direction were only taken at one location denoted by PD-4 at a depth of 4.0 

mm from the outer edge.  PD-1 and PD-4 can be considered mutually perpendicular 

planes of different sections of the donut sample.   

Imaging was performed using a Zeiss LSM510 confocal laser scanning microscope 

fitted with a 40x water immersion objective lens and a laser excitation wavelength of 543 

nm.  The dimensions of each image were 230 x 230 μm with a resolution of 1024 x 1024 

pixels.  For each sample, sequential images were taken from the bottom to the top in the 

direction of the velocity gradient and at two planes of depth.  For PBT-30 the maximum 

penetration was found to be 8 μm.  This allowed for a 3D description of the fiber 

orientation and removed the ambiguity associated with reflection microscopy techniques 

such as the Leeds method [Hine et al. (1993)].  In the images, the cross section of each 

fiber appeared as circles or ellipse-like shapes.  To improve the contrast between the 

fibers and the matrix the images were imported into power point, traced by hand, and 

converted to a binary image.  A computer program was written and combined with image 

analysis software in Matlab that measured the position of the center of mass, the major 

and minor axis, and local angle between the image axis and the major axis of the ellipse.  

The components of u for each fiber were determined from the elliptical “footprint” at two 

cross sectional planes.  A full description of this technique can be found elsewhere 

[Eberle (2008); Eberle et al. (2008b)].   

In total, the fiber orientation was measured for 11 samples which corresponded to the 

following strains, γ = 0, 4, 7, 9, 12, 25, 50, 100 and 200.  Strains 4, 25, 100 and 200 were 

imaged at locations PD-1 and PD-4, all other strains were imaged at locations PD-1 thru 

PD-4 as depicted in Fig. 2.  Strain 0 relates to the initial fiber orientation.  In addition, γ = 
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9 was repeated to determine the experimental reproducibility of the analysis; the 

maximum error was found to be ± 12.4 % for Aij.  The total number of fiber cross 

sections counted for each sample varied depending on the strain and number of positions 

counted but was on the order of 1,000. 

With knowledge of the components of the vector u for each fiber, the tensors A and 

A4 were determined as follows:  

 

( )
,     i j nn

ij n
n n

u u F
nMA

F m
= F =

∑
∑

                                           (17) 

 

( )i j k l nn
ijkl

n

u u u u F
A

F
=

∑
∑

                                                (18) 

 

where Mn and mn are the major and minor axis, respectively, of the elliptical footprint of 

the nth fiber cross section, and Fn is a weighting factor for the nth fiber [Bay and Tucker 

(1992c)].  The weighting function is based on the probability of a 2D plane intersecting a 

fiber.  Meaning, a fiber aligned perpendicular to the plane is more likely to be severed 

than one that is aligned parallel.  Using the weighting function, the larger the aspect ratio 

of the ellipse, the more that fiber is weighted.   

 

IV. Results and Discussion 
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The objective of this paper is to present an approach for determining unambiguous 

material parameters for fiber suspension theory by way of fitting model predictions to 

transient shear flow rheology coupled with knowledge of the initial fiber orientation.  A 

dominant assumption of the theory is that the suspending medium is Newtonian, 

therefore, we first present the linear viscoelastic behavior of the neat PBT to confirm the 

Newtonian-like behavior.  In addition, the first normal stress difference N1 of the neat 

PBT is presented in conjunction with the PBT composite fluids containing various 

concentrations of short glass fiber to aid in the discussion of the contributing factors to 

N1.  We then present experimentally determined values of the initial fiber orientation of 

the rheometer samples as it is necessary to have this knowledge to accurately fit transient 

rheological data.  This is followed by a thorough description of the transient stress growth 

behavior of PBT-30 following startup of flow and in flow reversal experiments at various 

shear rates in an attempt to determine an optimum shear rate for fitting.  Finally, we 

present the simulation of transient shear flow at other shear rates and shear flow reversal 

and discuss model fitting. 

 

A. Rheology 

 

Linear viscoelastic behavior of neat PBT   

The linear viscoelastic behavior of the neat suspending medium including the 

magnitude of the complex viscosity, |η*|, the storage modulus, G’, and loss modulus G” 

vs. frequency, ω, can be seen in Fig. 3.  The measurement was performed at 3% strain; a 

strain sweep at a frequency, ω = 100 rad/s confirmed that 3% was in the linear 
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viscoelastic régime.  The suspending medium did exhibit a storage modulus but its 

magnitude was small relative to the loss modulus, and |η*| showed little dependence on 

frequency over the range tested (0.1 to 100 rad/s).  Hence, the suspending medium 

behaved similar to a Newtonian fluid. 

 

First normal stress difference, N1

Many researchers have reported nonzero steady state first normal stress difference, 

N1, values for fluids containing fibers which are believed not to be an enhancement to the 

elastic behavior of the suspending medium [Zirnsak et al. (1994)].  To aid in the 

discussion of the contributing factors to the first normal stress growth function (N1
+), the 

steady state first normal stress difference, N1, is plotted as a function of concentration in 

Fig. 4.  The neat PBT exhibited a small N1 of roughly 100 Pa at γ  = 1 s-1.  Interestingly, 

the addition of 4.07 wt% fiber caused a dramatic reduction in N1 to ~2.18 Pa.  This 

behavior coincides with the literature in that the addition of fiber seems to dramatically 

impede the elastic component of the suspending medium [Eberle et al. (2008c)].  As the 

concentration of fiber is increased from 4.07 to 30 wt%, N1 appears to have a linear 

dependence on fiber volume fraction which is attributed to the fiber and not an 

enhancement of the elastic component of the suspending medium.  This behavior further 

indicates that the suspending medium behaves in a similar manner to that of a Newtonian 

fluid. 

 

Initial fiber orientation 
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The stress growth behavior of a suspension containing high aspect ratio particles is 

highly dependent on the initial fiber orientation distribution of the particles [Eberle et al. 

(2008a)].  This is a direct manifestation of the connection between rheology and fiber 

orientation.  The initial fiber orientation within the donut samples represented in terms of 

the tensor A is shown in Eq. (19): 

 

0

.5167 .0753 .0584

.0753 .0349 .0347

.0584 .0347 .4484
γ =

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

A ⎟
⎟                                           (19) 

 

The experimental data represented in Eq. (19) shows that the majority of the fibers were 

initially oriented in the flow, x1, and neutral, x3, directions with very few in the shear, x2, 

direction.  In literature it is common to assume the initial orientation is random in 3D but 

we find that the orientation is closer to a planar random orientation state.  This is 

attributed to the deformation history given to the sample during compression molding of 

the sample disk and while the sample was loaded into the rheometer.   

 

Stress growth 

The rheological property of major interest is the stress growth behavior following 

startup of shear flow and in flow reversal experiments because of the connection between 

the transient stresses and the fiber orientation.  In the following subsection we present an 

approach to determining model parameters by fitting the predictions to the stress growth 

behavior.  Subsequently, we discuss the experimental stress growth behavior and its shear 

rate dependence to determine an optimum shear rate at which to fit the transient stresses. 
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The experimental values of η+ measured during startup of flow as a function of shear 

rate in the range of γ  = 1 to 10 s-1 for PBT-30 can be seen in Fig. 5 (a).  The magnitude 

of η+ vs. strain, γ, in Fig. 5 (a) decreases by more than 20 % over the shear rate range 

tested but the neat suspending medium only exhibits a 3 % reduction in viscosity.  The 

reason for the enhanced shear thinning behavior of the suspending medium is not 

obvious.  However, one possible contributor could be local shear rate variations within 

close proximity of the fiber.  In addition, increasing shear rates have been shown to 

impart a high degree of fiber orientation, effectively lowering the viscosity [Guo et al. 

(2005)].  When η+ is normalized by the steady state viscosity, depicted in Fig. 5 (b), the 

overshoot region of η+/ η scales in magnitude and strain for γ  > 1 s-1 but for γ  = 1 s-1, 

η+/η exhibits a slightly enhanced behavior compared to higher shear rates.  The consistent 

values of η+/η at various shear rates, for γ  > 1 s-1, suggests the enhance shear thinning 

was a result of the suspending medium.  It is not directly intuitive as to why η+/η at γ  = 1 

s-1 does not scale in strain and magnitude with measurements at other shear rates.   

N1
+/γ  vs. strain is depicted in Fig. 6 for PBT-30 as a function of shear rate in the 

range γ  = 1 to 10 s-1 in startup of flow.  N1
+/γ  scales in magnitude and strain for γ  > 2 s-

1 but for γ  ≤ 2 s-1 N1
+/γ  exhibits an enhanced behavior compared to higher shear rates.  

Similar to η+/η it is unclear why at low shear rates, γ  ≤ 2 s-1, N1
+/γ  exhibits an enhanced 

value compared to higher shear rates. 

η+ vs. strain as a function of shear rate, γ  = 1 to 10 s-1, in flow reversal following 

startup of flow for PBT-30, can be seen in Fig. 7 (a).  The shear stress growth behavior of 

PBT-30 at γ  = 6 s-1 was added for direct comparison.  Similar to the shear stress growth 
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behavior in startup of flow, η+ in flow reversal exhibits a transient overshoot that decays 

toward a steady state.  However, the overshoot grows at a slower rate, resulting in an 

overshoot peak that occurs at a strain of ~14.7 which is more than twice the strain at 

which the peak occurred in η+ during startup of flow.  Furthermore, the magnitude of the 

η+ overshoot is on average smaller for the flow reversal experiment.  For example, at  γ  

= 6 s-1 the reverse overshoot maximum is roughly 6 % less than the initial overshoot 

peak, though it is within experimental error.  In addition, η+ in the flow reversal 

experiments decreased by more than 20 % over the γ  range tested.  Figure 7 (b) depicts 

η+ normalized by the suspending medium viscosity, η, vs. strain.  Interestingly, η+/η 

scales relatively well in magnitude and strain for all shear rates tested.  Also, the 

magnitude of η+/η in flow reversal is very similar to the magnitude of η+/η measured in 

startup of flow for  γ  > 1 s-1.     

The overshoot in η+ measured in flow reversal experiments for suspensions 

containing short glass fibers has been previously reported in literature [Sepehr et al. 

(2004c)].  It is attributed to a fraction (but unspecified) of the fibers which were not 

completely aligned in the flow direction, rotating in the opposite direction.  It is proposed 

that only a fraction of the fibers change their steady state orientation because the 

magnitude of the overshoot is typically less than the initial overshoot.  However, we find 

the magnitude of η+/η in startup of flow and flow reversal to be of similar magnitude.  

This suggests the same mechanisms that contribute to the overshoot in startup of flow 

also contribute to the overshoot in flow reversal and are of similar magnitude. 

The first normal stress difference growth function normalized by the shear rate, 

N1
+/γ , as a function of γ  in flow reversal for PBT-30 can be seen in Fig. 8.  In addition, 
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N1
+/γ  of PBT-30 at γ  = 6 s-1 was added for direct comparison.  N1

+/γ  in flow reversal 

behaves very differently than in startup of flow.  N1
+ initially exhibits a negative value 

that decreases to a minimum before increasing to a positive value where it then goes 

through a maximum that decays to a steady state.  Similarly to η+, the difference between 

N1
+/γ  measured at γ  = 1 and 10 s-1 is more than 20 %.   

Fiber suspension theory predicts η+, Eq. (9), and N1
+/γ , Eq. (10), to be independent 

of shear rate for a suspension in which the suspending medium is Newtonian.  A similar 

behavior has been shown for PBT-30 in startup of flow when η+ is normalized by η to 

remove the effects of the enhanced shear thinning of the suspending medium for γ  > 1 s-

1.  The same is true for the experimental N1
+/γ  in which γ  > 2 s-1.  In flow reversal η+/η 

and N1
+/γ  were found to be independent of shear rate for all rates tested.  For fitting 

purposes one should choose the experimental measurements where η+/η and N1
+/γ  have 

been confirmed to be independent of shear rate. 

 

B. Simulation of transient shear flows 

 

Numerical method and model fitting 

As previously discussed and shown in Fig. 3, the neat PBT behaved similarly to a 

Newtonian fluid, but did exhibit a slight dependence on frequency over the range tested.  

For the subsequent model predictions the suspending medium viscosity, ηs, was predicted 

using the Carreau-Yasuda model, 
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where η0 is the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, λ is a time 

constant, n is the power-law exponent, a is a dimensionless parameter and γ  is taken 

equal to ω.  The Carreau-Yasuda model parameters were determined by fitting to the 

magnitude of the complex viscosity over the frequency range of ω = .1 – 100 rad/s using 

a least squares approach, and taking γ  to be equal to ω using the Cox-Merz rule.  The 

Carreau-Yasuda model fit can be seen in Fig. 3 for the following parameters, = 428.2 

Pa.s, = 0 Pa.s, = 96.7 s, n = 0.973, and a = 5. 

0η

∞η λ

For the equation governing the evolution of fiber orientation, Eq. (7), was solved 

numerically using Gears implicit predictor-corrector method at a time step of 0.01 s.  The 

model predictions were repeated at a time step of 0.001 s for the highest γ  = 10 s-1 and 

the values were found to be within ± 10-4.  Also, for Eqs. (9) and (10) the IBOF closure 

approximation was used to express A4 in terms of A.  Subsequent model predictions use 

Eq. (7) for the fiber orientation combined with Eqs. (9) and (10) to calculate η+ and N1
+, 

respectively.  Model predictions, including the rate of fiber reorientation and magnitude 

of the Aij components which are directly linked to the magnitude of the transient stresses, 

were found to be highly dependent on the initial conditions used in the model [Eberle et 

al. (2008a)].  As a result, we were only able to determine unambiguous parameters with 

knowledge of the fiber orientation at some point in the simulation.  Model fitting without 

knowledge of the fiber orientation at some point led to purely ambiguous model 

parameters. 
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Simulations of η+ using the experimentally determined initial conditions given in Eq. 

(19) predicts η+ to decrease from t = 0.  We believe that this is a deficiency in the 

physical predictions of Eq. (7) and is out of the scope of this paper but is discussed in 

detail elsewhere [Eberle et al. (2008b)].  As a result, the model predictions for startup of 

flow begin from γ = 7, the peak of the η+ which coincides with the experimentally 

determined maximum in the A12 component.  The average orientation at γ = 7 for PBT-30 

was found to be, 

 

7

.5457 .1378 .0400

.1378 .0789 .0049
.0400 .0049 .3754

γ =

−⎛ ⎞
⎜= ⎜
⎜ ⎟− −⎝ ⎠

A ⎟− ⎟                                           (21) 

 

Predictions of the stress growth functions in flow reversal begin with values of 

orientation determined when the stresses reach steady state following the startup of shear 

flow.   

In the model there are two fit parameters, α and CI, for the fiber orientation in Eq. (7).  

α determines the rate of fiber reorientation and CI controls the steady state fiber 

orientation.  For the stress growth functions there are two parameters, c1 and N.  c1 affects 

the magnitude of  η+ only and N controls the magnitude of η+ and N1
+ as a result of the 

hydrodynamic drag of the fluid over the fiber.  Because CI controls the steady state fiber 

orientation, the combination of parameters CI, N and c1 must be simultaneously fit.  We 

chose to determine these parameters by fitting the model predictions to the peak of the η+ 

overshoot in addition to the steady state values of η+ and N1
+ measured in startup of flow.  

This leaves α which can be determined by simultaneously fitting the transient behavior of 
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η+ and N1
+.  The discussed method to fitting the model parameters was determined to be 

the best approach after exhausting all other possible methods.  We do not include the 

peak of the N1
+ overshoot in the fitting scheme, because all attempts to include the peak 

of N1
+ resulted in large deviations between the predicted and experimental η+ and the 

onset of steady state for N1
+.  Because the parameters were determined by fitting the 

model to a portion of the stress growth curve, subsequently, we loosely use the term 

model predictions when points have been fit to specific magnitudes. 

The model fit to the stress growth behavior in startup of flow and flow reversal at γ  = 

6 s-1 can be seen in Figs. 9 (a) and (b), respectively.  The fit parameters can be found in 

Table 2.  In Fig. 9 (a) the model predictions show reasonable agreement with the 

experimental results for η+ over the complete range of strain.  In contrast the model 

severely under predicts the magnitude of N1
+ in the overshoot region.  The model fits of 

η+ and N1
+ in flow reversal give good agreement with the experimental results over the 

complete range of strain which can be seen in Fig. 9 (b).  It is interesting that the model is 

unable to fit the large N1
+ in startup of flow but is capable in flow reversal.  This suggests 

that there is an additional contribution to N1
+ in startup that is not present in flow reversal.  

One plausible explanation is direct fiber contact.  In startup of flow the fibers reorient 

from an orientation that is mostly random in the shear plan where the potential for direct 

fiber contact is greatest.  In the flow reversal experiment, the shear history has 

conditioned the fibers so that they are mostly aligned in the same direction.  Upon 

inception of flow the fibers that do rotate would most likely reorient in unison, 

minimizing the degree of contact.  The fiber suspension theory does not include a 

contribution to the stresses as a result of mechanical contact. 
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Wang et al. (2008) considered a similar approach to determining material parameters 

by fitting solely to the transient shear stress coefficient of Valox 420.  All model 

parameters were determined via a least squares approach, including the contribution from 

the suspending medium which they found to be sη  = 55.7 Pa.s.  This differs considerably 

to the value of  = 428.2 Pa.s used in this work.  The most obvious reason as to why the 

values are so different is that one was determined via fitting and the other determined 

experimentally.  The overall effect on the model predictions depends on the form of the 

equation for stress.  In the case of Eq. (8) including 

sη

sη  as a fit parameter would have 

rendered it impossible to determine a unique set of material parameters.   

 

Model Predictions 

We now discuss the model predictions of the flow reversal experiments at γ  =  1 and 

10 s-1 using the parameters determined by fitting stress growth at γ  = 6 s-1.  In Fig. 10 (a), 

depicting η+ vs. γ, the model predictions show close agreement with the experimental 

results.  At  γ  =  1 s-1 η+ predicts the width of the experimental overshoot and the onset 

of steady state but deviates slightly at the overshoot maximum.  At γ  = 10 s-1 the 

predicted η+ shows good agreement to the overshoot maximum but the onset of steady 

state is enhanced compared to the experimental values.  The difference in the model 

predictions at γ  =  1 s-1 and γ  =  10 s-1 is a result of the suspending medium viscosity 

determined by the Carreau-Yasuda model fit to the neat suspending medium.  The 

discrepancy between the model predictions and the experimental results for the onset of 

steady state of η+ at γ  = 10 s-1 suggests the suspending medium viscosity is lower than 
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the predicted value.  This is a direct result of the enhanced shear thinning exhibited by the 

fiber suspension and not the neat suspending medium.  The model predictions and 

experimental results for N1
+ at γ  = 1 and 10 s-1 can be seen in Fig. 10 (b).  Predictions at 

both γ  = 1 and 10 s-1 show good agreement with the experimental results.  However, in a 

similar fashion to η+ the model predictions of the onset of steady state for N1
+at γ  = 10 s-

1 are slightly enhanced compared to the experimental results.   

We have shown that model parameters can be determined by fitting to the transient 

stresses in startup of flow and flow reversal.  To discuss the accuracy of the fitted 

parameters, Fig. 11 illustrates the predictions of Eq. (7) compared to the experimentally 

determined fiber orientation in startup of flow at γ  = 1 s-1.  The predictions show 

reasonable agreement with the experimentally determined fiber orientation.  Especially at 

long strains which suggest that the CI parameter is accurate.  However, the model over 

predicts the rate of fiber reorientation which suggests the fitted α parameter is slightly too 

large.   

To determine the accuracy of the parameters c1 and N, associated with the magnitude 

of the stresses, the fourth order tensor components in Eqs. (9) and (10) were calculated 

from the experimental fiber orientation.  By using the experimentally determined A1212 

with the fitted model parameters, the peak value of η+ was found to be η+ = 876 Pa s and 

the experimental η+ = 854 Pa s.  Interestingly, they are within experimental error.  In 

contrast N1
+ determined by using the experimentally measured A1112 – A2212 with the 

fitted parameters was found to be N1
+ = 386 Pa and the experimental N1

+ = 1909 Pa.  The 

discrepancy between the calculated N1
+ using the fitted parameters and the measured N1

+ 

is attributed to fiber contact which the model does not account for.  It also suggests that 
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η+ can be described using simple hydrodynamic theory, while there must be additional 

contributing mechanisms to the overshoot in N1
+ while the fibers are reorienting.  One 

potential candidate could be mechanical fiber contact. 

The fitted model parameters are listed in Table 1 along with the calculated values 

from theory or empirical expressions.  Both the empirical expressions of Bay (1991) and 

Phan-Thien et al. (2002) give CI values which differ by roughly an order of magnitude 

from the CI we determined by fitting.  The significance of this strongly depends on the 

closure approximation as it is the combination of the closure and CI which governs the 

steady state fiber orientation.  The constant N calculated from the various theories defined 

in Eqs. (12) - (14) over predicted the magnitude N compared to the fitted value.  

Lipscomb’s theory predicted the closest N compared to the experimental.   

 

V. Conclusions 

 

The objective of this work is to present an approach for determining accurate model 

parameters for fiber suspension theory by fitting model predictions to the transient shear 

material functions η+ and N1
+/γ .  To determine these parameters, first, one must 

determine the range of shear rates where the measured material functions η+ and N1
+/γ  

are independent of shear rate.  Second, one must have knowledge of the fiber orientation 

at the startup of shear flow assuming random fiber orientation may lead to ambiguous and 

inaccurate parameters. 

Using the parameters determined at one shear rate we were able to predict the stress 

growth behavior at other shear rates. However, the model for stress did not accurately 
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predict the shear rate dependence of the viscosity.  Experimentally the suspension 

exhibited a higher shear rate dependence than the model predicted even when the shear 

thinning behavior of the neat suspending medium was accounted for using the Carreau-

Yasuda model.  Furthermore, the model was unable to predict the magnitude of the N1
+ 

overshoot in startup of flow.  This was attributed to the direct fiber contact of which the 

model does not account for.  However, we show that η+ in startup of flow and η+ and N1
+ 

in flow reversal following startup of flow can be explained using simple hydrodynamic 

theory.  As a result we believe this approach can lead to obtaining unambiguous and 

accurate model parameters.  In addition we believe that fitting can lead to more accurate 

parameters than those determined using the available theory or empirical relations.  Also, 

fitting allows one to determine the α parameter for which no mathematical expression 

currently exists.  The full test of the approach will be when calculations of orientation are 

made in processing flows and compared against experimentally determined fiber 

orientation values.   
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Table and Figure Captions 
 
Table 1.  Suspension theory fit and calculated model parameters. 
 
Figure 1.  Schematic drawing and cross-sectional profile of the donut sample. 
 
Figure 2.  Schematic drawing of the polished and imaged planes perpendicular to the 
neutral, r, and flow, φ, directions.  Images were taken at four positions:  three positions 
perpendicular to the flow-direction at a distance of 4.0, 6.25, and 8.5 mm from the outer 
edge denoted by PD-1, PD-2, and PD-3, respectively, and one position perpendicular to 
the neutral direction denoted by PD-4.   
 
Figure 3.  The linear viscoelastic behavior of the neat PBT.  The symbols (□), (◊), and 
(▲) represent G’, G”, and |η*|, respectively. The solid line is the Carreau-Yasuda model 
fit to |η*|.   
 
Figure 4.  N1 as a function of fiber weight fraction at γ  = 1 s-1.   
 
Figure 5.  Shear stress growth coefficient, η+, as a function of shear rate γ  for 1 (■), 2 
(◊), 4 (∆), 6 (○), 8 (–), and 10 s-1 (x).  (a) η+ (b) η+/η where η is the viscosity.   
 
Figure 6.  First normal stress difference growth function, N1

+, normalized by the shear 
rate, γ , as a function of shear rate γ  for 1 (■), 2 (◊), 4 (∆), 6 (○), 8 (–), and 10 s-1 (x).    
 
Figure 7.  Shear stress growth coefficient, η+, in flow reversal following startup of flow 
as a function of shear rate γ  for 1 (■), 2 (◊), 4 (∆), 6 (○), 8 (–), and 10 s-1 (x).  (a) η+ (b) 
η+/η where η is the suspension viscosity.  The broken line represents η+ in startup of flow 
at γ  = 6 s-1 for comparison. 
 
Figure 8.  First normal stress difference growth function, N1

+, normalized by the shear 
rate, γ , in flow reversal following startup of flow as a function of shear rate γ  for 1 (■), 
2 (◊), 4 (∆), 6 (○), 8 (–), and 10 s-1 (x).  The broken line represents N1

+ in startup of flow 
at γ  = 6 s-1 for comparison. 
 
Figure 9.  Experimental results (symbols) and model predictions (solid lines) of the stress 
growth functions η+ and N1

+ in (a) startup of flow, (b) flow reversal following startup of 
flow at γ  = 6 s-1.  Model parameters can be found in Table 1. 
 
Figure 10.  Experimental predicted stress growth functions in flow reversal following 
startup of flow.  (a) The shear stress growth coefficient, η+, and (b) the first normal stress 
growth function, N1

+.  The symbols (■) and (x) represent the experimental results at γ  = 
1 and 10 s-1, respectively, and the solid and broken lines represent the model predictions 
at γ  = 1 and 10 s-1, respectively.  The fitted Model parameters can be found in Table 1. 
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Figure 11.  Experimental and predicted fiber orientation represented through the Aii 
components in startup of simple shear flow at γ  = 1 s-1.  The lines represent the model 
predictions of Eq. (7).  Model parameters can be found in Table 1. 
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Table 1.  Suspension theory fit and calculated model parameters. 

 

 α CI N c1
Fit to startup flow at γ  = 6 s-1 0.4 0.002 27 0.4 

Bay (1991) 
Eq. (5)  0.00052   
Phan-Thien et al. (2002) 
Eq. (6)  0.0202   
Lipscomb et al. (1988) 
Eq. (12)   119.2  
Batchelor (1971) 
Eq. (11)   128.1 2 
Dinh and Armstrong (1984) 
Eq. (13)   184.4 (aligned)  
Shaqfeh and Fredrickson (1990) 
Eq. (14)   

653.7 (random) 
434.4 (aligned)  
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