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Abstract

We study the rheometrical and complex flow response of the double-
convection-reptation (DCR) model with chain stretch proposed recently by
Ianniruberto and Marrucci (2002) for entangled linear polymers. The single-
and two-mode differential versions of the model are used, with parameter
values identified by Ianniruberto and Marrucci (2002) for a nearly monodis-
perse polybutadiene solution. These authors found that the DCR model with
stretch predicts well the rheometrical shear behavior of the fluid in the mod-
est experimental range of deformation rates. Our calculations for the higher
shear rates reached in the simulations of complex flow reveal anomalous or
questionable behavior, namely shear-thickening over an intermediate range of
shear rates and large chain stretch reached in fast shear flows. This behav-
ior is shown to be shared by the original integro-differential DCR theory, of
which the differential DCR model is actually a mathematical approximation.
We also show that the original DCR theory with stretch predicts excessive
shear-thinning at high shear rates, while its differential approximation re-
mains stable for all shear rates. Using the Backward-tracking Lagrangian
particle method [Wapperom et al. (2000)], we investigate the response of the
differential DCR model in start-up flow through an axisymmetric contrac-
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tion/expansion geometry. We compare the single- and two-mode model pre-
dictions (in terms of steady-state vortex structure, chain stretch, and overall
pressure drop), and correlate these with the steady and start-up rheometrical
responses in shear and extension. Significant chain stretch is predicted in the
vicinity of the axis of symmetry and in thin boundary layers located at the
constriction wall. As a result, the DCR predictions significantly depart from
the stress-optical rule in these flow regions. Chain stretch also affects the
flow kinematics, with the appearance of a large upstream steady-state vortex.
Surprisingly, however, the predicted pressure drop is not much affected by
these kinematical changes, and is qualitatively described by a simple inelas-
tic, shear-thinning model.
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I. INTRODUCTION

The development of a definitive molecular-based constitutive theory for entangled linear
polymers has known exciting advances over the last few years. The most successful models
are extensions of the classical reptation theory [Doi and Edwards (1986)], with much of the
progress being due to the creative efforts of Professor G. Marrucci. In particular, he recog-
nized the importance of flow-induced constraint release effects, introducing the convective
constraint release (CCR) mechanism [Marrucci (1996)].

In a recent paper, Ianniruberto and Marrucci (2001) developed a single-mode consti-
tutive theory known as the double-convection-reptation (DCR) model, which accounts for
CCR and stretch effects. The original DCR theory involves an integral equation for the av-
erage orientation of tube segments, and a differential equation for the average chain stretch.
The characteristic time for orientational relaxation depends in a series-parallel way on three
basic mechanisms, namely reptation, constraint release (both thermal and convective), and
Rouse relaxation. Constraint release is assumed to have no impact on chain stretch. Fur-
thermore, an alternative strain measure [Marrucci et al. (2001)] based on a force balance on
the entanglement nodes is used in the integral orientation equation in order to obtain a sim-
pler, differential form. In a companion paper, Ianniruberto and Marrucci (2002) proposed a
multi-mode version of the differential DCR model with stretch, which involves a spectrum of
disengagement and Rouse times. Using only two modes, the multi-mode theory was shown
to yield already much improved predictions for the linear and non-linear shear response of
monodisperse polymers.

The goal of the present work is to study by way of numerical simulation the response of
the DCR model with stretch in start-up flow through an axisymmetric contraction/expansion
geometry. The numerical technique is the Backward-tracking Lagrangian particle method
[Wapperom et al. (2000)], which we have used previously to simulate complex flows of en-
tangled linear and branched polymers [Wapperom and Keunings (2000, 2001)]. We consider
the single- and two-mode DCR models, using parameter values identified by Ianniruberto
and Marrucci (2002) for a nearly monodisperse polybutadiene solution. Since the range of
deformations spanned by the numerical simulations is much wider than that considered by
Ianniruberto and Marrucci (2002), it is useful to investigate in more detail the rheometrical
response of the model. Interestingly, we find that the DCR theory predicts anomalous shear-
thickening and large chain stretch in fast shear flows. These features are found both in the
original integro-differential model, and its differential approximation. Moreover, the integro-
differential model shows excessive shear-thinning at high shear rates, while the differential
form has a monotonic flow curve. In view of these results, the complex flow simulations
are reported for the differential version of the DCR theory. We compare the single- and
two-mode model predictions at steady-state, in terms of vortex structure, molecular stretch,
and pressure drop, and correlate these results with the rheometrical response in shear and
extension. Simulations reported by Wapperom and Keunings (2000) with the MGI model,
an earlier version of the theory that ignores chain stretch [Marrucci et al. (2001)]), show
a continuous decrease of the upstream vortex with increasing Weissenberg number. The
present results reveal that chain stretch has a significant impact on flow kinematics, leading
eventually to a dramatic growth of the upstream vortex.
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II. THE SINGLE- AND MULTI-MODE DCR MODELS WITH STRETCH

The single-mode DCR model with stretch proposed by Ianniruberto and Marrucci (2001)
includes an evolution equation for the average tube orientation S and a separate evolution
equation for the average chain stretch λ. The original orientation equation is of integral
type, with a strain measure derived from a simple 3-chain model obeying force balance at the
entanglement nodes. This integral equation is conveniently approximated by the following
differential equation for the square of the orientation tensor [Marrucci et al. (2001)]:

DS2

Dt
= κ · S2 + S2 · κT − 2S2 (κ : S) − 2

τ

(
S2 − 1

3
S
)

. (1)

Here, D/Dt denotes the material derivative and κ is the transpose of the velocity gradient.
The right-hand side of Eq. (1) consists of a convective part and a term that describes
relaxation. The effective relaxation time τ is given by

τ =
1

2
(

1
τd

+ |κ : S|
) + τR. (2)

This formulation accounts for reptation (through the reptation time τd), for CCR (through
|κ : S|), and for the intrinsic friction of the chain (through the Rouse time τR). The factor
of 2 appearing in Eq. (2) expresses double reptation and CCR2. For slow flows, reptation
dominates and τ ≈ τd/2 + τR (≈ τd/2 for well entangled polymers). For faster flows, CCR
decreases the relaxation time τ . Note that the absolute value must be included in the CCR
contribution to assure a positive relaxation time. Indeed, in reversing flows, the velocity
gradient changes sign instantaneously, while the orientation has a finite relaxation time,
causing κ : S to become negative [Wapperom and Keunings (2000)]. For very fast flows,
when |κ : S| � 1/τd, τ reaches a non-vanishing minimum value equal to the Rouse time
τR. (This is in contrast with the MGI model [Marrucci et al. (2001)] for which τ approaches
zero at high flow rates, thus causing an almost instantaneous response.)

At flow rates larger than the reciprocal Rouse time, polymer chains get stretched. This
is described by a separate evolution equation for the average stretch ratio λ,

Dλ

Dt
= λκ : S − λmax

τR

λ − 1

λmax − λ
. (3)

The chain stretch is unity at equilibrium and has an upper limit λmax. The latter is equal
to the square root of the number of Kuhn steps between consecutive entanglements at
equilibrium. The first term on the right-hand side of Eq. (3) accounts for affine convection
of the chain, while the second describes stretch relaxation with the Rouse time taken as
characteristic time.

Finally, the polymer stress T and refractive index n are related to the stretch λ and
orientation S by the following algebraic relations:

T = Gλ2 λmax − 1

λmax − λ
S, (4)

n = Kλ2S. (5)
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Here, G is the shear modulus and K the corresponding optical quantity. The single-mode
DCR theory thus has four material parameters (G, λmax, τd, τR), which can in principle all
be determined from linear viscoelastic data. It should be noted that the model obeys the
stress-optical rule only when the stretch is much smaller than λmax. We shall come back to
this point in Sec. VI where we discuss simulation results in a complex flow geometry.

The single-mode DCR theory assumes that all chain segments behave in the same way.
In the multi-mode version of the DCR model [Ianniruberto and Marrucci (2002)], chain
segments are classified in N categories, each having their own characteristic disengagement
and Rouse times. In particular, this enables to distinguish between internal chain segments
(which relax by reptation) and segments at the end of the chain (which disengage by fluc-
tuation). Constraint release (thermal and convective) gives rise to interactions between the
different categories of segments. This is taken into account in the theory through N2 orien-
tation tensors Sij pertaining to segments of type i that are entangled with segments of type
j. The final set of equations proposed by Ianniruberto and Marrucci (2002) reads

DS2
ij

Dt
= κ · S2

ij + S2
ij · κT − 2S2

ij (κ : Sij) − 2

τij

(
S2

ij −
1

3
Sij

)
, (6)

τij =
1(

1
τdi

+ 1
τdj

+ |κ : Si| + |κ : Sj |
) + τRi, (7)

Si =
N∑

j=1

wjSij , (8)

Dλi

Dt
= λiκ : Si − λmax

τRi

λi − 1

λmax − λi
, (9)

T = G
N∑

i=1

wiλ
2
i

λmax − 1

λmax − λi

Si, (10)

n = K
N∑

i=1

wiλ
2
i Si. (11)

Here, wi is the mass fraction of chain segments of type i, while Si and λi are their aver-
age orientation and stretch, respectively. The multi-mode DCR theory thus requires N2

equations to describe orientation and N equations to describe stretch. It involves 3N + 2
parameters, namely the shear modulus G, the maximum stretch λmax (which is the same for
all segment types), the set of N fractional weights wi, and the N disengagement and Rouse
times, τdi and τRi. In principle, however, all such times can be related one to another, so
that one basic time scale only must be specified [Ianniruberto and Marrucci (2002)].

III. FLUID PARAMETERS AND RHEOMETRICAL RESPONSE

Ianniruberto and Marrucci (2002) used the DCR theory with stretch to describe the
experimental shear data obtained by Menezes and Graessley (1982) for a 7.5% by volume
solution of nearly monodisperse polybutadiene (Mw = 350, 000) in a commercial hydrocar-
bon oil. It was found that use of a two-mode model (N = 2) instead of the single-mode
model (N = 1) already improves the predictions significantly. For the single-mode theory,
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a fit of the steady-state data for the shear stress and first normal stress difference yields
the following parameter values: G = 9000 Pa, τd = 1.5 s, τR = 0.5 s, and λmax = 2.5.
For the two-mode model, Ianniruberto and Marrucci (2002) distinguish between internal
segments (index 1) that relax slowly, and end segments (index 2) that relax much faster.
All parameters are identified by fitting the linear viscoelastic data, with the exception of
the maximum stretch which is estimated from the number of Kuhn segments between con-
secutive entanglements at equilibrium. This yields the following values: G = 19, 800 Pa,
w1 = 0.65 (hence w2 = 0.35), λmax = 10, τd1 = 2.1 s, τd2 = 0.08 s, τR1 = 0.12 s, τR2 = 0.
A vanishing second Rouse time implies that the stretch λ2 remains equal to its equilibrium
value, λ2 = 1. The steady-state data for shear stress and first normal stress difference of
Menezes and Graessley (1982) are well described with both the single- and double-mode
parameter sets. The two-mode model provides, however, a much better prediction of the
start-up shear stress data, particularly at short times.

For our simulations of the flow through the constriction, we shall adopt the above pa-
rameters so as to guarantee that the single- and two-mode versions of the DCR model give
essentially undistinguishable results in steady shear flow, at least in the shear rate window
of the experiments by Menezes and Graessley (1982). One should point out that the experi-
mental data are only available up to shear rates of order 20 s−1. The value of the maximum
stretch λmax is in fact rather inconsequential for such modest shear rates. It does, however,
have a great impact in the simulation results for the constriction flow. Indeed, as discussed
in Sec. VI, the deformation rates that develop in the wall boundary layers are of the order of
100 to 200 s−1. This induces significant levels of chain stretch (and thus of polymer stress),
which are indeed very sensitive to the actual value of λmax.

In order to better understand the behavior in complex flow, we first discuss the differ-
ences in rheometrical flow response between the single- and two-mode models for the above
parameter values. We shall limit ourselves to those quantities that are most relevant for
the flow through an axisymmetric constriction. All rheometrical results have been obtained
with a simplified version of the numerical method that we discuss briefly in section V, in
order to verify the numerical implementation of the models.
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FIG. 1. Steady-state shear response of the single- and two-mode DCR models with stretch,
using parameter values obtained by Ianniruberto and Marrucci (2002): (a) shear stress Txy, and
(b) shear viscosity η as a function of shear rate γ̇.

As shown in Fig. 1(a), the steady-state shear stress Txy is identical for both models at
low shear rates. At intermediate shear rates, when CCR dominates, the shear stress for the
two-mode model is only slightly larger. For shear rates larger than γ̇ ≈ 50 s−1, however,
chain stretch is significant and the predictions become sensitive to the value of the maximum
stretch. Since the shear stress eventually reaches a plateau value which is proportional to
the square of λmax [Ianniruberto and Marrucci (2002)], differences between the single- and
two-mode results are substantial indeed.

In Fig. 1(b), we compare the corresponding steady-state shear viscosities. Although
merely a scaling of the shear stress axis by the shear rate, the viscosity curves show some
properties that cannot readily be observed from the stress plot. First, we observe that
the slope at high shear rates always remains larger than −1. Second, the two-mode DCR
model predicts shear-thickening behavior at deformation rates between 102 and 103 s−1,
which clearly is physically unrealistic. On the other hand, the single-mode theory predicts
a small change in slope at somewhat lower rates, but it does not show shear-thickening.
The reason is mainly due to the very different values of λmax. This can be understood from
Fig. 2(a), where chain stretch is displayed as a function of shear rate. We observe that
the one-mode version stretches earlier, but the change from the equilibrium value of 1 to
the maximum λmax = 2.5 is rather gradual. For the two-mode version, however, stretching
occurs at higher flow rates and the transition from 1 to λmax = 10 is much steeper. The non-
linear multiplicative factor involving λ in the stress equation (10) increases faster with shear
rate than Sxy decreases, resulting in an increasing viscosity. Prediction of shear-thickening
behavior for a range of shear rates is a general problem of the DCR theory, which would
also occur with the single-mode version should a larger value of λmax be used.
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FIG. 2. Single- and two-mode DCR models with stretch: (a) chain stretch λ in steady-state
shear and uniaxial extension, and (b) elongational viscosity ηE as a function of deformation rate γ̇

or ε̇.

We also observe from Fig. 2(a) that the chain stretch predicted by the DCR theory
eventually reaches the maximum stretch λmax at high shear rates. Whether this is physically
realistic is an open question. The results for uniaxial extension are very similar to those
for shear flow, except that chain stretch in elongation occurs at lower deformation rates, as
expected. The maximum stretch is reached asymptotically as well, but this of course makes
sense in extension. The corresponding results for the extensional viscosity are depicted in
Fig. 2(b). As for the shear viscosity, a difference in plateau value is observed which is
caused by the difference in maximum stretch. (Indeed, the plateau extensional viscosity is
also proportional to the square of λmax.) A second difference is observed at intermediate
elongation rates. With the two-mode model, since chain stretch occurs at higher elongation
rates than with the single-mode version, the extensional viscosity first decreases due to
CCR before showing an increase due to chain stretch. The CCR-dominated decrease in
extensional viscosity is similar to the behavior of the MGI model discussed by Wapperom and
Keunings (2001). Since the latter model does not include stretch and has a vanishing effective
relaxation time at high deformation rates, its extensional viscosity decreases monotonically.

We conclude our discussion of the DCR steady-state rheometrical response with results
for the first normal stress difference N1 and stress ratio SR in shear flow. The latter is a
measure of the fluid’s elasticity. It is defined as

SR =
N1

2Txy
. (12)
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FIG. 3. Single- and two-mode DCR models with stretch: (a) first normal stress difference N1,
and (b) stress ratio SR as a function of shear rate γ̇.

Single- and two-mode results for N1 are very similar until chain stretch comes into play,
again due to the different values of λmax. At large shear rates, N1 becomes proportional to
γ̇1/2. The corresponding stress ratio results are shown in Fig. 3(b). For both models, SR

increases monotonically. It is proportional to γ̇ at small shear rates, and to γ̇1/2 at large
shear rates, like N1. For the one-mode model, the transition occurs quite abruptly, while the
two-mode model tends to reach a plateau before showing its asymptotic behavior. We note
for further reference that, in view of the larger stress ratio, a lower maximum Weissenberg
number is expected to be reached in complex flow simulations with the single-mode model.
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FIG. 4. Transient shear viscosity η+ as a function of time t for imposed deformation rate
between 0.01 and 500 s−1: (a) single-mode and (b) two-mode DCR models with stretch.

Finally, we briefly compare the stress response in start-up of shear and uniaxial elonga-
tion. The transient shear viscosity η+ is depicted in Fig. 4. For low and intermediate shear
rates, the stress growth at short times is considerably faster for the two-mode model due
to the smaller disengagement time of the second mode. At these deformation rates, both
models predict a small overshoot before the steady-state value is reached. For high shear
rates, however, the single-mode model shows overshoots of increasing amplitude, while these
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overshoots disappear completely with the two-mode model.
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FIG. 5. Transient uniaxial elongational viscosity η+
E as a function of time t for imposed de-

formation rate between 0.001 and 50 s−1: (a) single-mode and (b) two-mode DCR models with
stretch.

Results for the transient extensional viscosity η+
E depicted in Fig. 5 show strain-hardening

due to chain stretch, before reaching a steady-state value. The latter is reached ever faster
with increasing deformation rate. Here again, differences between the single- and two-mode
results are mainly due to the different values of λmax. As for the transient shear response,
the stress growth at short times is considerably faster for the two-mode model.

IV. IMPACT OF THE DIFFERENTIAL APPROXIMATION

As noted earlier, the differential evolution equation (1) for the orientation tensor is
actually a mathematical approximation of the original, DCR integral equation [Ianniruberto
and Marrucci (2001)]. At this point, it is appropriate to investigate whether the anomalous
or questionable behavior of the DCR model discussed in the previous section (i.e. shear-
thickening for a range of shear rates and large chain stretch reached in fast shear flows) is
really intrinsic to the DCR theory or an artifact of the approximation process. In the original
DCR theory, the average orientation at present time t is given by the memory integral

S =
∫ t

−∞
µ(t; t′)Q(t; t′) dt′, (13)

with a memory function µ(t; t′) defined as

µ(t; t′) =
1

τ(t′)
exp

(
−
∫ t

t′

dt′′

τ(t′′)

)
. (14)

Here, the effective relaxation time τ is defined by Eq. (2), as for the differential version. The
orientation tensor Q takes the form

Q =

√
B

tr
√

B
, (15)
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where B denotes the Finger strain tensor. The latter evolves according to

DB

Dt
= κ · B + B · κT . (16)

The equations governing chain stretch and stress are the same as in the previous section.
The full set of equations is thus of integro-differential form.

In order to compare the integral and differential versions of the DCR model, we consider
the single-mode theory using the same parameter values as before (in particular, λmax = 2.5).
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FIG. 6. Steady-state shear viscosity for the single-mode integral and differential DCR models
with stretch: (a) λmax = 2.5, (b) λmax = 10.

The impact of the differential approximation on the steady shear viscosity is shown in
Fig. 6(a). In the range of shear rates where CCR is active, the integral and differential
models are in good agreement. This agreement comes to no surprise, and indeed it was
already noticed in absence of chain stretch, in both rheometrical and complex flows [Marrucci
et al. (2001); Wapperom and Keunings (2000)]. For larger shear rates such that the effective
relaxation time τ reaches the Rouse time, however, the integral model shows excessive shear-
thinning. The logarithmic slope of the viscosity curve becomes very quickly smaller than
−1, which implies a material instability and would limit computations in complex flow
geometries to moderate values of the Weissenberg number.

A larger value of the maximum chain stretch does not prevent the excessive shear-
thinning predicted by the original integral DCR model. This can be seen in Fig. 6(b),
where we compare the single-mode differential and integral models for λmax = 10. From this
figure, it also becomes apparent that anomalous shear-thickening behavior is predicted for
large (but physically relevant) values of λmax, and that it is not an artifact of the differential
approximation.
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FIG. 7. Single-mode integral and differential DCR models with stretch: (a) chain stretch
in steady-state shear and uniaxial extension, and (b) steady uniaxial elongational viscosity ηE

(λmax = 10).

Results for the chain stretch are shown in Fig. 7(a). In shear, the integral model also
predicts that chain stretch approaches λmax at high deformation rates, although not as fast
as the differential approximation. This particular result is thus intrinsic to the DCR theory
with stretch. In uniaxial extension, the predicted stretch curves are in excellent agreement
indeed. This also holds true for the corresponding elongational viscosity, shown in Fig. 7(b).

Similar results would be obtained with the multi-mode version of the theory. We thus
conclude that predictions of shear-thickening behavior and large chain stretch in fast shear
flows are not an artifact of the differential approximation for the orientation equation. Also,
the original integral DCR model shows excessive shear-thinning at shear rates for which
chain stretch is dominant. This difficulty is not found with the differential approximation.
Improvement of the theory is clearly needed, and we shall return to this point in the con-
clusion section.

The above results suggest several other considerations. First, they reveal that it is not
easy to derive a differential version really equivalent to a given integral constitutive equation.
We know that this derivation requires some mathematical approximations in the general
case, while only very simple integral equations (e.g., the Lodge equation) have an exact
differential equivalent (i.e., the upper-convected Maxwell model). More complex equations,
such as the integral DCR model, only have a differential ”analogue”. The differential form
(1) proposed by Marrucci et al. (2001) was derived using a procedure suggested by Larson
(1987). It consists in first looking for a differential form exactly equivalent to the integral
equation for the limiting case of a deformation jump. (Even this initial calculation step is
not necessarily successful. For instance, there is apparently no hope if the integral contains
the Doi–Edwards Q tensor, while it is successful with the simpler Q tensor (15) adopted
by Marrucci et al. (2001); the latter is nonetheless a very good approximation of the Doi–
Edwards Q tensor!) The procedure is then completed by adding to the differential equation
a relaxation term which reduces to a simple exponential in the linear limit, as is the case for
the integral equation. Although this procedure guarantees that the integral and differential
equations are essentially equivalent in slow or even moderately fast flows, it does not assure
that the two equations remain alike (not even qualitatively) in highly non-linear situations.
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The matter definitely requires further investigation.
Finally, the discrepancies at very high shear rates between the integral and differential

equations for the orientation tensor are not only a mathematical issue. As is apparent
from Fig. 6, the integral equation predicts an instability in very fast shear flows, while the
differential equation is stable. To understand such a difference in behavior, we first note
that, when chains start to be stretched, they abandon the CCR-induced plateau value of
the orientation, eventually becoming fully oriented along the flow direction. However, if
chains tend to align slowly enough, stretch effects can compensate for the orienting action.
The difference between the integral and differential equation lies just on the way in which
chains are predicted to orient along the flow direction. Indeed, in the high shear rate limit,
the differential equation gives Sxy proportional to γ̇−1/2, while the integral equation gives a
steeper slope, i.e., Sxy nearly proportional to γ̇−0.9. In the differential case, orientation and
stretch effects exactly balance each other, generating a shear stress plateau (following that
due to CCR), while in the integral case, the orientation effect dominates, thus inducing an
instability.

V. COMPLEX FLOW: NUMERICAL METHOD AND PROBLEM DESCRIPTION

We now turn to simulations of a complex flow. We have indeed performed simulations
with the original integro-differential DCR theory, using methods similar to the ones im-
plemented by Wapperom and Keunings (2000, 2001) for the MGI and pom-pom models.
In view of the excessive shear-thinning of the original theory, however, these very intricate
simulations are limited to moderate values of the Weissenberg number. They will not be
reported here. In the sequel, we shall exclusively use the differential version of the DCR
theory.

In the simulation of complex flows, the constitutive equation is coupled with the con-
servation laws. Here, we consider incompressible, isothermal, and inertialess flow. The
conservation laws for mass and linear momentum then reduce respectively to

∇ · v = 0, (17)

−∇p + ∇ · T = 0, (18)

where v is the fluid velocity and p the hydrodynamic pressure. The polymeric stress T is
given by either Eq. (4) or (10) for the single- and multi-mode versions of the DCR model,
respectively. Note that Eq. (18) only contains the polymer stress and does not include any
purely-viscous component.

The governing equations are solved with the Backward-tracking Lagrangian Particle
Method developed by Wapperom et al. (2000) for solving transient viscoelastic flows using
a macroscopic or micro-macro approach. At each time step, the Eulerian solution of the
conservation laws is decoupled from the Lagrangian integration of the evolution equation for
orientation and stretch. This allows us to use different solution methods for the conservation
laws and the evolution equations. The equations of motion (17), (18) are discretized by
means of the Galerkin finite element method. The Discrete Elastic-Viscous Stress Splitting
(DEVSS) method [Guénette and Fortin (1995)] has been used to enhance stability of the
numerical scheme. Here, the discontinuous velocity gradient is taken at time level n + 1,
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while the continuous linear velocity gradient is taken at time level n, i.e. the same level as the
viscoelastic stress. This guarantees a non-singular matrix when solving for the conservation
laws. To obtain the polymer stress T , we integrate the evolution equations for orientation
and stretch along discrete particle trajectories. The main difference with other Lagrangian
particle methods is that we track the motion of a particle backward in time. This allows us
to directly evaluate the stress or stretch at pre-defined, fixed particle locations. At the same
time, this minimizes the number of particles, so that CPU time and memory requirements
are reduced considerably. A detailed description of the numerical method can be found in
the precursor paper by Wapperom et al. (2000).

R

R

z=0

r

z

FIG. 8. Zoom of 4:1:4 axisymmetric constriction geometry with rounded corners and finite
element mesh with medium level of refinement.

We consider the start-up flow through an axisymmetric 4:1:4 constriction with rounded
corners, as depicted in Fig. 8. The smallest gap (at z = 0 in Fig. 8) has a radius R, while all
rounded corners have radius of curvature R/2. The lengths of the inlet and outlet regions are
equal to 19.5R, and at both inlet and outlet we impose fully-developed velocity boundary
conditions, which have been calculated separately. No-slip velocity boundary conditions are
specified at the wall and symmetry conditions hold at the centerline.

The results shown below have been obtained with the ”medium” mesh used by Wapperom
and Keunings (2000, 2001) for the MGI and pom-pom models, for which it was shown to be
sufficiently refined. That mesh, depicted in Fig. 8, contains 1288 quadrilateral elements and
is particularly refined near the constriction wall where steep boundary layers may develop.
The smallest element has an area of Ωe = 2.0 · 10−3, scaled with R2.

In all simulations, we consider creeping flow, so that, in the absence of a solvent viscosity,
the characteristic dimensionless numbers are the Weissenberg numbers for orientation and
stretch. Henceforth, we use the orientation Weissenberg number to characterize the flow. For
the single-mode model, we use as fluid time scale the effective relaxation time at equilibrium,
namely τ0 = τd/2 + τR. For the two-mode model, we use the largest equilibrium relaxation
time, τ0 = τd1/2+τR1 (τd2 is small compared to the first mode). The orientation Weissenberg
number is now defined as We = τ0U/R, where U is the average velocity in the section of
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smallest gap.
The calculations were performed on a single processor of an Origin 2000 with a 300 MHZ

MIPS R12000 processor. Although the number of orientation tensors increases by a factor 4
by going from the single- to the two-mode DCR model, the CPU time only increased by 20 %.
The reason for this is threefold. First, approximately 70 % of the time is spent in solving
the equations of motion. The CPU time in the integration of the constitutive equations
therefore only increases from 90 to 150 minutes when going from 1 to 4 configuration tensors.
A major reason for this is that the particle trajectories and velocity gradients only need to
be computed once. Finally, loading the local values of the configuration tensor can be done
more efficiently. For the lower Weissenberg number calculations, this resulted in a total
CPU time of approximately 5 hours or 1.8 seconds per time step.

VI. RESULTS OF CONSTRICTION FLOW SIMULATIONS

Although the flow problem is transient, we focus here on the steady-state regime obtained
as the long-time limit of the simulations, starting from the equilibrium state. With the
single-mode model, a stable steady-state was found up to We = 30, while we could reach
We = 100 with the two-mode model.
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FIG. 9. Second invariant IId of the rate-of-deformation tensor for the single-mode (We = 30;
top figures) and two-mode (We = 100, bottom figures) DCR models with stretch. As in all similar
figures to follow, the flow is from left to right, and a zoom of the constriction region is shown.

First, it is instructive to identify the range of deformation rates spanned by the simu-
lations. In Fig. 9, we display contour lines of the second invariant IId =

√
2d : d of the

rate-of-deformation tensor d = (κ + κT )/2 for the highest Weissenberg numbers obtained.
At the constriction wall, we have a pure shear flow and IId reduces to the shear rate γ̇. Along
the axis of symmetry, the kinematics are that of uniaxial extension and IId reduces to

√
3ε̇.

Both the single- and two-mode models predict a thin boundary layer with high IId values
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at the constriction wall. As can be seen from the zooms, the main part of the boundary
layer is located downstream, where the maximum value (of order 100 s−1) is attained at the
wall for the single-mode model, and slightly off the wall (of order 200 s−1) for the two-mode
model.

We=1 We=1

We=10 We=10

We=30 We=30

We=100

FIG. 10. Steady-state streamlines at various values of the Weissenberg number We for the
single-mode (left) and two-mode (right) DCR model with stretch.

Characteristic of viscoelastic contraction flows is the appearance of vortices. In Fig. 10,
we compare the steady-state streamlines obtained with the single- and two-mode DCR mod-
els. The streamline patterns at We = 1 show already a significant deviation from the iner-
tialess Newtonian case, for which the streamlines would be symmetric about z = 0. For this
relatively low Weissenberg number, the steady-state rheometrical responses are practically
identical for both models, and the streamline patterns are almost indistinguishable as well.
The impact of the higher transient shear and elongational viscosities at short times for the
two-mode model appears to be minimal. At higher Weissenberg numbers, the predictions
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of the downstream vortex are very similar, but the upstream vortices differ dramatically.
This is consistent with the large differences in the extensional response of the two models
at moderate and high deformation rates (cfr. Fig. 2(b)). For the single-mode model, there
is already a significant growth of the upstream vortex at We = 10, which is due to chain
stretch and the corresponding increase in extensional viscosity. For the two-mode model, the
size of the upstream vortex decreases at first, in view of the CCR-dominated decrease of the
extensional viscosity at intermediate deformation rates. At We = 30, the single-mode model
shows a huge upstream vortex. The upstream vortex for the two-mode model, however,
continues to decrease in size. Its eventual increase occurs only at much higher Weissenberg
numbers, when chain stretch comes into play. At We = 100, the upstream vortex size is
comparable to that predicted by the single-mode theory at We = 10. All these observations
are indeed consistent with the rheometrical response of the two models in steady uniaxial
extension. Note that the MGI model (which does include CCR but not chain stretch) shows
a monotonic decrease of the size of the upstream vortex, while the integro-differential pom-
pom model for branched polymers (which includes chain stretch) shows a vortex growth that
is qualitatively similar to what is predicted by the DCR theory [Wapperom and Keunings
(2000, 2001)].

When dealing with highly shear-thinning fluid models, it is always useful to compare the
predictions of the complete viscoelastic theory with those of an inelastic, generalized New-
tonian fluid (GNF) model having a similar viscosity curve. Here, we consider the Carreau–
Yasuda GNF model [Bird et al. (1987)], whose shear viscosity is given by

η = η0 (1 + [λIId]
a)

(n−1)/a
. (19)

The four adjustable parameters are the zero-shear-rate viscosity η0, a time constant λ (which
of course does not have the meaning of a relaxation time), the power-law index n, and a
numerical parameter a.
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FIG. 11. (a) Fit of DCR shear viscosity η with the Carreau–Yasuda inelastic model, and (b)
corresponding prediction of extensional viscosity ηE.

We have identified the parameters of the Carreau–Yasuda model by fitting the shear
viscosity of the single-mode DCR theory. The selected fit is shown in Fig. 11(a); it is
obtained with the parameter values η0 = 1853 Pa s, λ = 1.58 s, n = 0.16, and a = 1.3.
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Note that the change in slope seen in the DCR results, caused by chain stretch, cannot be
captured by the inelastic model, so that there is always a discrepancy in the fit, either for
intermediate or large values of γ̇. This particular fit has been chosen since high values of
γ̇ in shear deformations are only attained very locally in the constriction flow. Using these
parameters, the elongational viscosity predicted by the inelastic model is shown in Fig. 11(b).
As it should, it is similar to the shear viscosity curve. The DCR viscosity increase due to
chain stretch cannot be described by the inelastic model. (This is in sharp contrast with the
MGI model, which does not include a Rouse time and corresponding chain stretch. For this
model, the elongational viscosity nearly coincides with the inelastic ”prediction” as shown
by Wapperom and Keunings (2000).)

FR=1 FR=10

FR=30 FR=100

FIG. 12. Carreau–Yasuda inelastic model: steady-state streamlines as a function of dimension-
less flow rate FR.

The steady-state streamlines computed with the inelastic Carreau–Yasuda model are
displayed in Fig. 12, as a function of the dimensionless flow rate FR. The latter is defined
such as to be directly comparable to the Weissenberg number for the viscoelastic results.
The absence of elasticity (and of inertia) yields symmetric streamline patterns, and the
monotonic elongation-thinning behavior of the Carreau–Yasuda model yields vortices of
ever-decreasing size. The difference with the viscoelastic DCR results of Fig. 10 is striking
indeed. This again is in sharp contrast with results obtained for the MGI model [Wapperom
and Keunings (2000)].
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FIG. 13. Chain stretch λ for single-mode (We = 30; top figures) and two-mode (We = 100;
bottom figures) DCR models.

We now go back to the DCR viscoelastic results, and report predictions for chain stretch.
Results for the highest Weissenberg numbers are illustrated in Fig. 13. For both the single-
and two-mode models, a stretch boundary layer develops near the constriction wall. As
noted earlier, the large values of stretch predicted by the DCR theory in this shear-dominated
region may not be physically realistic. For the single-mode model (λmax = 2.5), the polymers
are also severely stretched in the extensional flow at the centerline (the stretch computed
there is only slightly less than near the constriction wall). For the two-mode model (λmax =
10), polymers are much more stretched near the constriction wall than near the centerline.
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FIG. 14. Stress-optical ratio predicted by the single-mode (We = 30; top figures) and two-mode
(We = 100; bottom figures) DCR models with stretch.

Experimentally, a common way of measuring stresses in complex flows of polymeric
fluids is to take birefringence data and apply the stress-optical rule, assuming that it holds.
Using the simulation results, we can readily quantify departures of the DCR theory from
this rule. To do so, we compute the ratio of the non-dimensional stress T /G and the
refractive index n/K. The stress-optical rule holds if this ratio equals 1. Using Eqs. (4-
5) for the single-mode model, we find that the stress-optical ratio reduces to the scalar
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quantity (λmax − 1)/(λmax − λ). Contour lines are displayed in Fig. 14. Clearly, deviation
from the stress-optical rule is severe in a significant part of the flow domain, not only in the
constriction region but also upstream. The stress-optical ratio is of order 2 at the centerline,
where elongation dominates, while it reaches a value of 2.7 in the wall boundary layer where
shear dominates (and where the large DCR stretch predictions are of questionable validity).
Downstream of the constriction, stress and stretch relax fast so that the stress-optical ratio
quickly recovers its equilibrium value of 1.

Eqs. (10-11) for the multi-mode model show that the stress-optical ratio does not reduce
to a simple scalar factor. For the sake of illustration, the ratio depicted in Fig. 14 is
calculated using the rr-components. Although the Weissenberg number is more than three
times as large as for the single-mode model, the deviations from the stress-optical rule are
much smaller. Also, they are mainly located in a boundary layer near the constriction wall.
At the centerline, the maximum deviation is less than 15 %. The reason for this is that
chain stretch for the single-mode model is relatively closer to its maximum value λmax (see
Fig. 13), which results in a large ratio (λmax − 1)/(λmax − λ).
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FIG. 15. Dimensionless pressure drop as a function of Weissenberg number for the single- and
two-mode DCR models with stretch. We also show results for the inelastic Carreau–Yasuda fit.

The present work shows that chain stretch as implemented in the DCR theory has a
dramatic impact on upstream vortex growth in the flow through a constriction. Wapperom
and Keunings (2001) made a qualitatively similar observation with the integro-differential
pom-pom model for branched polymers. They also observed, however, that the pressure
drop in the constriction was not much affected by vortex growth: the pom-pom pressure
drop results are indeed practically identical to those obtained with either the MGI model
or its Carreau–Yasuda inelastic fit. Following Wapperom and Keunings (2001), we define a
dimensionless pressure drop as the ratio (∆p − ∆p0)/∆p0, where ∆p is the total pressure
drop in the flow domain and ∆p0 corresponds to a fully-developed Poiseuille flow in a tube
without the constriction, i.e. of length 40R and radius 4R. The results are plotted in
Fig. 15. Although the differences with the inelastic model are larger than for the pom-pom
model [Wapperom and Keunings (2001)], they are not qualitatively significant. Since the
corresponding experimental data for monodisperse linear polymers are unfortunately not yet
available, it is too early at this stage to state that such a puzzling result points to a basic
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problem with tube-based theories.

VII. CONCLUDING REMARKS

We have investigated the rheometrical and complex flow response of the DCR differential
model with chain stretch. Both a single- and two-mode model was used, with parameter
values identified by Ianniruberto and Marrucci (2002) for a monodisperse polybutadiene
solution.

While the DCR theory provides satisfactory predictions of shear data in the narrow
range of experimental shear rates [Ianniruberto and Marrucci (2002)], it shows anomalous
shear-thickening over an intermediate range of (larger) shear rates. The model also predicts
that the maximum chain stretch is asymptotically reached in fast shear flows. Whether this
particular result is physically realistic is open for debate. The original integro-differential
DCR model with stretch, of which the differential version is a mathematical approximation,
also predicts anomalous shear-thickening and large stretch in fast shear flows. Moreover,
the integro-differential model shows excessive shear-thinning at high shear rates, while its
differential approximation remains stable for all shear rates. These results point to the need
for further theoretical developments. One common feature of most available tube theories
for entangled polymers, including the DCR model, is the use of a decoupling approximation
between orientation and stretch. The impact of this approximation is unknown at present,
and would deserve a detailed investigation.

Finally, we have performed numerical simulations with the differential DCR model for
the start-up flow through an axisymmetric constriction geometry. Significant chain stretch
is predicted in the vicinity of the axis of symmetry and in thin boundary layers located at
the constriction wall. As a result, the DCR predictions largely depart from the stress-optical
rule in these flow regions. Chain stretch also affects the flow kinematics, with the appearance
of a large upstream steady-state vortex. Surprisingly, however, the predicted pressure drop
is not much affected by these kinematical changes, and it can be described qualitatively by a
simple inelastic, shear-thinning model. Since the corresponding experimental pressure data
for monodisperse linear polymers are not yet available, it is too early to state that something
is missing in the theory in that regard.
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Guénette, R. and M. Fortin, “A new mixed finite element method for computing viscoelastic
flows,” J. Non-Newtonian Fluid Mech. 60, 27–52 (1995).

Ianniruberto, G. and G. Marrucci, “A simple constitutive equation for entangled polymer
with chain stretch,” J. Rheology 45, 1305–1318 (2001).

Ianniruberto, G. and G. Marrucci, “A multi-mode CCR model for entangled polymers with
chain stretch,” J. Non-Newtonian Fluid Mech. 102, 383–395 (2002).

Larson, R. G., “Convected derivatives for differential constitutive equations,” J. Non-
Newtonian Fluid Mech. 24, 331–342 (1987).

Marrucci, G., “Dynamics of entanglements: A nonlinear model consistent with the Cox–
Merz rule,” J. Non-Newtonian Fluid Mech. 62, 279–289 (1996).

Marrucci, G., F. Greco and G. Ianniruberto, “Integral and differential constitutive equations
for entangled polymers with simple versions of CCR and force balance on entanglements,”
Rheol. Acta 40, 98–103 (2001).

Menezes, E. V. and W. W. Graessley, “Nonlinear rheological behavior of polymer systems
for several shear-flow histories,” J. Polymer Sci.: Polym. Phys. Ed. 20, 1817–1833 (1982).

Wapperom, P. and R. Keunings, “Simulation of linear polymer melts in transient complex
flow,” J. Non-Newtonian Fluid Mech. 95, 67–83 (2000).

Wapperom, P. and R. Keunings, “Numerical simulation of branched polymer melts in tran-
sient complex flows using pom-pom models,” J. Non-Newtonian Fluid Mech. 97, 267–281
(2001).

Wapperom, P., R. Keunings and V. Legat, “The backward-tracking Lagrangian particle
method (BLPM) for transient viscoelastic flows,” J. Non-Newtonian Fluid Mech. 91,
273–295 (2000).

22


