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Abstract
From the thermodynamics with internal variables we will derive the temperature equation

for viscoelastic fluids. We consider the type of storage of mechanical energy, the dissipation
of mechanical energy, the compressibility of the fluid, the non-equilibrium heat capacity and
thermal expansion, and deformation induced anisotropy of the heat conduction. The well-
known stress differential models that fit into the thermodynamic theory will be treated as
an example. Adapting a power-law scaling of the shear moduli on temperature and density,
as is usual in rubber elasticity, we will derive an approximation of the temperature equation
in measurable quantities. This equation will be compared with experimental results.

Keywords: temperature equation; differential stress models; thermodynamics; (positive) dissipa-
tion; energy and entropy elasticity; compressibility; non-equilibrium heat capacity and thermal
expansion

1 Introduction

For viscoelastic fluids many differential and integral stress models have been proposed in the
literature, see for example Larson (1988). As already shown by Leonov (1992) most of the
differential stress models fit into the thermodynamic theory with internal variables. However,
although the thermodynamics is well-suited to describe nonisothermal effects and although many
practical flows are highly nonisothermal, relatively little attention has been paid to nonisother-
mal effects. Even in the original thermodynamical derivation of the Leonov model (Leonov
1976), the attention was focused on the stress constitutive equation. Also in later articles one
has mainly focused on the stress equation. If a temperature equation was discussed, just a
simple temperature equation was considered, i.e. with the heat production equal to the stress
work, with isotropic heat conduction and for incompressible fluids.

Nevertheless, some nonisothermal topics got some attention in recent years. A viscoelastic
fluid can both dissipate and store or release energy, so that the dissipation does not equal the
stress work. The dissipation of various viscoelastic fluid models has been discussed by Leonov
(1992) and Peters (1996). However, it is interesting to reconsider these expressions, because
some of them are in error.

A topic that is closely related to the dissipation is the type of storage of mechanical energy,
see Braun (1991), Astarita and Sarti (1976) and Sarti and Esposito (1977/1978). Mechanical
energy can be stored in the form of internal energy or in the form of entropy. A complete storage
as internal energy gives no reversible heat production, only dissipation. If it is completely stored
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as entropy, the calculation of the dissipation is superfluous, because then the sum of reversible
heat production and dissipation equals the stress work.

Another reversible heat production source is caused by pressure changes. This effect has
been discussed by Flaman and Veltman (1988) for injection moulding experiments. During
compression the temperature of the fluid rises and it drops during expansion.

The deformation induced anisotropy of the heat conduction is another interesting nonisother-
mal effect of polymeric fluids. Experiments of Hellwege et al. (1963) already showed that with
increasing orientation of the polymeric fluid, the thermal conductivity in the direction of orien-
tation increases and the thermal conductivity perpendicular to the orientation decreases. More
recently, the anisotropy has been derived from micro-rheological modelling by van den Brule
(1990).

In this paper we derive the temperature equation for compressible viscoelastic fluids. We
start with a brief description of the thermodynamics, including the constitutive equations and
their relation to well-known stress models. Next we will determine the connection between the
requisite thermodynamical quantities like mechanical dissipation, free energy, pressure and en-
tropy and show how they are related to the stress models. Based on this, we then obtain the
temperature equation with the above mentioned nonisothermal effects. By approximating the
non-equilibrium coefficients (heat capacity and thermal expansion), we will derive an approxi-
mate temperature equation with measurable coefficients. Finally, we will compare this equation
with experimental results.

2 Thermodynamics of viscoelastic fluids

2.1 General
In a fixed bounded space Ω the balance equations for a system without sources are (see for
example Bird et al. 1960):

ρ̇ = −ρ∇ · v, (1)
ρv̇ = ∇ · σ, (2)
ρu̇ = σ : d−∇ · φq, (3)

where ρ is the fluid density, v the velocity, d the Euler rate-of-deformation tensor defined by
d = (L + LT )/2, with LT = ∇v. The constitutive equations needed for the (symmetric) total
stress σ, the heat flux φq and the internal energy u can be obtained with the help of the balance
of entropy from the thermodynamics.

To describe thermodynamically the relaxation phenomena of viscoelastic fluids we use a
set of (internal) state variables and (external) rate variables (see for example Kuiken 1994
or Jongschaap et al. 1994). As the mechanical state variables we will take the density and K
internal deformation tensors bk. So we will not take into account possible scalar internal variables
describing the volume relaxation or internal vector variables describing the relaxation of the heat
flux. The internal deformation tensor bk has also been used by Leonov (1976, 1987) to derive
the Leonov model. It is also called the conformation tensor or the configuration tensor, and in
microrheology it corresponds up to a scaling factor to the second moment 〈QQ〉. However, in
this article we will use the nomenclature from the thermodynamics.

To derive the balance of entropy from the balance of internal energy, the Gibbs equation for
viscoelastic fluids, including compressibility and internal processes, is needed:

u̇ = T ṡ+
p

ρ2
ρ̇+

K∑
k=1

P k : ḃk, (4)
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where p is the thermodynamic pressure and P k the conjugate forces of the kth internal defor-
mation tensor bk. See Kuiken (1994) or Jongschaap et al. (1994) for an extensive discussion of
the Gibbs equation.

Instead of the internal energy u, it is advantageous to use the Helmholtz free energy ψ =
u− Ts, where s is the entropy per unit mass. Substitution in the Gibbs equation (4) gives

ψ̇ = −sṪ +
p

ρ2
ρ̇+

K∑
k=1

P k : ḃk, (5)

with the equations of state

s = − ∂ψ

∂T

∣∣∣∣
ρ,b
, p = − ∂ψ

∂ρ−1

∣∣∣∣
T,b

= ρ2∂ψ

∂ρ

∣∣∣∣
T,b

, P k =
∂ψ

∂bk

∣∣∣∣
T,b′k

, (6)

where a |x means a quantity at constant x. A |b means that all K internal deformation tensors
bk are constant. A |b′k will be used if all K internal deformation tensors bk are constant except
the kth internal deformation tensor. Combination of the balance of internal energy (3) and the
Gibbs equation (4) gives the balance of entropy

ρṡ = −∇ · (T−1φq) + Πs,

TΠs = −T−1φq · ∇T + σ : d− p

ρ
ρ̇− ρ

K∑
k=1

P k : ḃk, (7)

where Πs is the entropy production. The second law of thermodynamics states that the entropy
production must be non-negative: Πs ≥ 0.

For the evolution equation of the internal deformation tensor, we follow Leonov (1976):

b
5

k = −bk · dirr,k − dirr,k · bk, (8)

where (
5

) = ḃk − L · bk − bk · LT is the upper-convected derivative and dirr,k the irreversible
rate-of-deformation tensor, which has to be specified by a constitutive relation. Substituting
Eqs. (1) and (8) in the entropy production (7) gives

TΠs = −T−1φq · ∇T +

(
σ −

K∑
k=1

2ρbk · P k + pI

)
: d + 2ρ

K∑
k=1

(P k : (bk · dirr,k)) , (9)

where the anti-symmetric part of L cancelled out because of the isotropy of the material (bk·P k =
P k · bk).

A mode of the elastic stress τ e,k is defined analogously to Jongschaap et al. (1994) and
Grmela and Carreau (1987):

τ e,k = 2ρbk · P k = 2ρbk ·
∂ψ

∂bk

∣∣∣∣
T,ρ,b′k

. (10)

Note that we have not used the Leonov constraint det bk = 1. The Brownian force is not
included when this constraint is used and the constraint can be incorporated by using Lagrange
multipliers, see Grmela and Carreau (1987). With Eq. (10) the entropy production (9) can be
written as the sum of products of thermodynamic fluxes and forces

TΠs = −T−1φq · ∇T + τ irr : d +
K∑

k=1

dirr,k : τ e,k, (11)

where the irreversible stress is defined as τ irr = σ − τ e + pI, with τ e =
∑K

k=1 τ e,k.
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2.2 Constitutive equations

In the thermodynamics the constitutive equations for the thermodynamic fluxes have to be
specified by a linear combination of the forces. In our case the forces are T−1∇T , d and τ e,k.
Using the Onsager–Casimir reciprocal relations and the Curie principle, see for example de Groot
and Mazur (1984) or Kuiken (1994), we have for the thermodynamic fluxes φq, τ irr and dirr,k

φq = T−1Lqq · ∇T, (12)

τ irr = Ldd : d +
K∑

l=1

Ldτe,l
: τ e,l, (13)

dirr,k = −LT
dτe,k

: d +
K∑

l=1

Lτe,kτe,l
: τ e,l, (14)

where the second and fourth order tensors L may depend on the local state variables ρ, T
and bk. We will restrict ourselves to the case where Lτe,kτe,k

only depends on the kth internal
deformation tensor bk and Lτe,kτe,l

= 0 for k 6= l. Then Eq. (14) becomes

dirr,k = −LT
dτe,k

: d + Lτe,kτe,k
: τ e,k. (15)

This corresponds to the assumption, usually made for multi-mode models, that the modal
stresses are decoupled. In section 3 we will relate the fourth order tensors Ldd, Ldτe,k

and
Lτe,kτe,k

to the various stress differential models. Due to the dependence of Lqq on bk, anisotropy
of the heat conduction tensor κ can be taken into account. For experimental evidence we refer
to Hellwege et al. (1963), Choy et al. (1981) and Wallace et al. (1985). The most general
isotropic model for the heat conduction tensor is (with decoupled modes):

κ = −T−1Lqq =
K∑

k=1

(
κ0,kI + κ1,kbk + κ2,kb

2
k

)
, (16)

where κi,k may depend on the invariants of bk, the pressure and temperature. For a one-mode
model with constant coefficients and κ2,k = 0 this model reduces to the model derived for
Hookean dumbbells by van den Brule (1990). The behaviour of κ depends on the stress model
used. For a simple model for κ with the coefficients κi,k independent of bk, all stress models that
we discuss in Appendix A are able to predict the increase of the thermal conductivity parallel to
the direction of deformation. However, the decrease of the thermal conductivity perpendicular
to the deformation in steady shear can then only be predicted by models with non-zero second
normal stress difference. The equation for the heat flux will be not be discussed in more detail.
For the behaviour of the anisotropy for various stress models see Wapperom (1996).

Substitution of Eqs. (12), (13), (15) and (16) in the entropy production (11) gives

TΠs = ∇T · κ · ∇T + d : Ldd : d +
K∑

k=1

τ e,k : Lτe,kτe,k
: τ e,k. (17)

Due to the restriction that the entropy production has to be non-negative for independent
∇T , d and τ e,k, the tensors Ldd and Lτe,kτe,k

have to be positive definite. We will discuss these
restrictions further in section 4.2. The cross terms with Ldτe,k

are non-dissipative, so the entropy
production does not give any restriction on these tensors. Furthermore it is easy to check that
for κ0,k ≥ 0, κ1,k ≥ 0 and κ2,k ≥ 0 the heat flux contribution to the entropy production is
positive, because bk is positive definite. However, some less severe restrictions can be derived,
see Wapperom (1996).
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3 Stress models in the literature

The total stress σ is usually decomposed in a pressure part −pI and an extra-stress tensor τ
that vanishes in equilibrium

σ = −pI + τ , (18)

where I is the unit tensor. The pressure p is then related to the density and the temperature
only. The extra-stress tensor τ consists of a Newtonian (solvent) contribution and the polymer
contributions containing different modes

τ = 2ηsd + (ηs,v − 2
3ηs)∇ · v I +

K∑
k=1

τ k, (19)

in which ηs is the Newtonian shear viscosity, ηs,v the Newtonian bulk viscosity andK the number
of modes. The modal stress τ k is assumed to be a function of the internal deformation tensor
(configuration tensor) which fulfils an evolution equation, see for example Leonov (1992).

An extensive overview of differential stress models is given by Larson (1988). For the well-
known differential models that we will consider next, the modal stress is related to the internal
deformation tensor with the help of the simple algebraic relation:

τ k =
Gk

1− ξk
(Bkbk − I) , (20)

where Gk is the shear modulus of the kth mode, λk the modal relaxation time and Bk may be
a function of the first invariant I1,k. We give the values of Bk for various models in Appendix
A. The moduli are weak functions of the temperature and the density. For the parameter ξk,
which will be explained shortly, we will exclude the value ξ = 1. For all well-known differential
stress models it can be shown that bk is positive definite, see Hulsen (1990) or Wapperom and
Hulsen (1995).

The evolution equation for bk has the form

λkb
2

k = gk, (21)

where the relaxation time λk may depend on the temperature and pressure, and gk = g0,kI +
g1,kbk +g2,kb

2
k. The scalars gi,k may depend on the invariants of bk and are given in Appendix A.

The temperature dependence of the relaxation time may be described by a WLF or Arrhenius
shift factor, see Ferry (1981) or Tanner (1985), and also its pressure dependence may be described
by an exponential shift factor, see Ferry (1981) or Kadijk and van den Brule (1994). The mixed
(or Gordon–Schowalter) convected derivative of bk is defined by

b
2

k = ḃk − (L− ξkd) · bk − bk · (L− ξkd)T , (22)

in which ξk is a parameter for which holds 0 ≤ ξk ≤ 2. The values 0 < ξk < 2 represent a sort of
frictionless slip of the internal microstructure with respect to the macroscopic flow. In section
4.1 we will show that the slip is indeed frictionless or non-dissipative.

4 The relation between the stress models and the thermodynamic quantities

4.1 The thermodynamic fluxes dirr and τ irr

Comparison of the model (21) with Eq. (8) gives that the irreversible rate-of-deformation tensor
corresponds to

dirr,k = ξkd−
1

2λk
b−1

k · gk. (23)

5



Note that to include the slip parameter ξk it is not necessary to modify the left-hand side of
the evolution equation (8) as done by Leonov (1992) and Jongschaap et al. (1994)). It can be
included in dirr,k. Comparing with the equation for the irreversible rate-of-strain tensor (15),
and introducing the fourth order unit tensor I, leads to

Ldτe,k
= −ξkI, Lτe,kτe,k

: τ e,k = − 1
2λk

b−1
k · gk, (24)

which shows that the frictionless slip in the mixed convected derivative, represented by the
parameter ξk, is indeed non-dissipative (see Eq. (17)). Comparing the constitutive equations for
the irreversible stress (13) and (19), and using τ = τ e + τ irr, then gives

Ldd = 2ηsI + (ηs,v − 2
3ηs) II, τ e,k =

1
1− ξk

τ k. (25)

Henceforth, we will neglect the compressible Newtonian contribution, so that the irreversible
stress reduces to

τ irr = τ − τ e = 2ηsd−
K∑

k=1

ξkτ e,k. (26)

4.2 The mechanical dissipation
With the results of section 4.1 the entropy production (17) can be written as

TΠs = −T−1φq · ∇T +Dm. (27)

The first term represents the entropy production due to conduction of heat and Dm is the
mechanical dissipation which consists of a Newtonian solvent and a viscoelastic part

Dm = 2ηsd : d +
K∑

k=1

Dm,k, (28)

Dm,k = − 1
2λk(1− ξk)

(
τ k · b−1

k

)
: gk. (29)

where Dm,k is the modal mechanical dissipation. During deformation the mechanical dissipation
Dm is smaller than the stress work and mechanical energy is stored. During relaxation it is larger
and then the stored mechanical energy is dissipated.

From the restriction that the entropy production has to be non-negative for independent
∇T , d and τ k, it follows that ηs ≥ 0. We examine the expression for Dm,k for various stress
models in more detail in Appendix A. Furthermore we show that for all of these models the
dissipation is non-negative, as it should be.

4.3 The free energy and related quantities
4.3.1 The free energy ψ and the elastic stress τ e

For models of the form (20), it follows from Eqs. (10) and (25)2 that the derivative of the free
energy with respect to an internal deformation tensor bk equals

∂ψ

∂bk

∣∣∣∣
T,ρ,b′k

=
Gk

2ρ(1− ξk)2
(
BkI − b−1

k

)
. (30)

With the help of ∂I1,k/∂bk = I and ∂I3,k/∂bk = I3,kb
−1
k Eq. (30) can easily be integrated. For

convenience we will split the free energy ψ in

ψ = ψ(ρ, T ) +
K∑

k=1

ψk, (31)
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where ψ(ρ, T ) only depends on the density and the temperature and the modal free energy ψk

depends on the kth internal deformation tensor bk and possibly on the density and temperature.
For models with Bk = 1, see Appendix A, the elastic stresses and the corresponding modal

free energies are:

τ e,k =
Gk

(1− ξk)2
(bk − I) , ψk =

Gk

2ρ(1− ξk)2
(I1,k − ln I3,k − 3) . (32)

where the ln I3,k term in the free energy corresponds to the isotropic term in the elastic stress and
represents the free energy of noninteracting macromolecules as has been discussed by Carreau
and Grmela (1991). For a large internal deformation, so if the ln I3,k term can be neglected, we
find 2ρψk ' tr τ e,k = tr τ k.
For the Larson elastic stress (see for example Leonov 1992), where Bk = (1 + βk(I1,k − 3)/3)−1,
we obtain

τ e,k = Gk (Bkbk − I) , ψk = −Gk

2ρ

(
3
βk

lnBk + ln I3,k

)
, (33)

when βk 6= 0. For a large internal deformation, so if the ln I3,k term can be neglected, we find
2ρψk ' tr τ k ln (1 + βk(I1,k − 3)/3). This term will be assumed of O(tr τ k) (for I1,k = 100 and
βk = 1 the logarithm equals 3.5).
For the FENE-P model, see for example Wedgewood and Bird (1988), the elastic stress and the
corresponding free energy are

τ e,k = Gk (Bkbk − I) , ψk =
Gk

2ρ
(bk lnBk − ln I3,k) , (34)

where Bk = bk/(bk + 3− I1k
) and bk a dimensionless constant. For a large internal deformation,

so if the ln I3,k term can be neglected, we find 2ρψk ' tr τ kB
−1
k lnBk, with Bk � 1. So this

term is not larger than O(tr τ k).
Note that in equilibrium ψ reduces to ψ for the neo-Hookean, the Larson and FENE-P

model. Out of equilibrium ψ − ψ is non-negative. This result follows after a decomposition
on the principal axes. The resulting functions x − lnx − 1 for the neo-Hookean free energy,
1/βk ln (1 + βk(x− 1)) − lnx for the Larson free energy, are non-negative for x > 0. For the
FENE-P free energy it can be shown (with a decomposition on the principal axes and the fact
that the minimum of I1,k is on the line with equal principal values) that bk lnBk − ln I3,k has
one local minimum in equilibrium, so that ψ−ψ ≥ 0. We will examine the free energy ψ further
in the remaining part of this section, because it is related to the pressure and entropy.

Theoretically, all thermodynamic quantities related to the elastic part of the free energy can
now be computed. However, depending on the complexity of the free energy function, this may
be rather complicated. Therefore we make the following assumptions:

1. The temperature and density dependence of the shear moduli are given by

Gk = Gk,ref

(
T

Tref

)γk
(
ρ

ρref

)δk

, (35)

where γk and δk are constants. The temperature scaling is well-known in rubber elasticity,
see for example Treloar (1975). The values for a large number of polymers are given by
Mark (1973, 1976), including a discussion on reliability of the experiments. A value of
γk = 1 corresponds to a set of free chains, as in the kinetic theory. However, the internal
rotation about bonds within the molecule is not entirely free, but is restricted by hindering
potentials arising from steric interactions. This effect can be taken into account by a
temperature dependence of the mean-square length of a set of free chains, which results in
the temperature scaling in Eq. (35). It is claimed that, because the effect is intramolecular,
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the value of γ is characteristic for a polymer, thus valid in the rubber state, fluid state and
for solutions. The value of γ is usually obtained from measurement of the force on a sample
as a function of temperature. Dependent on the material, γ may be larger or smaller than
1. A value of γ < 1 indicates that a small mean-square length is energetically favoured,
and a value of γ > 1 that the extended conformation is energetically favoured. The value
of γ is often given in terms of fe/f , the ratio of the internal energy contribution to the
force and the total force, or d ln

〈
r20
〉
/d lnT with

〈
r20
〉

the mean-square length of a set of
free chains. These quantities are related to the temperature dependence of the modulus by
fe/f = d ln

〈
r20
〉
/d lnT = 1−γ. Up to moderate elongation ratios (ε ' 3), indeed an almost

constant ratio fe/f is found experimentally. A strong decrease for large extension ratios is
usually ascribed to strain-induced crystallyzation. However, some caution does not seem
superfluous, because for some polymers there is considerable scatter in the experimental
results, particularly between experiments at constant density and at constant pressure.
However, the range 0 < γ < 2 covers the list given by Mark (1973) of tens of polymers, so
that the value of γ = −5 assumed by Gupta and Metzner (1982) seems to be unrealistic.
Note also that as long as G is the only temperature dependent parameter in the free energy,
the ratio fe/f is constant. However, if βk = βk(T ) in Eq. (33) or bk = bk(T ) in Eq. (34)
this does not hold anymore.

The density scaling with δk = 1 corresponds to the kinetic theory. The density scaling
with δk 6= 1 corresponds to the extra factor introduced by Tobolsky and Shen (1966)
for rubber elasticity, resulting from the dependence of

〈
r2
〉
0 on the density. They have

supposed that this effect is caused by intermolecular forces. The parameter δk is then a
constant that depends on the chemical structure of the chains. The value of δk can be
obtained from volume dilatation, force-pressure or thermoelastic measurements. Although
sometimes considerable scatter exists between results of various workers, the deviations
from δk = 1 do not seem to be large. For natural rubber values are found in the range
0.75 < δ < 1.28 and for polyvinylalcohol δ = 1.2 is reported, see Shen and Croucher
(1975). For the approximation of terms in the next sections we will assume 0 < δk < 2.

2. The parameter βk in the Larson and bk in the FENE-P free energy are constant, for reasons
of simplicity.

Due to the second assumption the free energy can be written as

ψ = ψ(ρ, T ) +
K∑

k=1

ψk = ψ(ρ, T ) +
K∑

k=1

Gk

2ρ
fk(bk). (36)

where the functions fk are independent of density and temperature.

4.3.2 The thermodynamic pressure p
With the assumption Eq. (35) for the moduli, the thermodynamic pressure p of Eq. (6) can
easily be obtained by differentiation of Eq. (36)

p = ρ2 ∂ψ

∂ρ

∣∣∣∣
T,b

= p(ρ, T ) +
K∑

k=1

(δk − 1)ρψk, (37)

where p(ρ, T ) = ρ2 ∂ψ/∂ρ
∣∣∣
T,b

. This result shows that the thermodynamic pressure p is only

independent of the internal deformation tensors if δk = 1. With respect to p the pressure
increases if δk > 1 and decreases if δk < 1 when the material is deformed. For the free energy
term holds ρψk = O(tr τ k). For the assumption 0 < δk < 2 the summation may be of the same
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order as the trace of the stress. This may give a considerable contribution to the pressure then,
because values of tr τ = O(106) Pa are not unusual.

For the relation between the density and the thermodynamic pressure (in equilibrium) the
Tait equation, see van Krevelen and Hoftyzer (1976), is often used for polymeric fluids:

ρ−1(p, T ) = ρ−1
0 (1− c ln(1 + p/B)) , (38)

where ρ−1
0 = ρ−1(0, T ), c is a constant and B depends exponentially on the temperature B =

b0 exp(−b1(T − 273)). Eq. (38) is equivalent to

p(ρ, T ) = B

(
exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
− 1

)
. (39)

The order of magnitude of the various coefficients is about 2 · 108 Pa < b0 < 4 · 108 Pa,
4 ·10−3 K−1 < b1 < 7 ·10−3 K−1 and c ' 0.1. The exponent is still between 1 and 3 for pressures
lower than 0.1 GPa. Accurate values for various polymers can be found in the books by Tanner
(1985) and van Krevelen and Hoftyzer (1976).

The corresponding free energy ψ can easily be obtained by integrating the equation of state
for the pressure:

ψ(ρ, T ) = ψ̃(T ) + cBρ−1
0 exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
+Bρ−1, (40)

where ψ̃(T ) is a function of temperature only.

4.3.3 The entropy s
With the assumption Eq. (35) for the moduli, the entropy can easily be calculated by differen-
tiation of Eq. (36)

s = − ∂ψ

∂T

∣∣∣∣
ρ,b

= s(ρ, T )−
K∑

k=1

γkT
−1ψk, (41)

where s(ρ, T ) = − ∂ψ/∂T
∣∣∣
ρ
. Because ψk is positive, it depends on γk whether the entropy

increases (γk < 0), decreases (γk > 0) or remains constant (γk = 0) with increasing internal
deformation.

Differentiating ψ in Eq. (40) with respect to the temperature gives for the entropy s:

s(ρ, T ) = Bb1ρ
−1 +B

(
cb1ρ

−1
0 −

(
c+

ρ−1

ρ−1
0

)
dρ−1

0

dT

)
exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
+ s̃(T ), (42)

where s̃ = −dψ̃/dT is a function of temperature only.

5 The temperature equation

In this section we will transform the balance of entropy into the temperature equation for vis-
coelastic fluids. Therefore we have to evaluate the change of entropy. If we consider the entropy
as a function of the temperature, the thermodynamic pressure and the internal deformation
tensors s = s(T, p, bk), the change of entropy can be written as

ṡ =
∂s

∂T

∣∣∣∣
p,b
Ṫ +

∂s

∂p

∣∣∣∣
T,b

ṗ+
K∑

k=1

∂s

∂bk

∣∣∣∣
p,T,b′k

: ḃk =
cp,b

T
Ṫ − αT ,b

ρ
ṗ+ ∆sb, (43)

which defines the heat capacity at constant pressure and internal deformation cp,b, the thermal
expansion coefficient αT ,b and the entropy difference ∆sb. Substitution of the entropy change
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(43) in the local entropy balance (7) with the viscoelastic entropy production (27), gives the
temperature equation for viscoelastic fluids

ρcp,bṪ − TαT ,bṗ+ ρT∆sb = TΠs − T∇ · (T−1φq) = Dm −∇ · φq. (44)

In the remaining part of this section we will discuss the expressions for cp,b, αT ,b and ∆sb. These
quantities can be obtained by differentiation of the entropy, Eqs. (41) and (42). We will related
them to measured, or more easily to measure, quantities.

5.1 The thermal expansion coefficient αT ,b

The reason why we have called αT ,b the thermal expansion coefficient is that it is also related to
the temperature derivative of the density:

−ρ−1αT ,b =
∂s

∂p

∣∣∣∣
T,b

= − ∂ρ−1

∂T

∣∣∣∣∣
p,b

, (45)

which follows easily from the compatibility relation for the free enthalpy g = u− Ts− p/ρ, see
for example Kuiken (1994). To evaluate the thermal expansion coefficient, we note that

−ρ−1αT ,b =
∂s

∂p

∣∣∣∣
T,b

=

(
∂s

∂ρ−1

∂ρ−1

∂p

)∣∣∣∣∣
T,b

= ρ−1κT ,b
∂s

∂ρ−1

∣∣∣∣
T,b

, (46)

where κT ,b is the isothermal compressibility which is discussed in Appendix B. There we have
shown that κT ,b is approximately independent of the internal deformation tensors and that this
dependence vanishes exactly for δk = 1. The remaining derivative of the entropy can be obtained
by differentiation of the entropy (41):

∂s

∂ρ−1

∣∣∣∣
T,b

= −b1p+B
ρ−1

cρ−2
0

dρ−1
0

dT
exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
+ ρT−1

K∑
k=1

γk(δk − 1)ψk, (47)

so that this term, and also the thermal expansion coefficient αT ,b, is only independent of the
internal deformation tensors, i.e. reduces to the equilibrium value αeq

T ,b, if δk = 1. Furthermore,
we note that the derivative ∂s/∂ρ−1

∣∣
T,b is, for not too high values of p, dominated by the

second term on the right-hand side which is O(106) Pa ·K−1. The first term plays a role
for pressures of O(108) Pa. For γk and (δk − 1) = O(1) the last term on the right-hand
side is O(T−1 tr τ ) ≤ O(104) Pa ·K−1. So αT ,b is approximately independent of the internal
deformation and αT ,b = αeq

T ,b is a good approximation out of equilibrium. Furthermore, neglecting
the lower order terms results in αT ,b = αeq

T ,b = ρ0dρ
−1
0 /dT . Experimental data of the thermal

expansion coefficient in equilibrium indicate αeq
T ,b ' 0.16/Tg, see van Krevelen and Hoftyzer

(1976), so that the order of magnitude is about 10−4 K−1 < αeq
T ,b < 10−3 K−1.

5.2 The entropy difference ∆sb

The derivative of the entropy in ∆sb can be obtained by differentiation of the entropy (41). We
will split the derivatives in two parts:

∂s

∂bk

∣∣∣∣
T,p,b′k

=
∂s

∂bk

∣∣∣∣
T,ρ,b′k

+ ∆s, (48)

∆s =
∂s

∂ρ−1

∣∣∣∣
T,b

∂ρ−1

∂bk

∣∣∣∣∣
p,T,b′k

. (49)
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For the first term we find with the help of Eqs. (41) and (10)

∂s

∂bk

∣∣∣∣
T,ρ,b′k

= −γk

T

∂ψk

∂bk

∣∣∣∣
T,ρ,b′k

= − γk

2ρT
b−1

k · τ e,k. (50)

As for rubbers, the entropy derivative at constant density is related to the temperature derivative
of the stress. For viscoelastic fluids this relation becomes

∂s

∂bk

∣∣∣∣
T,ρ,b′k

= − ∂

∂T

(
∂ψ

∂bk

∣∣∣∣
T,ρ,b′k

)∣∣∣∣∣
ρ,bk

= − 1
2ρ

b−1
k · ∂τ e,k

∂T

∣∣∣∣
ρ,bk

. (51)

so that this term can be obtained from stress-temperature measurements.
From Appendix B we find that ∆s can be approximated by

∆s '
(δk − 1)

2ρ
αT ,bb

−1
k · τ e,k. (52)

If we assume that γk = O(1) and δk−1 = O(1) the ∆s term is O(TαT ,b) times the ∂s/∂bk|T,ρ,b′k
term, so the ∆s term is in general smaller but can not be neglected a priori.

Combining the two results gives that ∆sb can be approximated by

∆sb ' − 1
2ρ

K∑
k=1

(T−1γk − (δk − 1)αT ,b)(b−1
k · τ e,k) : ḃk

= −1
ρ

K∑
k=1

(T−1γk − (δk − 1)αT ,b)τ e,k : (d− dirr,k), (53)

where we have used Eq. (8) for the last equality.

5.3 The heat capacity cp,b

Differentiation of the entropy (41), gives for the heat capacity cp,b:

cp,b = T
∂s

∂T

∣∣∣∣
p,b

= cp,b −
1
T

K∑
k=1

γkψk (γk − 1− TαT ,b(δk − 1)) , (54)

where cp,b is given by

cp,b = T
∂s

∂T

∣∣∣∣
p,b
. (55)

This result shows that cp,b only reduces to cp,b when γk = 0, or both γk = 1 and δk = 1. Because
ψk is positive it depends on the quantity between the brackets whether cp,b is smaller or larger
than cp,b. For δk = 1 the heat capacity cp,b decreases when γk < 0 and γk > 1 and it increases
when 0 < γk < 1. Furthermore, in equilibrium cp,b reduces to cp,b because ψk vanishes.

From Appendix B we find that cp,b is approximately independent of bk. This means that
cp,b is approximately equal to ceqp,b, the heat capacity at constant pressure and constant internal
deformation in equilibrium. This quantity is usually measured and then denoted by cp. However,
to be consistent with the thermodynamic notation we will use ceqp,b instead of cp. The heat
capacity of a polymeric fluid is O(103) J · kg−1 ·K−1, see van Krevelen and Hoftyzer (1976),
while the order of magnitude of ψ/ρT = O(1)–O(10) J · kg−1 ·K−1. If we assume that γk(γk −
1 − TαT ,b(δk − 1)) = O(1), we find that cp,b = cp,b = ceqp,b is in general a good approximation.
Because it may be difficult to perform the experiments at constant internal deformation tensor
the heat capacity at constant pressure and elastic stress cp,τe is also of importance. We will
discuss this quantity in Appendix B.
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5.4 An approximation for the temperature equation
With the results of the approximations in the sections 5.1–5.3, we obtain for the temperature
equation (44)

ρceqp,bṪ = Tαeq
T ,bṗ+Dm − ρT∆sb +∇ · (κ · ∇T ), (56)

where ceqp,b equals the heat capacity at constant pressure and αeq
T ,b the thermal expansion coeffi-

cient that are usually measured in equilibrium. The heat conduction tensor κ may be anisotropic
as discussed at the end of section 2.2. The heat production term Dm − ρT∆sb can be rewritten
by combining Eqs. (28) and (53). Using Eqs. (23), (25) and (29) for the irreversible rate-of-
deformation tensor, the elastic stress and the modal mechanical dissipation results in

Dm − ρT∆sb = 2ηsd : d +
K∑

k=1

(γ∗kτ k : d + (1− γ∗k)Dm,k) , (57)

where γ∗k = γk − Tαeq
T ,b(δk − 1). Eq. (57) has also been obtained by Braun (1991) for δk = 1 and

K = 1. This result shows that for γk = 1 and δk = 1 the stress work completely contributes to
the heat production (reversibly), so that the internal energy does not change when bk changes. In
this case the fluid is called entropy elastic. This elasticity would correspond to the deformation
of entirely free chains, so without distortion of the valent angles. For γk = 0 and δk = 1 the
heat production equals the dissipation, i.e. ∆sb = 0, so that the entropy does not change when
bk changes. In this case the fluid is called energy elastic. This elasticity would correspond to
pure distortion in the valent angles, so without a macromolecular conformation. The fact that
rubbers give out heat at extension, and thus are at least partly entropy elastic, has already been
noticed in the beginning of the previous century. The effect is called the Gough–Joule effect.

6 The relation with experimental data

Before we discuss two experiments for polymeric fluids, we will first mention another experiment
performed for rubbers that supports the scaling (35) of the shear modulus G: anisotropic thermal
expansion. This effect can be described by the equivalent of Eq. (75) for rubbers, see for example
Godovsky (1992). Then, however, the anisotropy is related to the (observable) Finger tensor
b instead of the internal deformation tensor. The anisotropy of rubbers is up to two orders
of magnitude larger than the volume thermal expansion. In the direction of orientation, the
thermal expansion is negative and perpendicular to the orientation positive. For elongated
samples of natural rubber (ε < 1.6), the value of γ agrees well with calory measurements, see
Shen and Croucher (1975). However, deviations were found in Thiele and Cohen (1980) for
larger elongation ratios.

Astarita and Sarti (1976) and Sarti and Esposito (1977/1978) have tried to show that some
polymeric fluids are entropy elastic. Therefore they used the integrated form of the temperature
equation for entropy elastic fluids (γk = δk = 1), where pressure effect and heat conduction have
been neglected:

ρĉ∆T =
∫

t
τ : d dt, (58)

where ĉ is a heat capacity that equals ceqp,b for an entropy elastic fluid. To ensure that the
stress work is much larger than the dissipation, the total force on the sample has been taken
a strong increasing function of time. From the obtained temperature rise and stress work, the
heat capacity can be computed and compared with values from literature. For an entropy elastic
fluid the values must correspond, for an energy elastic fluid the obtained heat capacity will be
too high.

Astarita and Sarti (1976) performed the experiment (at constant deformation rate) for poly-
isobutylene at room temperature. Both in shearing and elongational flow they obtained a good
correspondence with values of the heat capacity in the literature, indicating an (almost) entropy
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elastic fluid (γ close to 1). This seems in agreement with the value of γ = 1.03 given by Mark
(1973), obtained for rubber elasticity measurements. The small difference is probably within
experimental error, because the scatter in the obtained heat capacities is about 10 %.

Sarti and Esposito (1977/1978) performed adiabatic shear and elongational experiments, at
various temperatures above Tg, on polyisobutylene and polyvinylacetate with different molecular
weights. The materials were deformed from equilibrium at a constant rate until a maximum
deformation. Then the deformation was stopped and the material relaxed adiabatically towards
a stress-free state. For a purely entropy elasticity the temperature has to remain constant during
the relaxation process (d = 0), see Eqs. (56) and (57). For the polyisobutylene melts they found
a vanishing temperature rise during the stress relaxation process, which confirms the result
by Astarita and Sarti (1976) which has been discussed above. Furthermore, they obtained
a constant heat capacity, equal to the equilibrium value, during deformation. However, for
the polyvinylacetate at 333 K which is more than 20 K above Tg, the temperature decreased
during the relaxation. This can be explained by a value of γ > 1, as has also been noted
by Braun (1991). For polyvinylacetate no data of γ are available in Mark (1973). However,
for vinyl polymers γ is usually positive and not close to one, for polyvinylalcohol for example
1.23 ± 0.07 < γ < 1.68 ± 0.12, where the lowest value is for the syndiotactic and the highest
for the isotactic form of polyvinylalcohol. So the decreasing temperature does not seem to be
in contradiction with the thermodynamic theory. The result that at a higher temperature the
decreasing temperature is absent, might be explained by the fact that then dissipation is not
negligible compared to elastic effects. The temperature dependence for polyvinylacetate can be
described by a WLF shift factor with Tg = 305 K, c1 = 15.6 and c2 = 46.8 K, which gives
a ratio of 100 in relaxation times. Because the elongation rate is almost equal, this results in
a more viscous response for the sample at the highest temperature. And if much mechanical
energy is already dissipated during elongation, the possible temperature change during stress
relaxation is much smaller or maybe almost absent. However, the increasing heat capacity ĉ
during elongation can not be explained in this way. In view of Eq. (54) it is not expected that
there will be a large change of the heat capacity cp,b during elastic deformation, for moderate
stresses and γk = O(1). Furthermore, if elastic effects are dominant, the stress work is much
larger than the dissipation and the heat production is larger than the stress work for γ > 1.
This would result in a larger temperature rise ∆T and consequently a decreasing heat capacity
ĉ. For an increase of the heat capacity ĉ a γ < 1 would be needed. In the literature about rubber
elasticity, changes of γ to negative values are observed sometimes, see Treloar (1975) and Mark
(1976). The effect is ascribed to strain-induced crystallization. Whether this effect plays a role
in the experiments of Sarti and Esposito (1977/1978) is not clear.

7 Conclusions

In this paper we have derived the temperature equation for compressible viscoelastic fluids, with
the help of the thermodynamics. We discussed both the irreversible (dissipative) part and the
reversible (elastic) part of the temperature equation. The reversible part is closely related to
the free energy. From the free energy the state variables (elastic stress, pressure and entropy)
can be calculated. Once these quantities are completely known, the temperature equation with
all the coefficients (like heat capacity and thermal expansion coefficient) can be obtained.

Results have been illustrated with various stress differential models and for adapting a power-
law scaling of the shear moduli on density and temperature, as usual in rubber elasticity. We
found that if the moduli depend linearly on temperature and density (as in kinetic theory) the
pressure reduces to its equilibrium value. Otherwise elastic deformation may cause a considerable
pressure change. For the linear scaling, the temperature equation also simplifies considerably:
the non-equilibrium heat capacity and thermal expansion coefficient reduce to their equilibrium
values and the heat production equals the stress work. However, rubber elasticity experiments
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show that the linear scaling generally does not hold. We found that, for usual values of the
pressure, temperature and stresses, the non-equilibrium heat capacity and thermal expansion
coefficient can still be approximated by the equilibrium values, so that a much simpler ap-
proximate temperature equation for viscoelastic fluids could be derived. The heat production
term, however, does not reduce to the stress work and has to be included in the approximate
temperature equation.

Not many experimental results exist to test the approximate temperature equation for poly-
meric fluids. The results of Astarita and Sarti (1976) and Sarti and Esposito (1977/1978) for
polyisobutylene seems to be in agreement with rubber elasticity experiments and the thermo-
dynamic theory. For some of the results of Sarti and Esposito (1977/1978) for polyvinylacetate,
however, this is not clear.
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A Expressions for the mechanical dissipation of various viscoelastic models

The expression for the mechanical dissipation Dm,k, Eq. (29), can be obtained by substituting
for a stress model Eq. (20) and the scalar gi,k defining gk in Eq. (21). Because the expression
is similar for all modes we will omit the subscript k for the mode number. Furthermore we will
show that the mechanical dissipation is non-negative. One should be careful by using expressions
for the dissipation of specific models presented in the literature. The incorrectness is usually
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caused by using the wrong expressions for the elastic stress τ e,k for models with non-constant
determinant or elastic stresses that are not of the neo-Hookean type, as for example in Leonov
(1992) and Peters (1996). The correctness of the dissipation can easily be checked by considering
a fully developed flow, for which the dissipation equals the stress work.
The Johnson–Segalman model and the Phan-Thien–Tanner model

The Johnson–Segalman model and the Phan-Thien–Tanner model are defined by g0 = Y , g1 =
−Y and g2 = 0, B = 1 and 0 ≤ ξ ≤ 2. For the Johnson–Segalman model Y = 1, for the linear
Phan-Thien–Tanner model Y = 1+ε(I1−3), and for the exponential Phan-Thien–Tanner model
Y = exp[ε(I1 − 3)]. The parameter ε is positive. The mechanical dissipation (29) becomes

Dm =
G

2(1− ξ)2λ
Y
(
I1 + tr b−1 − 6

)
, (59)

for ξ 6= 1. Decomposition on the principal axis immediately shows that, for a positive definite
internal deformation tensor, the term between the brackets in Eq. (59) is non-negative (the
function x + 1/x − 2 is non-negative for x > 0). For the Johnson–Segalman model and the
exponential Phan-Thien–Tanner model Y is positive and for the linear Phan-Thien–Tanner
model the result of Wapperom and Hulsen (1995) that I1 ≥ 3, ensures a positive Y and thus a
positive dissipation.
The (modified) Leonov model

The modified Leonov model is defined by B = 1, ξ = 0, g0 = φ/2, g1 = φ(I1 − I2)/6 and
g2 = −φ/2, where φ−1 = 1 + 2α/π arctan (β/4 (I1 + I2 − 6)) with α ≥ 0 and β ≥ 0, see
Bush (1989). The modified Leonov model reduces to the Leonov model if φ = 1 is taken. The
mechanical dissipation (29) becomes

Dm =
Gφ

4λ

(
b : b− 3 +

I1
3

(I2 − I1)
)
. (60)

With the help of the decomposition on the principal axis, and using I3 = 1 and the results
of Wapperom and Hulsen (1995) that I1 ≥ 3 and I2 ≥ 3 for the Leonov models, it can be
shown that the term between the brackets in Eq. (60) is non-negative. Because φ is positive,
the dissipation is non-negative.
The Giesekus model

The Giesekus model is defined by B = 1, ξ = 0, g0 = (1 − α), g1 = −(1 − 2α) and g2 = −α,
where 0 ≤ α < 1. For α = 0 the model reduces to the upper-convected Maxwell model (the
Johnson–Segalman model with ξ = 0). The mechanical dissipation (29) becomes

Dm =
G

2λ

(
(1− α)

(
I1 + tr b−1 − 6

)
+ α (b : b− 2I1 + 3)

)
. (61)

As for the Johnson–Segalman model the term I1 +tr b−1−6 is always non-negative. Decomposi-
tion on the principal axis also shows that b : b−2I1 +3 is non-negative (the function x2−2x+1
is non-negative for x > 0). Thus for the admissible values of α the dissipation is non-negative.
The Larson model

The Larson model is given by g0 = 1/B, g1 = −1/B and g2 = 0, B = (1+β(I1−3)/3)−1, where
0 ≤ β ≤ 1, and ξ = 0. The mechanical dissipation (29) becomes

Dm =
G

2λ

(
I1 − 3 +B−1

(
tr b−1 − 3

))
. (62)

After substitution of the definition of B and reordering of the terms, it follows that the term
between the brackets can be written as (1 − β)

(
I1 + tr b−1 − 6

)
+ β

(
tr b−1I1/3− 3

)
. As for
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the Johnson–Segalman model the term I1 + tr b−1 − 6 is always non-negative. Furthermore, by
decomposition on the principle axes it can be shown that tr b−1I1/3− 3 is non-negative. Thus
for 0 ≤ β ≤ 1 the dissipation is non-negative.
The FENE-P model

The FENE-P model is given by g0 = 1, g1 = −B and g2 = 0, B = b/(b+3− I1), with I1 < b+3,
and ξ = 0, see Wedgewood and Bird (1988). The mechanical dissipation (29) becomes

Dm =
G

2λ

(
B2I1 − 6B + tr b−1

)
. (63)

Reordering of the terms gives that the factor between the brackets equals

B2I1 − 6B + tr b−1 = I1 + tr b−1 − 6 + (B − 1)((B + 1)I1 − 6). (64)

As for the Johnson–Segalman model the first part of this expression is positive. Because B > 1
the second part of the expression is positive if I1 > 3.

B Approximations of various thermodynamic quantities

B.1 The isothermal compressibility κT ,b

The isothermal compressibility is defined by

κT ,b =
1
ρ

∂ρ

∂p

∣∣∣∣
T,b

, (65)

and can be obtained by differentiation of the thermodynamic pressure (37):

κ−1
T ,b = −ρ−1 ∂p

∂ρ−1

∣∣∣∣
T,b

=
Bρ−1

cρ−1
0

exp

[
1
c
(1− ρ−1

ρ−1
0

)

]
− ρ

K∑
k=1

δk(δk − 1)ψk. (66)

For polymeric fluids the isothermal compressibility in equilibrium is about 10−10 Pa−1 < κeq
T ,b <

10−9 Pa−1, see for example van Krevelen and Hoftyzer (1976). This corresponds to the order
of magnitude given for B and c below Eq. (39). If δk = 0 or if δk = 1 (as in the kinetic theory
of Gaussian networks) the last term at the right-hand side vanishes and then the isothermal
compressibility only depends on density and temperature. In section 4.3 we have shown that
O(ρψk) ≤ O(tr τ k). If δk is assumed to be O(1), the last term on the right-hand side of
Eq. (66) is negligible, because the order of magnitude is O(tr τ ), which is usually not larger
than O(106) Pa. The order of magnitude of the first term on the right-hand side of Eq. (66) is
O(109) Pa. So κT ,b = κeq

T ,b is a good approximation out of equilibrium.

B.2 The entropy difference term ∆s

The entropy difference term ∆s is defined by

∆s =
∂s

∂ρ−1

∣∣∣∣
T,b

∂ρ−1

∂bk

∣∣∣∣∣
p,T,b′k

, (67)

where ∂s/∂ρ−1
∣∣
T,b is given by Eq. (47). The other term can be obtained by differentiation of

the pressure (37):

∂ρ−1

∂bk

∣∣∣∣∣
p,T,b′k

=
(δk − 1)

2
b−1

k · τ e,k

(
B

cρ−1
0

exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
+ ρ2

K∑
l=1

(δl − 1)δlψl

)−1

. (68)

Thus this term, and also ∆s, only vanishes if δk = 1. Analogously to section B.1, it can be
shown that for δk − 1 = O(1) the sum over the free energies ψl can be neglected. With the
estimate of (47), discussed in section 5.1, we then find that ∆s can be approximated by

∆s '
(δk − 1)

2
ρ−1

ρ−1
0

dρ−1
0

dT
b−1

k · τ e,k '
(δk − 1)

2
ρ−1αT ,bb

−1
k · τ e,k. (69)
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B.3 The heat capacity cp,b

The heat capacity cp,b can be determined from the entropy s given by Eq. (42). After some
calculations, it follows

∂s

∂T

∣∣∣∣
p,b

= B(Z0 + Z1 exp

[
1
c

(
1− ρ−1

ρ−1
0

)]
) +

ds̃

dT
,

Z0 = −b21ρ−1 + b1ρ
−1αT ,b,

Z1 = −cb21ρ−1
0 + b1

(
ρ−1

ρ−1
0

+ c

)
dρ−1

0

dT
+

ρ−2

cρ−2
0

αT ,b
dρ−1

0

dT

− ρ−2

cρ−3
0

(
dρ−1

0

dT

)2

− b1ρ
−1αT ,b −

(
c+

ρ−1

ρ−1
0

)
d2ρ−1

0

dT 2
. (70)

For polymeric fluids the order of magnitude of the heat capacity is about 2 · 103 J · kg−1 ·K−1

to 3 · 103 J · kg−1 ·K−1, so that ∂s/∂T |p,b = O(10) J · kg−1 ·K−2. Evaluation of Eq. (70) at
atmospheric pressure, i.e. the exponential function is about 1, and neglecting non-dominating
terms gives

∂s

∂T

∣∣∣∣
p=patm,b

' ds̃

dT
+B

(
−b21ρ−1 + b1

ρ−1

ρ−1
0

dρ−1
0

dT
− ρ−1

ρ−1
0

d2ρ−1
0

dT 2

)
. (71)

If it is assumed that the second derivative of ρ−1
0 has the order of magnitude of αT ,b/ρT it follows

that the derivative of s̃ is the dominating term, which has to be O(10) J · kg−1 ·K−2.

B.4 The heat capacity cp,τe

The heat capacity at constant pressure and elastic stress cp,τe is defined by

cp,τe = T
∂s

∂T

∣∣∣∣
p,τ e

. (72)

The difference between cp,τe and cp,b equals

∆c = cp,τe − cp,b = T
K∑

k=1

∂s

∂bk

∣∣∣∣
T,p,b′k

:
∂bk

∂T

∣∣∣∣
p,b′k,τ e,k

. (73)

The first term on the right-hand side has already been needed for the calculation of the entropy
difference in section 5.2. For the neo-Hookean model, with the free energy (32), the second term
can be computed analytically. For the other models (33) and (34) it is also possible to calculate
the difference analytically. However, the ∂bk/∂T |p,b′k,τ e,k

is more difficult to elaborate due to
the nonlinear relation between the extra-stress and the internal deformation. Therefore, we will
only discuss the expressions for the neo-Hookean model.

Example: cp,τe for the neo-Hookean free energy.

The last term on the right-hand side of Eq. (73) may be calculated from Eqs. (20) and (25).
Differentiation of the elastic modal stress τ e,k gives

0 =
∂τ e,k

∂T

∣∣∣∣
p,b′k,τ e,k

=
Gk

(1− ξk)2
∂bk

∂T

∣∣∣∣
p,b′k,τ e,k

+
1

(1− ξk)2
(bk − I)

∂Gk

∂T

∣∣∣∣
p,b′k,τ e,k

. (74)

After rearrangement of this equation we obtain

∂bk

∂T

∣∣∣∣
p,b′k,τ e,k

= −(γkT
−1 − δkαT ,b)(bk − I). (75)
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Combination of Eqs. (73), (48) and (75) gives the heat capacity difference ∆c

∆c =
K∑

k=1

Gk

2ρ(1− ξk)2
(γk − (δk − 1)TαT ,b)(γkT

−1 − δkαT ,b)(I1,k + tr b−1
k − 6), (76)

where the last factor with the invariants is always positive out of equilibrium and vanishes in
equilibrium, see Appendix A. So it depends on the signs of γk and δk whether ∆c is positive
or negative. If γk and δk have equal order of magnitude, ∆c is positive, because TαT ,b ' 0.2.
This is analogous to the heat capacity of viscous fluids, where the heat capacity at constant
pressure is larger than the heat capacity at constant volume. The heat capacity difference
∆c is approximately proportional to γ2 tr τ/ρT ' O(10γ2) J · kg−1 ·K−1 for stresses between
106 and 107 Pa. For γk = O(1) the heat capacity difference ∆c is relatively small, so that
cp,τe ' ceqp,b is a good approximation.
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