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Abstract
A second-order accurate cell-vertex finite volume/finite element hybrid scheme is

proposed. A finite volume method is used for the hyperbolic stress equations and a
finite element method for the balance equations. The finite volume implementation
incorporates the recent advancement on fluctuation distribution schemes for advection
equations. Accuracy results are presented for a pure convection problem, for which
fluctuation distribution has been developed, and an Oldroyd-B benchmark problem.
When source terms are included consistently, second-order accuracy can be achieved.
However, a loss of accuracy is observed for both benchmark problems, when the flow
near a boundary is (almost) parallel to it. Accuracy can be recovered in an elegant
manner by taking advantage of the quadratic representations on the parent finite ele-
ment mesh. Compared to the finite element method, the second-order accurate finite
volume implementation is ten times as efficient.

Keywords: Hybrid finite element/finite volume, fluctuation distribution, second-order, Oldroyd-
B, pure convection.
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1 Introduction
This study investigates the application of a new hybrid scheme to the numerical solution
of model and viscoelastic flows. This time-stepping scheme combines both finite element
(FE) and finite volume (FV) spatial discretisations. Specific attention is focused on the
performance characteristics of such a hybrid method, in terms of accuracy and efficiency,
with comparison against a finite element alternative, previously developed for highly elastic
flows [1], [2], [3].

There are a number of key features to this work that are novel in the viscoelastic context.
First, there is the particular choice of hybrid FE/FV construction. A cell-vertex FV approach
is adopted, inspired by the recent work of Morton and co-workers [4], [5], Struijs et al. [6]
and Tomaich and Roe [7]. This extends their findings for advection, Euler and compressible
Navier–Stokes equations into incompressible viscoelastic flows of mixed parabolic/hyperbolic
type, containing solution dependent source terms. The method is applied on triangular FE
meshes with FV sub-cells, reminiscent of the sub-element FE implementation of Marchal
and Crochet [8], though that work was on rectangular meshes. The triangular FV approach
has been adopted by Struijs et al. [6] and Tomaich and Roe [7] in the cell-vertex form and
by Berzins and Ware [9] in the cell-centred case. The cell-vertex instance leads naturally
to fluctuation distribution to associate cell contributions with nodal equations, that encom-
passes properties such as positivity, upwinding and linearity preservation. In contrast, to
achieve the same ends, the cell-centred form requires approximate Riemann Solvers and non-
linear flux limiters. Compared to cell-centred methods, cell-vertex schemes maintain their
accuracy for broader families of non-uniform and distorted meshes, and are less susceptible
to spurious modes than their cell-centred counterparts, [10], [4].

Galerkin finite element methods are optimal for self-adjoint problems, and hence are ideal
for discretisation of elliptic operators. In contrast, finite volume technology has advanced
considerably over the last decade, in its treatment of equations that may be expressed in
conservation form such as pure advection equations, and hence their application to hyper-
bolic equations of first-order in space and time, see Struijs et al. [6]. For incompressible
viscoelastic flows, with non-trivial source terms, the question arises as to whether a finite
element approach may be better suited to solve for the field equations, concerned with the
conservation of mass and momentum (parabolic type), whilst a finite volume approach may
be more appropriate for the advection-dominated constitutive law (hyperbolic type). For
example, recent work on advection equations with structured and unstructured grids has
shown that fluctuation distribution schemes can capture steep gradients accurately, [6].

The literature on finite element methods for viscoelastic flows is broad. Some of the
more robust schemes of recent years have shown that it is possible to solve for highly elastic,
smooth and non-smooth flows [1], [2]. This has produced algorithms of EVSS [11], space-
time/Galerkin Least squares with discontinuous stress [12], DEVSS [13] and DEVSS/DG
[14] and Recovery-Taylor–Galerkin types [3]. Nevertheless, the FE approach does carry
with it a heavy computational penalty in complex flows, that necessitates sophisticated
numerical strategies in dealing with upwinding, accurate representation of velocity gradients
and the coupling of the system. This is an important issue to address, specifically as three-
dimensional [15], [16] and multi-mode viscoelastic [12], [17] computations are now being
undertaken.

It is for this reason that attention has been devoted to alternative techniques, such as
that embodied in FV methodology, that require less memory and CPU time than do their
FE counterparts. This method arose from the finite difference domain, being extended
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to embrace conservation laws stated in integral form on control volumes (see Hirsch [10]).
This naturally incorporates the fluxes of the system in a localised manner, as integrals on
boundaries of control volumes, with source terms taken as associated area integrals, and
is ideal for hyperbolic systems. The location of variables and juxtaposition with respect
to control volume impact upon the equations constructed. The cell-centred choice may
be equivalenced to a piecewise constant solution interpolation, whilst correspondingly a
cell-vertex form equates to linear interpolation. In this respect, the commonly employed
staggered grid system is an overlapping arrangement, that essentially mimics the cell-centred
approach.

Experiences with FV methods for viscoelastic flow fall into two categories, those with a
complete FV implementation and those of a hybrid form. The most common class is the
former, invoking a full FV implementation for primitive variables of velocity, pressure and
stress, such as documented by Eggleston et al. [18], Darwish et al. [19] and Tanner and
co-workers ([20], [21]). Hybrid approaches have been developed by Sato and Richardson [22]
and Yoo and Na [23]. The majority of these studies investigate steady two-dimensional flows,
with the exceptions of [16], [24]. To date, most studies have concentrated on establishing
the viability of the particular FV implementation, considering in particular stability issues,
attempting to achieve high elasticity solutions to benchmark problems (see for example, Sato
and Richardson [22], and Yoo and Na [23] for solving the 4:1 contraction flow). Accuracy of
schemes has not been given extensive coverage in the viscoelastic domain, and this we attend
to here. Most studies adopt a time-stepping solution procedure (bar Darwish et al. [19] and
Yoo and Na [23]), and consider a staggered grid system to eliminate spurious pressure modes
with SIMPLER-type algorithms to search for a steady solution. Rectangular grids are taken
by most (normally implying with structure) and there are no other cell-vertex studies to our
knowledge.

Most pertinent of those references cited above are the two sources, Sato and Richardson
and Tanner and co-workers. The hybrid FE/FV study of Sato and Richardson is one that
employs a time-explicit FE method for momentum and FV for pressure and stress. A
cell-centred FV scheme is solved implicitly in time for stress. This implementation uses
a TVD (Total Variation Diminishing [10]) flux-corrected transport scheme applied to the
advection terms of the constitutive equation, essentially a form of higher-order upwinding.
The present study contrasts to this work via retaining an FE treatment of the pressure, and
the alternative FV choices for stress outlined above. The articles by Tanner and co-workers
([20], [21]), prove of interest due to the artificial diffusion incorporated on both sides of the
constitutive equation. This is a convergence stabilisation strategy, rather similar in style to
the SU (Streamline Upwind) method of Marchal and Crochet [8].

The finite element framework, upon which this hybrid algorithm is grafted, is a semi-
implicit time-stepping Taylor–Galerkin/pressure-correction scheme of fractional stages. The
FE treatment of the constitutive equation incorporates consistent Petrov–Galerkin stream-
line upwinding (SUPG) and recovery for velocity gradients. In two dimensions, the finite
element grid is constructed as a triangular tessellation, with pressure nodes located at the
vertices and velocity/stress components at both vertices and mid-side nodes. In the FE/FV
hybrid scheme, a cell vertex approach is adopted in the FV part for the constitutive equation.
A two-step Lax–Wendroff time-stepping is built into this scheme, as with the FE scheme
above, that is a popular choice of iterative smoother [5]. There is a natural complementar-
ity to the structure of the scheme, as one switches between the two choices of FE or FV
discretisation for stress. Four linear FV triangular cells are constructed as subcells of each
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parent quadratic FE triangular cell, by connecting the mid-side nodes. With stress variables
located at the vertices of the FV cells, no interpolation is required to recover the FE nodal
stress values.

A Cartesian benchmark flow problem is proposed in our investigation that displays an-
alytical solutions. This problem is two-dimensional in nature and may be stated in pure
convection form, or in the presence of source terms for an Oldroyd-B model. As such,
this problem may be solved for multiple scalar components by varying the boundary con-
ditions, each component being decoupled from the others. Such a problem has been devel-
oped to reflect greater complexity than the sink flow discussed in [25], which in contrast is
one-dimensional. The possibility arises of investigating situations with different inflow side
numbers, that is all important to distinguish between the merits of various fluctuation dis-
tribution schemes. Both circumstances of frozen kinematics and coupled stress/kinematics
are addressed in this manner. Orders of accuracy and efficiency in attaining solutions are
established.

2 Governing equations
For incompressible and isothermal flow, the balance of mass and linear momentum in non-
dimensional form are:

∇ · uuu = 0, (1)

Re
∂uuu

∂t
= −Re uuu · ∇uuu −∇p + ∇ ·

(
2
µs

µ
ddd + τττ

)
, (2)

where uuu is the fluid velocity, p the hydrodynamic pressure, III the unit tensor, τττ the extra-stress
tensor, µs the solvent viscosity and the Euler rate-of-deformation tensor ddd = (LLL + LLLT )/2,
with LLLT = ∇uuu the velocity gradient.

To establish the theory, we adopt the Oldroyd-B model to represent the stress. Extension
to more complex models, such as Phan-Thien–Tanner, Giesekus or FENE (see for example
[26]), is straightforward. The constitutive equation for the Oldroyd-B model is given by:

We
∂τττ

∂t
= −We uuu · ∇τττ + We (LLL · τττ + τττ ·LLLT ) + 2

µe

µ
ddd − τττ , (3)

where µe is the elastic viscosity and the total viscosity is µ = µe + µs. When µs = 0 we have
the Maxwell model. Non-dimensional numbers of relevance here are the Reynolds and the
Weissenberg number, defined as

Re =
ρUL

µ
, We =

λU

L
, (4)

where ρ is the fluid density, λ the fluid relaxation time, U a characteristic velocity and L a
characteristic length scale of the flow.

3 Numerical method
To search for the steady-state solution, a Lax–Wendroff time-stepping scheme is employed
based on a Taylor series expansion in time. To obtain an O(∆t2) accurate scheme, that
avoids the explicit evaluation of the Jacobian, a two-step approach is chosen and to handle
the incompressibility constraint, we use a pressure-correction method, see [27], [28]. The
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resulting solution method may be stated in general form, irrespective of the discretisation
method, consisting of three stages. At stage 1, where the two-step predictor-corrector is
embedded, the momentum and stress equations are solved:

Au(Un+1/2 − Un) =
∆t

2Re
bu(Pn,Un, T n),

Aτ (T n+1/2 − T n) =
∆t

2We
bτ (Un, T n),

Au(U∗ − Un) =
∆t

Re
bu(Pn,Un,Un+1/2, T n+1/2),

Aτ (T n+1 − T n) =
∆t

We
bτ (Un+1/2, T n+1/2), (5)

where U , T and P are vectors of nodal point values of the discretised velocity, extra stress
and pressure. The velocity and extra stress are approximated by quadratic functions per
finite element, using vertices and mid-side nodes. The pressure is approximated by a linear
function using the vertices alone.

The momentum equations are discretised with the Galerkin finite element method. The
diffusive terms are treated in a semi-implicit manner to enhance stability, as discussed in
[28]. The resulting matrix-vector equation for the momentum equation is solved with a
Jacobi iterative method, using no more than five iterative sweeps [28]. When we use a finite
volume method, the matrix Aτ is the identity matrix, while for a finite element method it is a
sparse matrix. The resulting matrix-vector equation is solved similarly as for the momentum
equation. The vector bτ represents the discretisation of the right-hand side of Eq. (3), its
precise form depending on the FV or FE discretisation. Using the hybrid FE/FV, thus,
avoids the need to solve a matrix-vector equation for the extra stress, and the right-hand
side bτ is easier to construct. This is advantageous from an efficiency viewpoint, particularly
for 3D or multi-mode computations. The details of the finite volume discretisation are
outlined below in sections 4 and 5.

To benchmark the hybrid finite element/finite volume scheme we compare its performance
against a pure finite element Taylor–Galerkin/pressure-correction method, with SUPG for
the stress equations, see [1], termed FE/SUPG. The SUPG upwind test function is given by

φφφu = φφφg + αuuuu · ∇φφφg, (6)

where φφφg is the quadratic Galerkin test function. The upwind parameter αu follows the
definition

αu =




g−1/2 g ≥ 1

g1/2∆t2 g < 1
, (7)

with

g =
3∑

l=1

(uuu · ∇ξl)
2, (8)

where ξl are the barycentric coordinate functions on a finite element, following the classical
definitions given in [1].

The second-order implementation of pressure correction requires the temporal incremen-
tation of pressure (in a weak form Poisson equation) and velocity. In stage 2, the pressure
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at the next time step (n + 1) is calculated, and in stage 3, incompressibility is enforced:

A2(Pn+1 − Pn) = b2(U∗), (9)

A3(Un+1 − U∗) = b3(Pn,Pn+1), (10)

where homogeneous Neumann boundary conditions on the temporal increment of pressure
are used and for U∗ the same boundary conditions are applied as to Un+1, see detailed
discussion in [27], [28]. The pressure is fixed at one point to eliminate the undetermined
integration constant. For reasons of accuracy, Eq. (9) is solved by a direct solution method,
using Choleski decomposition, whilst Eq. (10) is solved iteratively as above.

The truncation criteria we have employed for the time stepping procedure are

Re

∆t

||Un+1 − Un||2
||Un+1||2

≤ ε,

||Pn+1 − Pn||2
||Pn+1||2

≤ ε,

We

∆t

||T n+1 − T n||2
||T n+1||2

≤ ε, (11)

where ε is a small parameter, normally taken as 10−8.

4 Flux (fluctuation) distribution schemes
Recently, fluctuation distribution has been introduced in [6], using triangular meshes with a
cell-vertex finite volume method. Originally, the method was developed for pure convection
problems with a constant advection speed aaa:

∂φ

∂t
= −aaa · ∇φ, (12)

where φ is some scalar quantity. Fluctuation distribution (FD) is the term used to describe
the non-uniform distribution of the fluctuation of a finite volume cell to its member nodes.
The fluctuation is a local flux imbalance causing a non-zero time derivative of the local
solution. In our extension to the method, sources are present as well (see section 5), so the
flux term does not vanish in equilibrium. Hence ‘flux distribution’ is a more appropriate
term to describe the present implementation.

Integration over a finite volume subcell T yields

∫
T

∂φ

∂t
dΩT =

∮
ΓT

φaaa ·nnn dΓT ≡
∮
ΓT

RRR · nnn dΓT ≡ RT , (13)

where nnn is the inward normal, RRR the flux vector and RT is the resultant flux over triangle T .
For linear φ and constant aaa the line integral in Eq. (13) is evaluated exactly with the

trapezoidal rule. For the flux over triangle T , we obtain

RT = −
3∑

l=1

klφl, (14)

where the coefficients kl are

kl =
1

2
aaa · nnnl, (15)
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and nnnl represents the inward normal to the cell on the side opposite vertex l, scaled to be of
equal length to the side with which it is orthogonal, so that

∑
l nnnl = 0. Additionally, due to

the constant advection velocity aaa, we have

3∑
l=1

kl = 0. (16)

Within the FD scheme, the flux RT is calculated over the individual finite volume cells
T and then distributed to the nodes of that cell. The update from triangle T to vertex l on
that triangle is

Ω̂l
φn+1

l − φn
l

∆t
= αT

l RT , (17)

where Ω̂l is the area associated with node l. We will return to this in section 5. The
coefficients αT

l are weights which determine the distribution of the flux RT to vertex l of
triangle T .

The criteria for the suitable choice of αT
l are

a) conservation:
Conservation yields the requirement that the sum of the coefficients αl over the vertices l of
each triangle T equals: ∑

l

αT
l = 1. (18)

b) positivity:
Positivity means that φn+1

l is a convex combination of nodal values at the previous time
step, φn

j :

φn+1
l =

∑
j

cjφ
n
j , (19)

where the coefficients cj are positive. Positivity guarantees a maximum principle for the dis-
crete steady state solution of the linear advection equation, thus prohibiting the occurrence
of new extrema and imposing stability on the explicit scheme [6]. A stronger, but more easily
verifiable condition, is local positivity, which requires that the contribution of each trian-
gle, taken separately, is positive. A linear positive scheme is TVD. For nonlinear schemes,
the positivity criterion is less stringent than TVD, whilst still maintaining the favourable
properties of suppression of new extrema in the solution and guaranteeing stability of the
explicit time-stepping scheme. Ensuring positivity of the flux distribution has been only an
issue for the flux terms and may not be an appropriate criterium for source term treatment;
the presence of sources may produce new, physically meaningful extrema that should not be
suppressed.
c) linearity preservation:
Linearity preservation requires that the scheme maintains the steady state solution exactly,
whenever this is a linear function in space for an arbitrary triangulation of the domain. This
is closely related to the notion of second order accuracy, commonly discussed under finite
difference schemes, although it is an accuracy requirement on the spatial discretisation only.

A linear scheme does not have to be linearity preserving. For a linear scheme, φn+1
l is a

linear combination of solution values at the previous time step n, so that the coefficients cj

in Eq. (19) are constant.
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When written in the form (17), the two possibilities of having a linear scheme, are either
for the coefficients αT

l to be independent of φ, in which case it is linearity preserving, or for

αT
l =

βT
l

RT

, (20)

where the coefficients βT
l depend linearly on φ summing to RT . This fact can be used to

prove that linear schemes cannot be both positive and linearity preserving [6]. If one uses
the coefficients βT

l to express the distribution, instead of the coefficients αT
l , then Eq. (17)

becomes

Ω̂l
φn+1

l − φn
l

∆t
= βT

l . (21)

For certain flux distribution schemes, notably linear positive schemes, it is more convenient
to express the distribution in terms of the coefficients βT

l .
At this point, it is convenient to divide linear schemes into two classes, those that satisfy

positivity and the remainder that satisfy linearity preservation. Only a nonlinear scheme
can satisfy both of these properties simultaneously.

4.1 Choices for αl and βl

In this section, we discuss some choices for the coefficients αT
l in Eq. (17) and βT

l in Eq. (21).
Henceforth, we drop the superscript T in the α and β coefficients, for reasons of clarity. We
first note that a standard finite volume approach is recovered when a uniform distribution
is chosen, that is αi = αj = αk = 1/3, where {i, j, k} denotes the vertices of the FV-cell.

For FD-schemes, distinction is made on triangles with one and two inflow sides. Both
situations are illustrated in Figs. 1 and 2. The inflow sides are determined by the sign of the
coefficients kl - a positive kl indicates that the constant advection speed aaa is inflowing into
the side opposite vertex l. Due to Eq. (16), it is ensured that each triangle has a maximum
of two inflow sides and a maximum of two outflow sides.

Triangular cells, having only one inflow side, can satisfy the positivity and linearity
preservation properties by sending the whole flux to the downstream node, see [6]. In the
case with ki > 0, kj < 0, kk < 0, see Fig. 1, we would have

αi = 1, αj = 0, αk = 0. (22)

The various FD-schemes only differ for the case of two inflow sides. We will briefly discuss
some of the FD-schemes below: one satisfying positivity, one satisfying linearity preservation
and one satisfying both (a nonlinear variant). An extensive description of these and other
FD-schemes is provided in [6].

4.1.1 N-scheme
The N-scheme, or Narrow-scheme, is a linear β-scheme that is positive. It is optimal in
the sense that it uses the maximum allowable time-step and the most narrow stencil. The
resulting β-coefficients of the N-scheme, for the case of two inflow sides as illustrated in
Fig. 2, are

βi = −ki(φi − φk),
βj = −kj(φj − φk),
βk = 0.

(23)

where coefficients k follow from Eq. (15).
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4.1.2 Low Diffusion B scheme
The Low Diffusion B (LDB) scheme is a linear α-scheme that is linearity preserving. It shows
a relatively small amount of numerical diffusion in comparison with a linear positive scheme.
The LDB-scheme is based on the angles in the triangle on both sides of the advection speed
aaa. The alternative LDA-scheme is based on the corresponding area split of the triangle. The
coefficients αl in Eq. (17) are

αi = (sin γ1 cos γ2)/ sin(γ1 + γ2),
αj = (sin γ2 cos γ1)/ sin(γ1 + γ2),
αk = 0,

(24)

where the angles γ1 and γ2 are defined in Fig. 3. The closer advection speed aaa is to being
parallel to one of the boundary sides, the larger is the contribution to the downstream node
at that boundary.

4.1.3 PSI-scheme
The PSI-scheme is a non-linear scheme that is both positive and linearity preserving. It
is equivalent to the N-scheme with a MinMod limiter [6]. This may be interpreted as an
α-scheme, with the aid of Eq. (20) and safeguard for vanishing RT . If we denote the β-
coefficients of the PSI-scheme by β∗

l and of the N-scheme by βl, as in Eq. (23), we have

β∗
i = βi − L(βi,−βj),

β∗
j = βj − L(βj,−βi), (25)

where L is the MinMod limiter function defined by

L(x, y) =
1

4
(1 + sign(xy))(sign(x) + sign(y)) min(|x|, |y|), (26)

where the sign operator for argument x is given by

sign(x) =




−1 if x < 0
0 if x = 0
1 if x > 0.

(27)

The scheme only deviates from the N-scheme if βiβj < 0.

4.2 Extension to nonlinear advection equations
In the case of a non-constant advection speed uuu, we have

∂φ

∂t
= −uuu · ∇φ. (28)

Extension to the above theory with departure from a constant advection speed aaa, consists
in finding a conservative linearised advection speed aaa, as described in [6], that satisfies∫

Ω
uuu · ∇φ dΩ =

∫
Ω

aaa · ∇φ dΩ. (29)

Due to the linearity of φ (constant gradient), then

aaa =
1

Ω̂

∫
Ω

uuu dΩ. (30)
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Hence, in discretised form on a FV triangle T , we gather

aaa =
1

3

3∑
l=1

uuul, (31)

the average value of the velocity on the triangle, equating to the centroid value for a linear
interpolant. The flux RT , given by Eq. (13), in terms of the linearised advection speed
becomes

RT =
∮
ΓT

φaaa · nnn dΓT . (32)

Due to the constant advection speed, the trapezoidal rule is sufficient to evaluate the flux
RT exactly, along the finite volume boundaries. So for the coefficients kl we now have

kl =
1

2
aaa · nnnl. (33)

Note that using the (constant) linearised advection speed ensures a maximum of two inflow
and outflow sides on a FV triangle.

5 The hybrid Finite Element/Finite Volume Method
The finite element mesh used consists of triangles equipped with quadratic functions for
the velocity and stress, and linear functions for the pressure. The velocity and stress are
located at the vertices and mid-side nodes, the pressure at the vertices. To apply the flux
distribution schemes described in section 4 directly, we require triangles with only vertices.
A cell-vertex finite volume mesh can be constructed by dividing each parent finite element
into four finite-volume subcells, as indicated in Fig. 4. For stress, by allotting for linear
rather than quadratic elements, one order of accuracy is sacrificed compared to the pure
finite element method.

For the FV method, the Maxwellian constitutive equation (3) may be written in conser-
vative form, with recourse to the incompressibility constraint, viz,

∂τττ

∂t
= −∇ · R + QQQ, (34)

where the flux R and the source QQQ are

R = uuuτττ, (35)

QQQ =
1

We
(2

µe

µ
ddd − τττ) + LLL · τττ + τττ ·LLLT . (36)

Note, that when linear (finite volume) representations are employed, LLL and ddd reduce to
constants per FV-cell. If they are obtained from the quadratic FE representation, they are
linear functions.

Each of the stress components can be treated as a scalar function, denoted as φ, acting
in an arbitrary volume Ω. The variation of the quantity φ is controlled through the variation
of the flux vector RRR = uuuφ and the scalar source term Q.

Integration of Eq. (34) over a control volume Ω for a scalar stress component φ, with the
aid of the Gauss divergence theorem on the flux term, yields

∂

∂t

∫
Ω
φ dΩ =

∮
Γ
RRR · nnn dΓ +

∫
Ω
Q dΩ. (37)
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The flux integral may be evaluated as discussed in section 4.2. Correspondingly, the source
term integral is evaluated from the linear velocity and stress representations per FV-cell. Al-
ternatively, as the FV-mesh is constructed directly from the parent FE-mesh (with quadratic
functions), we may still retain the quadratic functions for evaluation of the FV integrals.
Obviously, this will demand more computational effort than the linear representation. How-
ever, as we proceed to demonstrate in sections 7 and 8, this has important implications with
respect to attenuation of optimal levels of accuracy.

In the original method of [6], the integration of the time-derivative term is performed
on median dual cells (MDC). For node i the MDC is illustrated in Fig. 5. This zone is
constructed around a node on its control volume, by connecting midside positions to triangle
centroids, and has area one third of the control volume. As the source terms are of a similar
form, it would seem appropriate to treat these in a likewise fashion, by recourse to a MDC
approach. However, this approach is found to be inconsistent: there is incompatibility due
to the selection of different areas for the source and flux terms. To clarify this issue, we will
consider the two finite elements illustrated in Fig. 6 starting from the steady-state solution.
The MDC approach always contributes a third of the source integral of both FV cells to
node 1 at the bottom left corner. For a one-dimensional flow in the y-direction, the whole
flux of triangle 134 is sent to node 1. The contributions are not in equilibrium and this
produces considerable update to node 1. Thus, source terms must be treated in a consistent
manner, that necessitates the same distribution scheme as used for the convection terms
(recall consistent upwinding in FE). As the time-derivative term is similar to the source
terms, the argument again holds for that term. This is most probably the reason for the
inaccuracy in the time-dependent solutions for pure convection problems reported in [29].
So, with accuracy in mind, the MDC approach may only be used for steady state solutions.
For transient problems, the time-derivative term demands a consistent treatment to capture
accuracy.

The above deliberations lead to the following modification of Eq. (17) when source terms
are present:

Ω̂l
φn+1

l − φn
l

∆t
= αT

l (RT + QT ), (38)

where QT is the source integral over the control volume of triangle T. Integration of the source
terms is performed by an integration rule with appropriate accuracy. For the consistent
treatment of the time-derivative term Ω̂l = αT

l Ω̂T , with Ω̂T the area of control volume
triangle T. For the MDC approach, Ω̂l is equal to the area of the median dual cell around
node l in triangle T .

6 Problem description
To test the accuracy of the finite volume method we have developed a two-dimensional
Cartesian test problem on a square of unit area. We use a structured, uniform, quadrilateral-
based, triangular finite element mesh, as shown in Fig. 7 for the 2x2 mesh. To test for
accuracy, we will use similar meshes consisting of 4x4, 8x8 and 16x16 elements, which have
mesh size (side) h of 0.5, 0.25, 0.125 and 0.0625, respectively. For the velocity field, illustrated
in Fig. 8, we define ux = x and uy = −y. We consider flow problems for both pure convection
and that for the Oldroyd-B model. Boundary conditions for the stress (or φ) must be specified
on the inflow boundaries x = x0 and y = y1. For Oldroyd-B, the equations are solved for both
scenarios of fixed (uncoupled) and calculated velocity field (coupled). For the time-stepping
procedure initial conditions are generally taken as quiescent by default. We compute results
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for three square domains, that generate varying flows, with different coordinates for the
lower and upper boundary: the first, y0 = 1, y1 = 2; the second, y0 = 0.1, y1 = 1.1; and the
third, y0 = 0, y1 = 1, referred to as domain 1, 2 and 3, respectively. For all domains the
coordinates of the left and right boundary are x0 = 1 and x1 = 2.

6.1 Pure convection problem
First, we consider the pure convection equation for uuu = (x,−y),

uuu · ∇φ = x
∂φ

∂x
− y

∂φ

∂y
= 0. (39)

Depending upon the specification of boundary conditions, that determine the constants a,
b, and c, this equation admits solutions of the form,

φ = a(xy)c + b. (40)

We consider three alternative instances: bilinear (c = 1), non-integral power (c = 1.5)
and biquadratic (c = 2), for which we have,

φ1 = 1 + xy,

φ2 = 1 + (xy)1.5,

φ3 = 1 + (xy)2. (41)

Isolines of φi are aligned with the velocity field. As an example, isolines for φ2 are illustrated
in Fig. 9. Isolines for φ1 and φ3 are of identical pattern to those of φ2, differing only in
contour levels. On the two inflow boundaries, at x = x0 and y = y1, the corresponding
values of φi are prescribed.

To measure accuracy we use ||∆φ||∞, the maximum norm of the difference from the exact
solution scaled by the maximum value of all φi.

6.2 Oldroyd-B flow problem
For the Oldroyd model, the stress components decouple for the particular linear velocity
field in question. The three individual components obey the following equations:

We(x
∂τxx

∂x
− y

∂τxx

∂y
) = 2

µe

µ
+ (2We − 1)τxx,

We(x
∂τxy

∂x
− y

∂τxy

∂y
) = −τxy,

We(x
∂τyy

∂x
− y

∂τyy

∂y
) = −2

µe

µ
− (2We + 1)τyy. (42)

Note, that for this problem, both convection and source terms are important. The three
stress components, represented as (τxx, τxy, τyy) ≡ (τi), assume the form

τi = aix
ci+diyci + bi, (43)

where

b1 = − 2µe

µ(2We − 1)
, d1 = 2 − 1

We
,

b2 = 0, d2 = − 1

We
,

b3 = − 2µe

µ(2We + 1)
, d3 = −2 − 1

We
,

(44)
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for We < 1/2. This is a condition that emerges on the normal stress component, similar to
that observed in steady uniaxial extension. The pressure can now be obtained by substitution
of the velocity field (satisfying the incompressibility constraint) and the stress, specified by
Eqs. (43) and (44), into the balance of momentum. In order for the pressure to be compatible
(satisfying commutativity with respect to differential operators), the following restrictions
hold between the coefficients ai and ci,

a1 = − a2c2

c1 + d1
, c1 = c2 − 1,

a3 = −a2(c2 + d2)

c3

, c3 = c2 + 1,
(45)

for which the divergence of stress vanishes. For the pressure, that balances with the convec-
tion term, we then obtain

p = −Re

2
(x2 + y2). (46)

Only the coefficients a2 and c2 can be chosen freely; we take a2 = c2 = 1. On the two
inflow boundaries, at x = x0 and y = y1, the corresponding values of τi are prescribed. For
the non-dimensional numbers, we select We = 0.1, Re = 1, µe/µ = 8/9 and µs/µ = 1/9.
Measures of accuracy are taken as above under the maximum norm.

7 Results for pure convection problem
For calibration, we concentrate on error norms that measure the departure from the an-
alytical solution with mesh refinement under various settings. We consider both a linear
integral evaluation, based on the linearised advection speed of section 4.2 with linear stress
and velocity representation in the source terms, and a quadratic integral evaluation, based
on quadratic velocity and stress representation obtained from the parent finite element, as
discussed in section 5.

7.1 FE/SUPG method
Here, we first establish the performance characteristics for the finite element method with
SUPG upwinding. The difference from the exact solution for the pure convection problem
with mesh refinement, a fixed velocity field and domain 1, are displayed in Fig. 11 and
Table 1. Unless otherwise stated all figures pertain to a fixed velocity field by default. Results
are recorded for φ2 and φ3 only, as the computation for the bilinear φ1 solution is exact.
Fig. 11 shows almost O(h3) convergence in the maximum norm for φ2, as to be expected
from the quadratic FE basis functions for scalar solutions φ. The maximum allowable non-
dimensional time step for the 16x16 mesh was ∆t = 0.002. To obtain convergence 698 time
steps were necessary, which took 90 s of CPU-time on a Dec-alpha EV56 processor. We will
take this CPU-time as a reference scale against which to compare the performance of the
alternative implementations.

7.2 Comparison of flux distribution schemes
In this section, results for φ2 in Fig. 11 and for φ3 in Table 1 are presented on accuracy for the
FV scheme variants, as described in section 4. The close tally between φ2 and φ3 results is
evident. This includes error norms for the N-scheme (linear, positive), LDB-scheme (linear,
linearity preserving) and PSI-scheme (nonlinear, linearity preserving, positive), respectively.
The linearised advection velocity approach, as discussed in section 4.2, is assumed initially.
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As all components φi obtain the same accuracy for the three schemes, the norms for φ1 are
omitted.

What is immediately clear for this model problem, is that the linearity preservation
property is essential to obtain the higher levels of accuracy. The PSI- and LDB-scheme
display O(h2) convergence, whilst the N-scheme only achieves O(h0.8). For this reason,
under the present circumstance, henceforth we may disregard the N-scheme. Furthermore,
it is notable that for the N-scheme and PSI-scheme (β-schemes), two to three times as
many time steps were necessary for convergence, as can be observed from Table 2. This is
not caused by the inconsistent treatment for the time terms of the β-schemes, as with the
LDB-scheme (an α-scheme), using the inconsistent MDC approach for the time terms did
not change the number of time steps significantly. Thus, we conclude that the LDB-scheme
renders the fastest convergence rate. The non-dimensional time step used for the 16x16 mesh
was ∆t = 0.005 for all the FV methods, which is 2.5 times the maximum allowable time
step for the FE/SUPG method. For the LDB-scheme, the number of time steps required for
convergence was 150. Thus, even with the difference in time step from FE/SUPG taken into
account, convergence of the LDB-scheme is considerably faster. Furthermore, the CPU-time
resource demanded was much lower for the LDB-scheme, being less than 2% of the time for
the FE/SUPG implementation.

On the basis of this evidence, the average velocity assumption would seem reasonable.
However, as we shall demonstrate, these schemes may not display O(h2) accuracy for all
flows. Subsequently, we restrict ourselves to the LDB-scheme, as this provides the best
alternative on a performance level.

7.3 Influence of velocity parallelism to boundaries
First we consider the case of linear FV integral evaluation, taking into account a change
in flow with domains 2 and 3. For domain 2, the flow in the neighbourhood of the lower
boundary y0 = 0.1 is nearly parallel to this station. Then, O(h2) convergence with mesh
refinement may be lost for the linear integral evaluation, as may be discerned from the error
norm for φ1 in Fig. 12. For φ1, as well as for the omitted φ2 and φ3, only approximately
O(h1.4) is obtained.

For domain 3, the flow at the lower boundary y0 = 0 is parallel to that location. Fig. 12
shows, that in this case, the solution for φ1 becomes more inaccurate with the linear integral
evaluation. In fact, for the bilinear case φ1 the anomalous result of O(h) convergence is
observed, contrary to that of O(h2) as anticipated. This result corresponds to the accuracy
of standard upwinding methods. This is clearly the more severe scenario, as φ2 displays
O(h1.5) and φ3 the anticipated O(h2) accuracy. The accuracy for φ2 is optimal, as the
second derivative with respect to y is proportional to y−1/2, which indicates why O(h1.5)
convergence prevails.

In Fig. 13 the point of attention shifts to comparison between the linear and quadratic
FV integral evaluations, displaying the increased accuracy for domain 2 when the quadratic
option is invoked. The results prove to be exact for the bilinear case φ1 and are hence not
shown. For the remaining φi, we observe that O(h2) convergence is recovered once again.

For domain 3, once more, the optimal position of exact results is recovered for the bilinear
case (not shown). The two remaining components show the same optimal accuracy as
the linear evaluation of the integrals. For the quadratic φ3 component, we observe O(h2)
convergence, whilst the optimal order for φ2 of O(h1.5) is attained (due to the singularity
in the second derivative at y = 0, as discussed above; optimality of order may be gathered
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from a Taylor series expansion of the solution). Therefore, we conclude that, for the velocity
parallel to boundaries, the linear integral evaluation does not yield results of comparable
quality to that developed for domain 1 flow. Here we have successfully demonstrated that
by including a more accurate representation of velocity and stress on the element boundaries,
this deficiency may be overridden. Whether this is due to the improved accuracy in the stress
or velocity remains to be established.

For the more accurate integral evaluation, the price is a degradation in efficiency: 0.14
compared to 0.02 time units for the linear evaluation, though as yet the implementation
with quadratic evaluation has not been fully optimised. However, the increased efficiency
compared to FE/SUPG is manifest. The number of time steps, maximum allowable time step
and relative CPU-time for the various distribution schemes and integral evaluation methods
are summarised in Table 2.

8 Results for Oldroyd-B flow problem
For this problem, we demonstrate the influence of the inclusion of source terms alongside
the fluxes. We follow the pattern above and first provide the performance characteristics for
the benchmark FE/SUPG method.

8.1 FE/SUPG method
The results for the finite element method with SUPG upwinding and fixed velocity field
are presented in Fig. 14 for domain 1. We note the accuracy for the coarser meshes is
between O(h) and O(h2) for the various stress components, and that this increases with
increasing mesh refinement, to between O(h2.2) and O(h2.7). The averaged estimates of
slopes are O(h2.4), O(h2) and O(h1.6) for τxx, τxy and τyy, respectively. These are noted to
have reduced from the cubic order (constant slope) of the pure convection problem, that
is without source terms. However, for the Oldroyd problem and finer meshes, the trend is
improving towards cubic behaviour. The maximum allowable time step on the most refined
16x16 mesh was ∆t = 0.002. Some 627 time steps were required for convergence, which
equates to 1.2 time units.

8.2 Influence of velocity parallelism to boundaries
In Fig. 14 and Table 3 we compare the FV method employing linear integral evaluation
with FE/SUPG. This demonstrates that when sources are treated consistently in the FV
scheme, almost second-order accuracy is obtained on domain 1 for all stress components.
It is conspicuous that τxy is more accurately represented by the FV than the FE scheme.
For the linear integral evaluation, Fig. 15 and Table 4 show the loss of accuracy across all
components for domain 2, where the velocity at the lower boundary is almost parallel to
it. In this case, we observe O(h) convergence for both τxx and τxy, whilst for τyy we have
approximately O(h1.4). Furthermore, we detect from Fig. 15 that, in contrast to the above,
we obtain the desired O(h2) convergence with the quadratic integral evaluation in all stress
components.

We conclude with the important result, that introducing source terms in a consistent
manner, does not detract from the accuracy of the FV scheme. The same shortcomings,
concerning the loss of accuracy when the velocity is almost parallel to a boundary, are
observed as for the pure convection problem: these may be overcome in a likewise fashion.
The reason for this degradation in accuracy may be attributed to the observation that, on
the boundary, the nodes mainly receive contributions from only one FV-cell. This suggests
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the phenomenon is local to the boundary. If this is the case, then the special treatment with
quadratic FV integral evaluation can be confined to boundary points only. This is an issue
that is consigned to further research.

8.3 Hybrid FE/FV method
In this section, we include the solution of the pressure and velocity by the FE pressure-
correction method of section 3, to demonstrate the effective coupling of the FE and FV
components of the hybrid scheme.

The corresponding results on accuracy for the stress are displayed in Fig. 16. There, the
stress for the hybrid scheme is compared with the case of fixed velocity, which is referred
to as the uncoupled case. For completeness, the accuracy results of the hybrid scheme for
velocity and pressure are shown in Fig. 17.

For all variables the accuracy attained is between O(h2) and O(h3). The velocities and
τxx reflect almost O(h3) accuracy, whilst for τxy and τyy the accuracy is somewhat more than
O(h2). There is an improvement in order of accuracy from the uncoupled to hybrid cases,
but this may be attributed to slightly more inaccurate solutions calculated on the coarser
meshes, see Fig. 16. For the pressure we observe O(h2.6).

We conclude that, the anticipated third and second-order accuracy for velocity and pres-
sure from FE discretisation, respectively, is not influenced detrimentally under the hybrid
FE/FV scheme. For the stress, a loss of one order of accuracy is anticipated by shifting from
the quadratic finite element to the four finite volume subcells. Compared to the uncoupled
case, the accuracy on the coarser meshes is somewhat lower for the hybrid scheme. For the
finer meshes, however, comparable accuracy levels are achieved.

The gains are in terms of efficiency. The efficiency of the hybrid scheme is dominated
by the momentum and pressure-correction stage, which takes approximately the same CPU-
time as does the FE/SUPG for stress. As the FV implementation for stress alone takes 10%
of the time for the FE alternative, overall this is negligible compared to the Navier–Stokes
solver solution time. Hence, a considerable gain in efficiency can be obtained with this
hybrid FE/FV scheme for large problems, involving either multi-mode or three-dimensional
calculations.

9 Conclusions
We have employed two model problems on various flow domains to establish the accuracy of
a proposed hybrid FE/FV scheme that is capable of producing second-order accurate and
efficient solutions to viscoelastic flows. We have been able to demonstrate that a cell-vertex
FV method with flux distribution, based on subcells of the parent FE triangular mesh,
can accommodate various types of flow specifications and source terms, when treated in a
consistent manner. It has been possible to draw distinction between flows with velocities
parallel to boundaries and those without, the former proving a useful and stringent test
on accuracy. This has led to the advent of a superior hybrid implementation, with FV
integral evaluation based on quadratic FE functions. We have also drawn out the merits of
positivity and linearity preservation properties for three flux distribution schemes. Linearity
preservation is found to be critical to achieving second-order accuracy; this is true for both
linear and nonlinear schemes. Positivity is found to lead to slower convergence rates to
steady solutions, and also does not aid accuracy. This is a property that may well impinge
on stability. Attention to nonlinear stability and reaching high Weissenberg number solutions
are further issues to address in a subsequent study, where it is anticipated that nonlinear
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FD schemes with positivity may well prove beneficial.
No loss of accuracy for velocity and pressure is observed in the hybrid FE/FV compared

to the FE/SUPG scheme. There is no loss of accuracy in the FV method between uncoupled
and hybrid implementations. Also there is less than one order difference in accuracy of stress
between hybrid FE/FV compared to the FE/SUPG scheme. Compared to the FE/SUPG
method the hybrid FE/FV requires smaller time steps, less iterations and less CPU time
per iteration. This offers the possibility of considerable gains in efficiency with this hybrid
FE/FV scheme for large problems, particularly where either multi-mode or three-dimensional
calculations are involved.
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Table legend

Table 1: Error norm behaviour ||∆φ3||∞ for pure convection problem; comparison of various
FV schemes against FE/SUPG, domain 1.

Table 2: Number of time steps n, maximum time step and CPU time relative to FE/SUPG;
comparison of schemes and FV integral evaluation, pure convection problem, domain 1, mesh
16x16.

Table 3: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison between
FE/SUPG and LDB-scheme, domain 1, fixed velocity, linear FV integral evaluation.

Table 4: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison between
integral evaluation approaches, domain 2, LDB-scheme, fixed velocity.



Figure legend

Figure 1: Triangular cell with one inflow side.

Figure 2: Triangular cell with two inflow sides.

Figure 3: Graphical representation of LDB-scheme defining γ1 and γ2.

Figure 4: Schematic diagram of finite element/finite volume triangular mesh.

Figure 5: Triangular finite volume grid with median dual cell (MDC) for node i.

Figure 6: Finite volume node 1 at a corner with surrounding FV-cells and median dual cell
sections A, B.

Figure 7: Structured 2x2 finite element mesh with minimum and maximum coordinates.

Figure 8: Velocity vectors for pure convection and Oldroyd-B flow problem, domain 1.

Figure 9: Isolines for pure convection problem, φ2, domain 1.

Figure 10: Contour lines of stress and pressure for Oldroyd-B flow problem, domain 1: a)
τxx, b) τxy, c) τyy, d) p.

Figure 11: Error norm behaviour ||∆φ2||∞ for pure convection problem; comparison of vari-
ous FV schemes against FE/SUPG, linear FV integral evaluation, domain 1.

Figure 12: Error norm behaviour ||∆φ1||∞ for pure convection problem; comparison across
various domains, LDB-scheme, linear FV integral evaluation.

Figure 13: Error norm behaviour ||∆φ2||∞ and ||∆φ3||∞ for pure convection problem; com-
parison between FV integral evaluation, domain 2, LDB-scheme.

Figure 14: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween FE/SUPG and LDB-scheme, domain 1, fixed velocity, linear FV integral evaluation.

Figure 15: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween integral evaluation approaches, domain 2, LDB-scheme, fixed velocity.

Figure 16: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween uncoupled and hybrid method, domain 2, LDB-scheme, quadratic FV integral evalu-
ation.

Figure 17: Infinity norm error behaviour of pressure and velocity for Oldroyd-B problem;
domain 2, LDB-scheme, quadratic FV integral evaluation.



Table 1: Error norm behaviour ||∆φ3||∞ for pure convection problem; comparison of various
FV schemes against FE/SUPG, domain 1.

FE FV
SUPG N LDB PSI

2x2 0.20 10−2 0.19 10−1 0.19 10−2 0.24 10−2

4x4 0.28 10−3 0.12 10−1 0.48 10−3 0.52 10−3

8x8 0.38 10−4 0.64 10−2 0.12 10−3 0.14 10−3

16x16 0.50 10−5 0.34 10−2 0.12 10−3 0.35 10−4

Table 2: Number of time steps n, maximum time step and CPU time relative to FE/SUPG;
comparison of schemes and FV integral evaluation, pure convection problem, domain 1, mesh
16x16.

n ∆t CPU (units)
FE/SUPG 698 0.002 1.00
N 359 0.005 0.03
LDB (linear) 150 0.005 0.02
LDB (quadratic) 165 0.005 0.14
PSI 395 0.005 0.04



Table 3: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison between
FE/SUPG and LDB-scheme, domain 1, fixed velocity, linear FV integral evaluation.

FE/SUPG FV/LDB
||τxx||∞ ||τxy||∞ ||τyy||∞ ||τxx||∞ ||τxy||∞ ||τyy||∞

2x2 0.10 10−2 0.24 10−2 0.59 10−2 0.79 10−3 0.18 10−2 0.14 10−1

4x4 0.26 10−3 0.74 10−3 0.28 10−2 0.27 10−3 0.41 10−3 0.45 10−2

8x8 0.47 10−4 0.19 10−3 0.92 10−3 0.86 10−4 0.10 10−3 0.12 10−2

16x16 0.72 10−5 0.37 10−4 0.20 10−3 0.25 10−4 0.25 10−4 0.33 10−3

Table 4: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison between
integral evaluation approaches, domain 2, LDB-scheme, fixed velocity.

linear integral evaluation quadratic integral evaluation
||τxx||∞ ||τxy||∞ ||τyy||∞ ||τxx||∞ ||τxy||∞ ||τyy||∞

2x2 0.22 10−2 0.28 10−2 0.34 10−2 0.73 10−3 0.27 10−2 0.38 10−2

4x4 0.12 10−2 0.16 10−2 0.10 10−2 0.19 10−3 0.73 10−3 0.99 10−3

8x8 0.54 10−3 0.79 10−3 0.44 10−3 0.36 10−4 0.18 10−3 0.21 10−3

16x16 0.23 10−3 0.35 10−3 0.18 10−3 0.57 10−5 0.43 10−4 0.40 10−4
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Figure 4: Schematic diagram of finite element/finite volume triangular mesh.



T1

T2

T3

T4

T5

T6

i

Figure 5: Triangular finite volume grid with
median dual cell (MDC) for node i.

1 2

y

34

A

B

x

Figure 6: Finite volume node 1 at a corner
with surrounding FV-cells and median dual
cell sections A, B.



y
x 1

y

x
0

1

0

Figure 7: Structured 2x2 finite element mesh
with minimum and maximum coordinates.

Figure 8: Velocity vectors for pure convec-
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Figure 9: Isolines for pure convection problem, φ2, domain 1.
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Figure 10: Contour lines of stress and pressure for Oldroyd-B flow problem, domain 1: a)
τxx, b) τxy, c) τyy, d) p.
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Figure 11: Error norm behaviour ||∆φ2||∞ for pure convection problem; comparison of vari-
ous FV schemes against FE/SUPG, linear FV integral evaluation, domain 1.
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Figure 12: Error norm behaviour ||∆φ1||∞ for pure convection problem; comparison across
various domains, LDB-scheme, linear FV integral evaluation.



1e-05

1e-04

1e-03

1e-02

1e-01

0.1 0.2 0.3 0.4 0.5

E
rr

or

h
0.05

     , linear
     , linear

     , quadratic
     , quadratic

φ2

φ3

φ2

φ3

O(h1.5)
O(h1.5)
O(h2.1)
O(h2.0)

Figure 13: Error norm behaviour ||∆φ2||∞ and ||∆φ3||∞ for pure convection problem; com-
parison between FV integral evaluation, domain 2, LDB-scheme.
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Figure 14: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween FE/SUPG and LDB-scheme, domain 1, fixed velocity, linear FV integral evaluation.
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Figure 15: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween integral evaluation approaches, domain 2, LDB-scheme, fixed velocity.
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Figure 16: Infinity norm error behaviour of stress for Oldroyd-B problem; comparison be-
tween uncoupled and hybrid method, domain 2, LDB-scheme, quadratic FV integral evalu-
ation.
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Figure 17: Infinity norm error behaviour of pressure and velocity for Oldroyd-B problem;
domain 2, LDB-scheme, quadratic FV integral evaluation.


