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Abstract

A method will be given to determine lower bounds for the invariants of a configuration tensor

in 3D flows. For some well-known differential models these lower bounds will be given. Except for

the Giesekus and the FENE-P model the lower bounds are the values in equilibrium.
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1 Introduction

Hulsen [1] has shown that it is possible to identify a positive definite configuration tensor b for some

well-known differential stress models. In numerical computations this tensor may become indefinite

and lead to severe non-linear instabilities [2]. A remedy for these problems may be the development

of numerical schemes that preserve the positiveness of b, i.e. its invariants. If it would be possible to

prove that the lower bounds of the invariants of b are positive, the numerical scheme could be improved

further by preserving these lower bounds as well. A positive lower bound is still more important for

the calculation of the mechanical dissipation in the temperature equation. For a number of models the

dissipation contains a term that depends on the inverse of the determinant of b, as will be demonstrated

in section 2. Therefore we try to find a positive lower bound for the invariants of b for 3D flows of
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some well-known differential models.

2 Stress constitutive equations

Differential models for the extra-stress may be written as follows

τ = 2ηsd + τ p, (1)

where τ is the extra-stress tensor that consists of a Newtonian part with viscosity ηs and a polymer

part τ p. The Euler rate of deformation tensor is d = (L+LT )/2, with the velocity gradient LT = ∇v
¯
.

The polymer part of the extra-stress τ p may be related to the configuration tensor b by the simple

algebraic relation

τ p =
G

1− ξ
(Bb− I) , (2)

where G is the shear modulus. The parameter B equals B = 1 for neo-Hookean models. For the

Larson, Chilcott–Rallison and FENE-P models B depends on the first invariant of b. The parameter

ξ appears in the Gordon–Schowalter derivative in the differential equation for b:

λb
2

= g1 (b) I + g2 (b) b + g3 (b) b2, (3)

where λ is the relaxation time and gi are scalars which may be functions of the invariants of the

configuration tensor. The Gordon–Schowalter derivative b
2

, is given by

(
2

) = (˙)− L̂ · ( )− ( ) · L̂T
,

L̂ = L− ξd, (4)

where the parameter ξ fulfils the condition 0 ≤ ξ ≤ 2.

The polymer part of the stress, given by (2), can be derived from a potential, the free energy ψ,

as follows

τ p = 2ρb · ∂ψ
∂b
, (5)

where ρ is the density of the fluid and we have assumed that ξ = 0. The mechanical dissipation Dm,p

of the polymeric part equals

Dm,p = τ p : d− ρψ̇ = τ p : d− ρ∂ψ
∂b

: ḃ = −1
2

tr
(
τ p · b−1 · b

5)
, (6)

see for example [3] or [4]. Substitution of (3) into (6) shows that the dissipation contains a term

g1(b) tr b−1 = g1(b)I2/I3. For all the models we will consider the scalar g1(b) is positive, which means

that the dissipation contains a term with I−1
3 . Whenever b loses positive definiteness in computations,
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I3 becomes zero while I2 is still positive in most cases. This will cause great difficulties in computing

the dissipation in numerical calculations. A positive lower bound for I3 will be of great help here.

Combining equation (3) with the identity

İ3 =
∂I3
∂b

: ḃ = I3b
−1 : ḃ, (7)

the following expression for the material derivative of the third invariant is obtained:

λİ3 = 2λ(1− ξ)I3∇ · v¯
+ g1I2 + (3g2 + g3I1) I3, (8)

where I2 = I3 tr b−1 has been used. In the following we will assume an incompressible flow. Then the

first term on the right-hand side of (8) vanishes. Equation (8) will be used in section 4 to track the

value of I3 along a particle path and possibly show that it remains positive.

3 A lower bound for I1 and I2 on a surface of constant I3

In this section we will calculate the positive lower bounds for the invariants I1 and I2 for a given value

of the determinant I3.

For a surface with constant determinant I3 = C > 0 the second invariant I2 equals

I2(b1, b2) = b1b2 +
C

b1
+
C

b2
, (9)

where b1 and b2 are two principal values of b. The third principle value b3 has been eliminated with

I3 = b1b2b3 = C. The local extrema can be found from:

∂I2
∂b1

= b2 −
C

b21
= 0,

∂I2
∂b2

= b1 −
C

b22
= 0,

which gives one real extremum at b1 = b2 = b3 = 3
√
C. The second derivatives of I2 in this extremum

are
∂2I2
∂b21

= 2,
∂2I2
∂b22

= 2,
∂2I2
∂b1∂b2

= 1.

The conditions for a minimum are

∂2I2
∂b21

> 0,
∂2I2
∂b21

∂2I2
∂b22

>

(
∂2I2
∂b1∂b2

)2

,

which are fulfilled in the local extremum.

Substitution of b1 = b2 = 3
√
C in (9) gives the value for the second invariant in the local minimum:

Imin
2 = 3C2/3.
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For a surface with constant determinant I3 = C the first invariant equals

I1(b1, b2) = b1 + b2 +
C

b1b2
. (10)

The local extrema can be found from:

∂I1
∂b1

= 1− C

b21b2
= 0,

∂I1
∂b2

= 1− C

b22b1
= 0,

which gives b1 = b2 = b3 = 3
√
C, identical to the extremum for the second invariant. Substitution of

b1 = b2 = 3
√
C in (10) then gives the value for the first invariant in the local minimum: Imin

1 = 3 3
√
C.

4 Lower bounds of the invariants for viscoelastic models

With equation (8) and the results of section 3 we will try to find a lower bound for the determinant

I3, and thus for I1 and I2, of some well-known differential models. For a more detailed description of

most of these models refer to [5]. The models that have not been described in [5] the references will

be given later on. We will show that with our method it is possible to obtain a positive lower bound

for the invariants for most of the models, except the 3D Giesekus and the FENE-P model.

The Johnson–Segalman model and the Phan-Thien–Tanner model

For the Johnson–Segalman model and the Phan-Thien–Tanner model the scalars gi are given by

g1 = Y , g2 = −Y and g3 = 0. The function Y equals Y = 1 for the Johnson–Segalman model,

Y = 1 + ε(I1− 3) for the linear Phan-Thien–Tanner model and Y = exp[ε(I1− 3)] for the exponential

Phan-Thien–Tanner model. Furthermore the coefficients in (2) are B = 1 and 0 ≤ ξ ≤ 2. Substitution

of the scalars gi in equation (8) gives

İ3 =
Y

λ
I2 −

3Y
λ
I3. (11)

With the result of section 3 for the minimum of the second invariant equation (11) leads to

İ3 ≥
3Y C2/3

λ

(
1− C1/3

)
, (12)

on the surface I3 = C. For C = 1 it follows that İ3 ≥ 0. Thus the lower bound for the Johnson–

Segalman model and the Phan-Thien–Tanner model is Imin
3 = 1, if it is assumed that any path starts

from b = I. From the results in section 3 it also follows that the minima of the first and second

invariant are Imin
1 = 3

√
C = 3 and Imin

2 = 3C2/3 = 3, which corresponds to the values of the invariants

in equilibrium.
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From (12) it also follows that for 0 < C < 1 the material derivative of the determinant is positive.

So, if for some reason the determinant is smaller than 1 at the starting point of the path, the value of

the determinant will increase.

The Larson model

The scalars gi of the Larson model are g1 = 1/B, g2 = −1/B and g3 = 0. The coefficients in (2) are

B = (1 + β(I1 − 3)/3)−1, where β is a positive parameter, and ξ = 0. The differential equation for

the configuration tensor is equal to the linear Phan-Thien–Tanner model, when β = 3ε. So Imin
1 = 3,

Imin
2 = 3 and Imin

3 = 1, the values of the invariants in equilibrium, are also lower bounds for the Larson

model.

The (modified) Leonov model

The scalars gi of the modified Leonov model are given by g1 = φ/2, g2 = −φ(I1−I2)/6 and g3 = −φ/2,

where φ−1 = 1 + 2α/π arctan (β/4 (I1 + I2 − 6)). The coefficients in (2) are B = 1 and ξ = 0. Refer

to [6] for a more extensive description of the modified Leonov model. The modified Leonov model

reduces to the Leonov model if φ = 1 is taken. Substitution of the scalars gi in equation (8) gives

İ3 =
φ

2λ
I2 (1− I3) . (13)

If I3 = 1 initially, then it always equals I3 = 1. From the results in section 3 it also follows that the

minima of the first and second invariant are Imin
1 = 3

√
C = 3 and Imin

2 = 3C2/3 = 3, which are equal

to the values of the invariants in equilibrium.

Otherwise, if for some reason the determinant is positive but does not equal 1 at the starting point

of the path, it will tend to I3 = 1 for t→∞.

The Giesekus model

For the Giesekus model the scalars gi are g1 = (1−α), g2 = −(1−2α) and g3 = −α, where 0 ≤ α < 1.

The coefficients in (2) are B = 1 and ξ = 0. Substitution of the scalars gi in equation (8) gives

İ3 =
1− α
λ

I2 − I3
(

3(1− 2α)
λ

+
α

λ
I1

)
. (14)

Hulsen [2] has shown that a positive lower bound exists for a 2D flow. However, for a 3D flow of

the Giesekus model it is not possible to find a positive lower bound for the determinant. This will

be demonstrated with a counter example: a steady uniaxial elongation. The analytical solution for

0 < α < 1 has been given by [7]:

b1 =
1
2α

[
2γ − (1− 2α) +

√
1− 4(1− 2α)γ + 4γ2

]
,

b2 = b3 =
1
2α

[
−γ − (1− 2α) +

√
1 + 2(1− 2α)γ + γ2

]
,

γ = λε̇, (15)
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where b1, b2 and b3 are the principal values of b. The limit values of the principal values for γ → ∞

can be found by a standard Taylor expansion of the square root:

b1 =
1
2α

[
2γ − (1− 2α) + 2γ

√
1− (1− 2α)/γ + 1/γ2

]
=

2γ
α
,

b2 =
1
2α

[
−γ − (1− 2α) + γ

√
1 + 2(1− 2α)/γ + 1/γ2

]
=

1− α
γ

.

The limit solution of the determinant for large γ is then given by

lim
γ→∞

I3 = lim
γ→∞

2(1− α)2

αγ
= 0,

which shows that no general positive lower bound can be given for the 3D Giesekus model. Together

with the positive definiteness of the configuration tensor this gives that the lower bound for the

determinant equals Imin
3 = 0.

Whether positive lower bounds for I1 and I2 exist remains inconclusive from our analysis in section

3 (only Imin
1 = Imin

2 > 0).

The Chilcott–Rallison model

The scalars gi of the Chilcott–Rallison model are g1 = B, g2 = −B and g3 = 0. The coefficients in

(2) are ξ = 0 and B = (1 − I1/L
2)−1, where L represents the ratio of the length of a fully extended

dumbbell to its equilibrium length. Refer to [8] for a more extensive description of this model. The

differential equation for the configuration tensor resembles the Phan-Thien–Tanner model. Only the

factor Y has to be replaced by B. Due to the finite extensibility of a dumbbell, (I1 < L2), B is always

positive. Therefore, the results discussed for equation (12) also holds for the Chilcott–Rallison model.

So the lower bounds for the Chilcott–Rallison model Imin
1 = 3, Imin

2 = 3 and Imin
3 = 1 also correspond

to the values of the invariants in equilibrium.

The FENE-P model

The scalars gi of the FENE-P model are g1 = α, g2 = −B and g3 = 0. The coefficients in (2) are

B = (1−βI1)−1 and ξ = 0. Refer to [9] for a more extensive description of this model. In the notation

of [9] the constants α and β correspond to α = 3(1 − εb)X/b and β = 1/X, with X = (1 − Z−1
eq )−1.

For a steady uniaxial elongation it is easy to show that for large γ = λε̇

b1 =
1
β
,

b2 =
α

3γ
.

The limit solution of the determinant for large γ is then given by

lim
γ→∞

I3 = lim
γ→∞

α2

9βγ2
= 0,
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which shows that no general positive lower bound can be given for the FENE-P model. Together with

the positive definiteness of the configuration tensor this gives that the lower bound for the determinant

equals Imin
3 = 0.

Whether positive lower bounds for I1 and I2 exist remains inconclusive from our analysis in section

3 (only Imin
1 = Imin

2 > 0).

References

[1] M.A. Hulsen, A sufficient condition for a positive definite configuration tensor in differential

models. J. Non-Newtonian Fluid Mech. 38 (1990) 93–100.

[2] M.A. Hulsen, Some properties and analytical expressions for plane flow of Leonov and Giesekus

models. J. Non-Newtonian Fluid Mech. 30 (1988) 85–92.

[3] A.I. Leonov, On a class of constitutive equations for viscoelastic fluids. J. Non-Newtonian Fluid

Mech. 25 (1987) 1–59.

[4] P. Wapperom and M.A. Hulsen, Numerical simulation of a viscoelastic fluid with anisotropic heat

conduction. In: J.F. Dijksman and G.D.C. Kuiken (Eds.), Numerical simulation of nonisothermal

flow of viscoelastic liquids, Kluwer Academic Publ., Dordrecht, 1995, 37–55.

[5] R.G. Larson, Constitutive equations for polymer melts and solutions, Butterworths, Boston, 1988.

[6] M.B. Bush, Prediction of polymer melt extrudate swell using a differential constitutive equation.

J. Non-Newtonian Fluid Mech. 31 (1989) 179–191.

[7] H. Giesekus, A simple constitutive equation for polymer fluids on the concept of deformation-

dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11 (1982) 69–109.

[8] M.D. Chilcott and J.M. Rallison, Creeping flow of dilute polymer solutions past cylinders and

spheres. J. Non-Newtonian Fluid Mech. 29 (1988) 381–432.

[9] R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of polymeric liquids, 2nd

ed., Vol. 2, Wiley, New York, 1987.

7


