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Abstract

We study the rheometrical and complex flow response of the coupled version of the
double-convection-reptation model with chain stretch. This model for monodisperse
entangled linear polymers has recently been proposed by Marrucci and Ianniru-
berto [Phil. Trans. Roy. Soc. A, 361 (2003) 677–688] to overcome the anomalous
shear thickening that was present in an earlier version of the theory. It avoids the
decoupling approximation between orientation and stretch. Except for the shear
thickening, both coupled and decoupled models show very similar results that are
in qualitative agreement with available rheometrical data for two nearly monodis-
perse polymer solutions. In contraction/expansion flow simulations, however, higher
Weissenberg numbers can be attained with the coupled model. Simulations in the
stretch-dominated regime predict a dramatic growth of the upstream vortex activity
and an increase of the pressure correction.
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1 Introduction

Recently, Ianniruberto and Marrucci [1] have proposed a single segment, tube
based constitutive equation for linear polymer melts that accounts for most of
the currently known physics at that level of description. The so-called double-
convection-reptation model with chain stretch (DCR-CS) had a number of
deficiencies as shown by Wapperom et al. [2]. The most important one is a
shear-thickening regime at shear rates of the order of the reciprocal Rouse
time.

In response, Marrucci and Ianniruberto [3] concluded that the unphysical shear
thickening was caused by the decoupling approximation of orientation and
stretch, which is frequently used in tube theories. Indeed, for the newly pro-
posed model that avoids decoupling, the shear viscosity decreases monotoni-
cally. To distinguish between the two models, we introduce the nomenclature
‘coupled DCR-CS model’ for the new model, while the previous model is re-
ferred to as ‘decoupled DCR-CS model’.

In this paper, we evaluate the coupled DCR-CS model in rheometrical and
complex flows, and study in particular the effect of the decoupling approxi-
mation. We consider two nearly monodisperse solutions for which it was previ-
ously shown that the decoupled DCR-CS model predictions are in qualitative
agreement with available experimental data in shear [4] and shear and uni-
axial extension [5]. We show that both models predict very similar results in
rheometrical flows, except for the anomalous shear thickening. We also con-
sider the start-up flow through a 4:1:4 axisymmetric contraction/expansion
geometry. We find that for the coupled DCR-CS model, a stable steady state
solution can be reached at much higher values of the Weissenberg number. For
one of the fluids this allowed us to reach flow rates at which polymer chains
do get stretched. At these high levels of chain stretch, our simulations show a
dramatic growth of the vortex activity, as well as an increase of the pressure
correction. The coupled DCR-CS model is the first tube-based model that
shows this behaviour.

2 Governing equations

2.1 Decoupled DCR-CS model

In the decoupled DCR-CS model [1] orientation and stretch are pre-averaged
separately and each is governed by its own evolution equation.
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Orientation is governed by a differential equation for the square of the orien-
tation tensor S:

DS2

Dt
= κ · S2 + S2 · κT − 2S2 (κ : S) − 2

τ

(
S2 − 1

3
S
)

. (1)

Here, D/Dt denotes the material derivative and κ = (∇v)T is the transpose
of the velocity gradient. The right-hand side of Eq. (1) consists of a convective
part and a term that describes relaxation. The effective relaxation time τ is
given by

τ =
1

2
(

1

τd
+ |κ : S|

) + τR. (2)

This formulation accounts for reptation (through the reptation time τd), for
convective constraint release (CCR) (through |κ : S|), and for the intrinsic
friction of the chain (through the Rouse time τR). The factor 2 appearing
in Eq. (2) expresses double reptation and CCR2. For slow flows, reptation
dominates and τ ≈ τd/2 + τR. For faster flows, CCR which is implemented
through the κ : S term, decreases the relaxation time τ . To avoid negative
relaxation times in reversing flows [6], Marrucci et al. have corrected this
contribution in an ad hoc manner by using the absolute value signs in Eq. (2).
For very fast flows, when |κ : S| � 1/τd, τ reaches a non-vanishing minimum
value equal to the Rouse time τR.

At flow rates larger than the reciprocal Rouse time, polymer chains get stretched.
This is described by a separate evolution equation for the average stretch ratio
λ,

Dλ

Dt
= λκ : S − 1

τR
(fλ − 1) . (3)

The first term on the right-hand side of Eq. (3) accounts for affine deformation
of the chain, while the second describes stretch relaxation with the Rouse time
taken as the characteristic time. The non-linear factor f accounts for finite
extensibility of the polymer chains,

f =
λmax − 1

λmax − λ
. (4)

It is unity at equilibrium and approaches infinity at the upper limit λmax of
chain stretch.
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Finally, the polymer contribution to the stress T results from anisotropic
orientation and stretch and is given by the following algebraic relation:

T = Gfλ2S, (5)

where G is a modulus. The single-mode DCR-CS theory thus has four material
parameters (G, λmax, τd, τR), which can in principle all be determined from
linear viscoelasticity data.

2.2 Coupled DCR-CS model

Recently, Marrucci and Ianniruberto proposed a coupled version of the DCR-
CS model [3]. This model avoids the decoupling approximation between ori-
entation and stretch. The basic dynamic variable is the second moment A of
the distribution of end-to-end vectors of the subchains between consecutive
entanglements. It is governed by a single evolution equation:

DA

Dt
= κ · A + A · κT − f

τ

(
A − tr A

3
I

)
− 1

3τR
(ftr A − 1) I. (6)

Note that tr A corresponds to the square of the stretch, λ2. The factor f
accounts for finite extensibility of the polymer chains and is modeled by

f =
b − 1

b − tr A
, (7)

where b corresponds to the square of the maximum stretch, λmax.

The effective relaxation time is such that

1

τ
=

2

τd

+
(

1

τR

− 2

τd

)
β(ftr A − 1)

1 + β(ftr A − 1)
. (8)

It accounts for the same physics as the decoupled model, i.e. reptation, convec-
tive constraint release, and Rouse relaxation. However, the way these effects
are implemented in the effective relaxation time is quite different. First, the ef-
fective relaxation time does not have any contribution from the Rouse time at
equilibrium, τeq = τd/2. Second, convective constraint release which decreases
τ to a lower limit, the Rouse time τR, is now implemented using the trace of the
configuration tensor instead of using κ : S. This has the advantage that no ad
hoc correction with absolute value signs is necessary to assure a positive relax-
ation time. Furthermore, in this way the model also becomes consistent with
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non-equilibrium thermodynamics. The extra numerical parameter β measures
CCR effectiveness and should be chosen equal to 2 or larger to guarantee a
strictly monotonic viscosity curve [3].

As noted before, stretch is implemented in the model via the trace of A. By
taking the trace of Eq. (6) we arrive at

Dtr A

Dt
= 2κ : A − 1

τR

(ftr A − 1). (9)

Thus stretch has a fixed relaxation time of τR and is not affected by CCR,
similar to the decoupled DCR-CS model.

Finally, the polymer contribution to the stress results from the now undecou-
pled anisotropic orientation and stretch,

T = GfA, (10)

where G is a modulus. The coupled DCR-CS model thus has four material
parameters (G, λmax, τd, τR), and the numerical CCR-parameter β.

2.3 How to choose equivalent material parameters?

In order to ensure that stretch takes place at the same rates of deformation
with both models, the Rouse time in the coupled model has to be chosen half
of the Rouse time of the decoupled model. This result can easily be obtained
from the equation for stretch, Eq. (9), by using A = λ2S and tr A = λ2. Then
we arrive at

Dλ

Dt
= λκ : S − 1

2τR

(
fλ − 1

λ

)
. (11)

If we compare this equation with Eq. (3) for the decoupled model we find that
the Rouse time of the coupled model is half the value of the decoupled model.
We also remark in passing that the relaxation term in Eq. (11) contains a term
1/λ instead of a 1 in the decoupled theory.

Since tr A is proportional to the square of stretch, the value of b is taken as
λ2

max. The non-linear factor f associated with the finite extensibility of the
chain, however, is different for the two models. In terms of λ and λmax the
factor f , Eq. (7), can be written as

f =
λ2

max − 1

λ2
max − λ2

=
λmax − 1

λmax − λ

λmax + 1

λmax + λ
, (12)
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which is always smaller than for the decoupled model Eq. (4).

Also the meaning of the modulus G in both models is not exactly the same.
For the decoupled version, the modulus, the relaxation time at equilibrium
τeq, and the zero-shear viscosity are related by

η0 =
Gτeq

6
, (13)

while for the coupled model we have

η0 =
Gτeq

3
. (14)

In case we choose the relaxation times at equilibrium equal for both mod-
els, the modulus of the decoupled model is exactly twice the modulus of the
coupled model. When the reptation times τd of both models are chosen to be
equal, however, this is no longer true. This is caused by a difference in the
relaxation time at equilibrium τeq. For the decoupled model, the Rouse time
contributes to τeq,

τeq = τd/2 + τR, (15)

while for the coupled version it does not,

τeq = τd/2. (16)

Since for well-entangled polymers τd is much bigger than τR, the difference in
τeq will generally be small.

3 Polystyrene solution

Bhattacharjee et al. [5] have published experimental data in both shear and
extension for a 10 % solution of a 3.9 106 molecular weight polystyrene in
diethyl phthalate. In addition, they derived the values of the decoupled DCR-
CS model parameters. Here, we use the same parameter values except for
the modulus. The modulus is chosen such that the zero-shear viscosity of the
model equals the zero-shear viscosity of the data, η0 = 4570 Pa · s. All model
parameters are given in Table 1.

The parameters of the coupled model are chosen based on the discussion in
section 2.3. This means that for τR we take half of the value of the decoupled
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DCR-CS model G(Pa) τd(s) τR(s) stretch β

decoupled 3083 17.22 0.282 λmax = 13.6 -

coupled 1592 17.22 0.141 b = 184.96 2
Table 1
Model parameters for the nearly monodisperse polystyrene solution of [5].

model and for b we take λ2
max. Furthermore, we take equal values for the

reptation time τd in both models. The value of G is then chosen so that the
zero-shear viscosities, Eqs. (13,14), of both models are equal.

3.1 Rheometrical results

In Fig. 1(a) we consider the impact of decoupling on the steady shear viscosity.
One of the main drawbacks of the decoupled DCR-CS model is the existence
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Fig. 1. Steady-state shear response of the decoupled and coupled DCR-CS models
(polystyrene solution): (a) shear viscosity η, and (b) first normal stress difference
N1 as a function of shear rate γ̇. Data are from [5].

of a shear-thickening regime at shear rates of the order of the reciprocal Rouse
time [2] and for significant values of λmax. Figure 1(a) shows that for the cou-
pled DCR-CS model the viscosity decreases monotonically as a function of
the shear rate. As argued by Marrucci and Ianniruberto [3] this was caused
by the decoupling approximation of orientation and stretch and was the main
reason to introduce the coupled version of the model. From Fig. 1(a) we con-
clude that both models are in qualitative agreement with experiments of [5]
in the range of shear rates for which experimental data are available, i.e. in
the reptation and CCR dominated regimes. In the stretch regime, where both
models start to differ significantly, no experimental data are available, unfor-
tunately. Whether the change of slope in viscosity that the coupled DCR-CS
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model shows is physical or an artifact of the model therefore remains to be
confirmed.

Similar observations can be made for the first normal stress difference N1

as displayed in Fig. 1(b). In the reptation and CCR dominated regimes the
decoupled and coupled DCR-CS models show similar responses in qualitative
agreement with the experimental data. When polymer molecules are stretched,
both models show an increase in N1. As for the shear viscosity, this response
remains to be verified experimentally.

Figure 2 compares the viscosity in start up of shear at various shear rates.
The early-time overshoots at very high shear rates observed previously for

10-1

100

101

102

103

104

10-3 10-2 10-1 100 101 102 103

η+
 (P

a 
s)

t(s)

0.006
1.6

11.6
58.1
300
800

5000

(a)

10-1

100

101

102

103

104

10-3 10-2 10-1 100 101 102 103

η+
 (P

a 
s)

t(s)

0.006
1.6

11.6
58.1
300
800

5000

(b)

Fig. 2. Model predictions for the transient shear response at shear rates (s−1)
given in the legends (polystyrene solution): (a) decoupled DCR-CS and (b) cou-
pled DCR-CS.

the DCR-CS model [2] are also present for the coupled model. They even
become apparent at somewhat lower shear rates and are more pronounced.
Therefore, this is not an artifact of the decoupling approximation but inherent
to the DCR-CS theory. Whether the early-time overshoots, above the linear
viscoelastic envelope, are an artifact of the theory needs to be established.

Bhattacharjee et al. [5] have shown that the decoupled DCR-CS model also
shows qualitative agreement with experimental data in steady uniaxial ex-
tension. For this flow type, experimental data are not only available in the
reptation and CCR dominated regimes, but also in the regime where polymer
chains stretch. Figure 3 shows that the coupled DCR-CS model predicts a
qualitatively similar steady elongational viscosity, although the results in the
CCR-dominated regime are consistently lower than for the decoupled version
(and also lower than the experimental data).

In transient uniaxial extensional both models show also a satisfactory agree-
ment with the experimental data. Figure 4 shows the first normal stress dif-
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Fig. 3. Steady-state response in uniaxial extension of the decoupled and coupled
DCR-CS models (polystyrene solution). Data are from [5].

ference as a function of the Henky strain. Both models show similar responses
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Fig. 4. Transient response in uniaxial extension at elongation rates (s−1) given in the
legends (polystyrene solution): (a) decoupled DCR-CS and (b) coupled DCR-CS.
Data are from [5].

and agree qualitatively with the experimental data for various elongation rates.
The underprediction at small Henky strains (small times) is inherent to the
single segment approximation. In start-up of shear flow, Ianniruberto and
Marrucci [4] have shown that a two-segment model that distinguishes be-
tween internal and end segments significantly improved the model predictions
at small times.

Stress relaxation after cessation of uniaxial extension is displayed in Fig. 5.
There we show the first normal stress difference in uniaxial extension at an
elongation rate of ε̇ = 11.7 s−1 and up to various Henky strains. Again, a good
qualitative agreement with experimental data is observed.

We conclude this section on rheometrical flow predictions for the polystyrene
solution by examining the stretch in steady shear and uniaxial extension. The
stretch curves, λ for the decoupled and

√
tr A for the coupled DCR-CS model,
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Fig. 5. Stress relaxation after uniaxial extension at ε̇ = 11.7 s−1 at Henky strains
indicated in the legends (polystyrene solution): (a) decoupled DCR-CS and (b)
coupled DCR-CS. Data are from [5].

are shown in Fig. 6. As expected, with increasing Weissenberg number both
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Fig. 6. Model predictions of stretch in steady shear and extension for the decoupled
and coupled DCR-CS models (polystyrene solution).

models asymptotically approach the maximum stretch in uniaxial extension.
We note for further reference that at identical elongation rates, the coupled
DCR-CS model predicts a larger stretch. This appears to be a consequence of
the smaller factor f compared to the decoupled model. At steady state, κ : S
is balanced by f at high elongation rates for both models, see Eqs. (3,11).
This requires a larger value of λ for the coupled DCR-CS model as can easily
be seen from Eq. (12).

In shear, polymer chains are stretched at larger deformation rates than in ex-
tension, as expected. Remark that in shear polymer chains also reach asymp-
totically the maximum stretch for both the decoupled and coupled DCR-CS
model. This is in sharp contrast with the pompom model [7], for example,
where the stretch approaches 1+ τs/(2τb) at large shear rates. Since the back-
bone relaxation time τb is larger than the stretch relaxation time τs, the levels
of stretch attained in steady shear flows will be much less. Which type of
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response is more likely is still an open question.

3.2 Flow in a constriction

We consider the start-up flow through an axisymmetric 4:1:4 constriction with
rounded corners, as depicted in Fig. 7 along with the mesh. As a character-

R

R

z=0

r

z

Fig. 7. Zoom of 4:1:4 constriction geometry with rounded corners and medium mesh.

istic time we use the contribution of the reptation time to the equilibrium
relaxation time, i.e. τd/2. The Weissenberg number is then We = τdU/2R,
with U the average velocity at the section of the smallest gap radius R. We
have shown previously [2,6] that the mesh of Fig. 7 is sufficiently fine for
the range of Weissenberg numbers considered here. Around the smallest gap
radius, the constriction wall is circular with diameter R. The lengths of the
inlet and outlet regions are taken 19.5R, and at both inlet and outlet we im-
pose fully developed velocity boundary conditions, which have been calculated
separately. No-slip velocity boundary conditions are specified at the wall and
symmetry conditions hold at the centerline. For the decoupled DCR-CS model
orientation S and stretch λ are imposed at the inlet. For the coupled DCR-CS
model the configuration tensor is specified at the inlet.

Steady-state regimes are obtained as a long-time limit of transient simulation
starting from the equilibrium state. At each time step the conservation laws
are decoupled from the constitutive equations. The equations of motion, with
the solvent viscosity strictly set to zero, are solved with the DEVSS Galerkin
finite element method introduced in [8]. The constitutive equations are solved
with the help of the backward-tracking Lagrangian particle method (see [9]
for a detailed description of the numerical scheme).
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In the 4:1:4 constriction flow, a stable steady state could be obtained up to
We = 50 for the decoupled model and 100 for the coupled model. Figure 8
displays the contours of the second invariant of the rate-of-deformation tensor
at We = 50 using the coupled model. The maximum strain rate of 37.5 s−1

35.00
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20.00
10.00

5.00
1.00

(a)

35.00
30.00
25.00
20.00
15.00
10.00

5.00
1.00

(b)

Fig. 8. Second invariant of the rate of deformation tensor for coupled DCR-CS
model at We = 50 (polystyrene solution), (a) region around the constriction, and
(b) zoom at the constriction wall. Flow is from left to right (as in all subsequent
figures).

is located at the constriction wall, while deformation rates near the centerline
are considerably smaller. The maximum strain rate at the centreline is approx-
imately 10 s−1 which corresponds to an elongation rate of almost 6 s−1. As
can be observed from the rheometrical data, simulations are still in the CCR
dominated regime at these values of deformation rates so that polymer chains
do not become highly stretched. This can be verified in Fig. 9 which shows the
stretch contours, i.e. λ for the decoupled and

√
tr A for the coupled model, at

Weissenberg numbers of 10 and 50. As expected, stretch is only moderate at
We = 50 (note that full stretch corresponds to λmax = 13.6), while stretch is
practically absent at We = 10.

These low levels of chain stretch correlate with a decreasing vortex activity
as can be seen from Fig. 10. This result does not come as a surprise and
was already found previously in simulations with decoupled versions of the
model in the CCR dominated regime [2]. Since the impact of the decoupling
approximation of orientation and stretch only becomes apparent when polymer
molecules are significantly stretched, the vortex structures of both models are
very similar.

For the coupled model, significantly higher Weissenberg numbers of O(100)
could be reached, but these were not large enough to reach the high-stretch
regime. For the sake of brevity, these results are not included here. Instead,
we will discuss the impact of chain stretch for the polybutadiene solution in
section 4 for which we do find stable steady state results when polymer chains
are nearly fully stretched.
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Fig. 9. Steady-state stretch for the decoupled (left) and coupled (right) DCR-CS
models at various Weissenberg numbers (polystyrene solution).

DCR-CS model G(Pa) τd(s) τR(s) stretch β

decoupled 9000 1.5 0.5 λmax = 2.5 -

coupled 4500 2.5 0.25 b = 6.25 2
Table 2
Model parameters for the decoupled and coupled DCR-CS model for the polybuta-
diene solution of [10].

4 Polybutadiene solution

For a nearly monodisperse 7.5 % polybutadiene solution of 3.5 105 molecular
weight in hydrocarbon oil, we use parameter values identified by Ianniruberto
& Marrucci [4]. Only shear data are available for this fluid [10] and the pa-
rameter values of both the decoupled and coupled DCR-CS model are given
in Table 2. To identify the corresponding parameter values of the coupled
DCR-CS model we proceed slightly differently than for the polystyrene solu-
tion. Since the Rouse time is relatively large compared to the reptation time,
the relaxation times at equilibrium differ significantly when equal values of
the reptation time are chosen. (Remember that for the decoupled model, the
Rouse time contributes to τeq whereas it does not for the coupled version.)
To obtain the same response at low deformation rates, we therefore choose
the equilibrium relaxation time to be equal for both models by adjusting the
reptation time τd of the coupled model.
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Decoupled DCR-CS

(a) We = 1

Coupled DCR-CS

(b) We = 1

(c) We = 10 (d) We = 10

(e) We = 30 (f) We = 30

(g) We = 50 (h) We = 50

Fig. 10. Steady-state streamlines for the decoupled (left) and coupled (right)
DCR-CS models at various Weissenberg numbers (polystyrene solution).

The other parameter values are chosen following the same procedure as for
the polystyrene solution, i.e. the Rouse time in the coupled model has been
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chosen half of the Rouse time of the decoupled model, and for the value of b
we take again λ2

max. The modulus is chosen such that the zero-shear viscosities
are equal for both models. Since the relaxation times at equilibrium are equal
for the polybutadiene solution, it follows from Eqs. (13,14) that the modulus
in the coupled model is exactly half of the value of the decoupled model.

4.1 Rheometrical results

For the shear viscosity in Fig. 11(a), we observe a good agreement with the
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Fig. 11. Steady-state response of the decoupled and coupled DCR-CS models
(polybutadiene solution): (a) shear viscosity η, and (b) uniaxial extensional vis-
cosity ηE as a function of shear rate γ̇ and elongation rate ε̇, respectively. Data are
from [10].

experimental data in the reptation dominated regime. In the CCR dominated
regime, the decoupled and coupled DCR-CS models have a slightly different
slope resulting in a slight underprediction and overprediction, respectively.
This difference does not come as a surprise since for relatively large values
of τR the effective relaxation time is quite different for both models and we
chose to match the relaxation time at equilibrium. We also note that due to
the relatively low value of λmax, the decoupled model does not show any shear
thickening but only a change of slope, just as for the coupled model.

To better understand the complex flow simulations, we also compare in Fig. 11(b)
the model predictions in uniaxial extension. For the decoupled DCR-CS model,
the uniaxial extensional viscosity increases monotonically and approaches asymp-
totically its upper limit. For the parameter values of the coupled model that
we have chosen, ηE first goes through a minimum and then approaches a
maximum that is considerably lower.
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4.2 Flow in a constriction

As a characteristic time, we use the equilibrium relaxation time. The Weis-
senberg then becomes We = τeqU/R. For the decoupled DCR-CS model, a
stable steady state could be reached for Weissenberg numbers up to 15. From
Fig. 12 we observe that for these values of the Weissenberg number a similar

Decoupled DCR-CS

(a) We = 1: I = 0:002

Coupled DCR-CS

(b) We = 1: I = 0:002

(c) We = 5: I = 0:005 (d) We = 5: I = 0:002

(e) We = 10: I = 0:018 (f) We = 10: I = 0:014

(g) We = 15: I = 0:034 (h) We = 15: I = 0:046

Fig. 12. Steady-state streamlines for the decoupled (left) and coupled (right)
DCR-CS models at various Weissenberg numbers (polybutadiene solution).

vortex growth of the upstream vortex is predicted by both the coupled and
decoupled DCR-CS models. Quantitatively, however, there are some differ-
ences like in the vortex intensity Iψ and the considerably larger vortex at the
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moderate Weissenberg number of We = 5. This is not unexpected since the
extensional viscosity of the decoupled model increases monotonically, while
for the coupled version ηE goes through a minimum at moderate levels of ε̇
before it starts to increase due to chain stretch.

Figure 13 shows the corresponding levels of chain stretch, i.e. λ and
√

tr A,

Decoupled DCR-CS
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1.50
1.33
1.16
1.00

(a) We = 1: Max 1.34

Coupled DCR-CS

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(b) We = 1: Max 1.44

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(c) We = 5: Max 1.66

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(d) We = 5: Max 1.94

2.33
2.16
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1.83
1.66
1.50
1.33
1.16
1.00

(e) We = 10: Max 1.85

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(f) We = 10: Max 2.12

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(g) We = 15: Max 1.96

2.33
2.16
2.00
1.83
1.66
1.50
1.33
1.16
1.00

(h) We = 15: Max 2.21

Fig. 13. Steady-state stretch for the decoupled (left) and coupled (right) DCR-CS
models at various Weissenberg numbers (polybutadiene solution).

respectively, at the various Weissenberg numbers. Although the predictions
of both models are again in qualitative agreement, the stretch levels in the
constriction predicted by the coupled model are consistently higher. However,
this does not lead to an earlier apparent breakdown of the numerical scheme.
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On the contrary, it is the decoupled model for which no stable steady state
can be obtained for Weissenberg numbers larger than 15.

For the coupled model considerably higher levels of We can be attained. Fig-
ure 14 displays the contours of the second invariant of the rate-of-deformation

200.00
175.00
150.00
125.00
100.00

75.00
50.00
25.00
10.00

5.00

(a)

250.00
225.00
200.00
175.00
150.00
125.00
100.00

75.00
50.00
25.00

(b)

Fig. 14. Second invariant of the rate of deformation tensor for coupled DCR-CS
model at We = 50 (polybutadiene solution), (a) region around the constriction,
and (b) zoom at the constriction wall.

tensor at the highest Weissenberg number for which we have performed cal-
culations, We = 50. It is clear that we do reach the stretch-dominated regime
near the constriction wall as well as near the axis of symmetry.

The contours of the stretch
√

tr A in Fig. 15 show that for Weissenberg num-
bers between 20 and 50 polymer chains become highly stretched in the con-
striction region, from the wall to the axis of symmetry. This region extends
ever further upstream as the Weissenberg number increases, and at We = 50
chain stretch is already significant at a distance of 4R upstream of the constric-
tion. Furthermore, full stretch is almost reached at this Weissenberg number.
These high levels of stretch correlate with a dramatic growth of both the size
and intensity of the upstream vortex as can be observed from Fig. 16.

In our simulations with previous tube models for linear polymer melts, re-
gions with nearly fully extended polymer chains could not be reached and a
decreasing pressure correction that is typical for non-elastic shear-thinning flu-
ids was observed [2,6]. Here, the nondimensional pressure correction is defined
as (∆p−∆p0)/∆p0, where ∆p is the total pressure drop in the flow domain and
∆p0 corresponds to the pressure drop in a fully-developed Poiseuille flow in a
tube without the constriction, i.e. of length 40R and radius 4R. At the high
levels of stretch that we can reach with the coupled DCR-CS model, however,
we obtain for the first time an increase of the pressure correction (see Fig. 17).
After an initial decrease in the CCR dominated regime, the pressure correction
starts to increase at about We = 10. At corresponding levels of stretch the
numerical simulations for the decoupled DCR-CS model do not reach a steady
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(b) We = 30: Max 2.43
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(d) We = 50: Max 2.47

Fig. 15. Steady-state stretch for the coupled DCR-CS model at high Weissenberg
numbers (polybutadiene solution).

(a) We = 20: I = 0:078 (b) We = 30: I = 0:122

(c) We = 40: I = 0:148 (d) We = 50: I = 0:161

Fig. 16. Steady-state streamlines for the coupled DCR-CS model at high Weis-
senberg numbers (polybutadiene solution).

state regime. For comparison we also show in Fig. 17 the pressure correction
for the polystyrene solution using the coupled DCR-CS model. In this case,
the increase is absent since the maximum Weissenberg number up to which
a stable steady state could be reached corresponds to the CCR-dominated
regime.
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Fig. 17. Non-dimensional pressure correction in the constriction as a function of the
Weissenberg number (polybutadiene and polystyrene solutions).

5 Concluding remarks

We have evaluated the impact of the decoupling approximation in the DCR-CS
theory describing monodisperse linear polymer melts. For this we considered
the response of both a polystyrene and a polybutadiene nearly monodisperse
solution in rheometrical and complex flows.

Both coupled and decoupled DCR-CS models yield satisfactory predictions
of shear data available within the reptation and CCR-dominated ranges of
shear rates. However, the coupled version does not show the anomalous shear
thickening behaviour of the decoupled model at shear rates where stretch
comes in to play. Instead, its viscosity curve shows a change of slope just
outside the experimental range of shear rates. Therefore, shear experiments
in the stretch-dominated regime are needed to further evaluate the coupled
DCR-CS model. For the polystyrene solution, both models are in qualitative
agreement with available uniaxial extension data in the reptation, CCR and
stretch-dominated regimes. This holds both for steady, start-up, and stress
relaxation experiments.

In a 4:1:4 constriction flow, both models predict very similar results for a par-
ticular fluid and at identical Weissenberg numbers. However, stable steady-
state solutions can be obtained up to a higher Weissenberg number with
the coupled DCR-CS model. Maximum Weissenberg numbers reached for the
polystyrene solution are within the reptation and CCR-dominated regimes
and correspond to a monotonic decrease of the upstream vortex and very weak
stretch. For the polybutadiene solution, however, the high-stretch regime can
be reached. The large levels of stretch predicted by the coupled DCR-CS model
at high Weissenberg numbers correlate with significant upstream vortex ac-
tivity. Additionally, the coupled DCR-CS model then predicts an increase of
the pressure correction. This is a ”first” in the realm of available tube models.
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