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Abstract. For the nonisothermal flow of a viscoelastic fluid we have taken into account temper-
ature dependency of the relaxation times and the viscosities in the constitutive equation for the
stress. In the energy equation the heat flux is specified by Fourier’s law, where anisotropic heat
conduction has been taken into account. Furthermore one has to specify which part of the stress
work is dissipated and which part is stored as elastic energy. The equations are solved with a finite
element method for the balance equations and a streamline integration method for the constitutive
equation. The influence of the Deborah number, the Péclet number and the cooling temperature
are examined in a flow through a 4 to 1 contraction.
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1. Introduction

In the last 15 years much attention has been paid to the numerical simulation of
isothermal flows of viscoelastic fluids. For recent reviews see Crochet (1989) and
Keunings (1989). For steady problems the use of streamline integration methods
made it possible to solve the equations for high Deborah numbers. Relatively small
numbers of publications have appeared in on nonisothermal flows of viscoelastic flu-
ids, especially not for high Deborah numbers. Therefore we extended the streamline
integration method of Hulsen & van der Zanden (1991) to nonisothermal flows.

In section 2 of this article the general differential equations describing a non-
isothermal viscoelastic flow are given. It starts with a short overview of the conser-
vation laws we have used. Then we describe the constitutive equations for the stress
and heat flux. For the stress equation we take into account that the viscosity and
relaxation time depend on the temperature. The heat flux will be described with
Fourier’s law, where the heat conduction may be anisotropic. In the derivation of
a temperature equation from the conservation of energy one has to specify which
part of the stress work is dissipated and which part is stored as elastic energy. Sec-
tion 3 describes the numerical implementation of the equations for nonisothermal,
viscoelastic fluid flows. The finite element method (FEM) has been used to solve
the momentum and temperature equations and a streamline integration method to
solve the constitutive equation for the stress. Section 4 describes the boundary con-
ditions of the 4 to 1 contraction and the characteristic quantities. The results of
our calculations can be found in section 5. Finally some conclusions are given in
section 6.
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2. Basic Equations

2.1. Conservation Laws

In this subsection we give a short description of the four balance equations we have
used to describe the nonisothermal flow of a fluid. We will assume that the density
of the fluid ρ is constant and that the flow is steady. Furthermore we will neglect
body forces in the momentum equations and external heat sources in the energy
equation. This leads to the following equations in a fixed bounded space Ω
− conservation of mass

∇ · v
¯

= 0, (1)

− balance of momentum
ρv
¯
· ∇v

¯
+ ∇p = ∇ · τ

¯̄
, (2)

in which v
¯

is the velocity, ρ the density, p the pressure and τ
¯̄

the extra-stress
tensor. Note that the total stress σ

¯̄
has been split into an isotropic part pI

¯̄
and

a deviatoric part τ
¯̄
.

− balance of moment of momentum

τ
¯̄

= τ
¯̄
T (3)

− balance of energy
ρv
¯
· ∇u = τ

¯̄
: d
¯̄
−∇ · φ

¯
q , (4)

where u is the internal energy and φ
¯
q the heat flux vector.

In these equations there are two quantities that must be specified by a constitutive
equation, the stress and the heat flux. Furthermore we need an expression for
the temperature instead of the energy, because some parameters depend on the
temperature. These will be the topics of the section 2.2.

2.2. Constitutive Equations

2.2.1. Stress
The extra-stress tensor τ

¯̄
is determined by the deformation history of a fluid particle

and has to be specified by a constitutive equation. For viscoelastic fluids it consists
of a contribution of the Newtonian solvent and a contribution of the polymer part.
To fit the behaviour of the polymeric part well, it is often necessary to consider
multi-mode models:

τ
¯̄

= 2ηsd¯̄
+

K∑
k=1

τ
¯̄k
, (5)

in which ηs is the solvent viscosity, K the number of modes and Euler’s rate of
deformation tensor d

¯̄
= (L

¯̄
+L

¯̄
T )/2, with the velocity gradient L

¯̄
T = ∇v

¯
. A substress

τ
¯̄k

can be specified by a differential or integral equation. In this article we will use
a differential model, the Giesekus model. The differential equation will be given in
terms of an internal deformation tensor b

¯̄k
, as used in the derivation of the Giesekus

model by Giesekus (1982). This is a more convenient form to derive an expression
for the dissipation as described in section 2.2.3. Furthermore it will be used in the
expression for the heat flux vector in section 2.2.2. It can be proved that b

¯̄k
is a



NUMERICAL SIMULATION OF NONISOTHERMAL VISCOELASTIC FLUIDS 3

positive definite tensor, see Hulsen (1990). For the Giesekus model the stress tensor
τ
¯̄k

can then be found from the internal deformation tensor b
¯̄k

by

τ
¯̄k

=
ηk
λk

(b
¯̄k

− I
¯̄
) , (6)

where λk is the relaxation time and ηk the viscosity of mode k. In terms of the
internal deformation tensor, the Giesekus model reads

λkb¯̄

5
k + (I

¯̄
+ αk (b

¯̄k
− I

¯̄
)) · (b

¯̄k
− I

¯̄
) = 0

¯̄
, (7)

with the upper convected derivative defined as

(
5
) = (˙) − L

¯̄
· ( ) − ( ) · L

¯̄
T . (8)

The constants 0 ≤ αk < 1 denote the amount of anisotropic drag. For αk = 0 the
drag is isotropic and the model then reduces to the multi-mode upper-convected
Maxwell model. The amount of anisotropy increases with increasing αk.

The only parameters that are assumed temperature dependent are the viscosities
and relaxation times. This temperature dependency is given by a shift factor aT
with which these parameters are multiplied. In our examples in section 5 there
is no Newtonian viscosity. In principle the shift of the multi-mode viscosities and
relaxation times can be chosen different for each mode:

log
(

ηk

ηk,ref

)
= log aT,k,

log
(

λk

λk,ref

)
= log aT,k,




k = 1, . . . ,K, (9)

where the subscript ref denotes a parameter at reference temperature. In section 5,
however, we will use the same Andrade shift factor for each mode:

log aT = c1

(
1
T

− 1
Tref

)
, (10)

where c1 is a shifting constant and Tref the reference temperature.

2.2.2. Heat Flux
The heat flux vector in equation (4) has to be specified by a constitutive equation.
A widely used constitutive equation is Fourier’s law, which has the general form

φ
¯
q = −κ

¯̄
· ∇T, (11)

where the heat conduction tensor κ
¯̄

can be a function of temperature and the internal
deformation tensor. In this article we assume that it only depends on the internal de-
formation tensor. Mostly an isotropic heat conduction is assumed. Measurements of
the heat conductivity by Hands (1982) and Washo & Hansen (1969), however, show
that the increase in the direction of the orientation, and a corresponding decrease
in the directions perpendicular to it, can be considerable.
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For a one mode model the most general model that can be obtained for the heat
conduction tensor, is

κ
¯̄

= κ0I¯̄
+ κ1b¯̄

+ κ2b¯̄
−1, (12)

where the scalars κ0, κ1 and κ2 are only functions of the temperature and the
invariants I1, I2 and I3 of the internal Finger tensor b

¯̄
. In equilibrium state the

internal Finger tensor equals b
¯̄

= I
¯̄

and the heat conduction tensor reduces to

κ
¯̄

= κeqI¯̄
,

κeq = κ0 + κ1 + κ2, (13)

where κeq is the heat conduction coefficient that would be measured in the equilib-
rium state. If κ2 = 0 is taken in (12) the heat conduction tensor reduces to the model
for the expression for a Maxwell fluid, derived from microrheological considerations
by van den Brule (1989, 1990).

If no interaction between different modes is assumed the heat conduction tensor
for multi-mode models may be written as

κ
¯̄

= κ0I¯̄
+

K∑
k=1

(
κ1,kb¯̄k

+ κ2,kb¯̄
−1
k

)
, (14)

where K is the number of modes. In principle 2K + 1 coefficients for the heat con-
duction tensor have to be determined as a function of temperature and the invariants
of b

¯̄k
. In equilibrium state the heat conduction tensor reduces to

κ
¯̄

= κeqI¯̄
,

κeq = κ0 +
K∑
k=1

κ1,k + κ2,k. (15)

From the restriction that the production of entropy Πs must be positive for all
possible processes, it follows that the contribution of the heat flux must be positive:

TΠs = T−1κ
¯̄

: ∇T∇T + o.t. ≥ 0. (16)

For a derivation see for example Leonov (1987). To fulfil the inequality it is sufficient
to require

κ0 ≥ 0,
κ1,k ≥ 0,
κ2,k ≥ 0,

}
k = 1, . . . ,K.

In the derivation use has been made of the positiveness of the tensor b
¯̄k

and the
assumption that there is no mutual interaction between the b

¯̄k
.

2.2.3. Dissipation
Calculation of a temperature equation from the energy equation is straightforward
for a Newtonian fluid. Substitution of u = cpT in the energy equation then gives an
equation for the temperature:

ρcpv¯
· ∇T = Dm −∇ · φ

¯
q, (17)
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where the mechanical dissipation Dm equals the total amount of work: τ
¯̄

: d
¯̄
. Vis-

coelastic fluids however, are able to store elastic energy. These elastic energy con-
tributions do not contribute to the mechanical dissipation.

To determine the dissipative and the elastic part of the energy, we use the matrix
formulation used by Jongschaap (1991). Under isothermal conditions Jongschaap
assumes that the mechanical dissipation is equal to the stress work minus the change
of the free energy f per unit mass:

Dm = τ
¯̄

: d
¯̄
− ρ

K∑
k=1

∂f

∂b
¯̄k

: ḃk
¯̄
. (18)

Note that for fully developed flows this definition for the dissipation results in a
dissipation which is equal to the stress work.

Jongschaap introduces a way to calculate the free energy, which results in a
positive dissipation. It is based on a macroscopic time reversal: a change of sign
of d

¯̄
. Then all variables are split in an odd and an even part with respect to this

macroscopic time reversal. Since the dissipation has to be positive, it is even with
respect to this time reversal. Furthermore the velocity gradient is odd and the
change in free energy is even, because it does not depend directly on L

¯̄
. Then we

can calculate the odd part of the stress and the even part of the rate of change of the
internal deformation tensor, which determine the free energy and the dissipation.

Performing the calculation for the Giesekus model (7) gives the following expres-
sion for the dissipation and the free energy

Dm = 2ηsd¯̄
: d
¯̄

+
K∑
k=1

ηk
2λ2

k

(
(1 − αk)

(
I1,k + tr b

¯̄
−1
k − 6

)
+ αk (b

¯̄k
: b
¯̄k

− 2I1,k + 3)
)
,

ρf =
K∑
k=1

ηk
λk

(I1,k − ln I3,k) . (19)

3. Numerical implementation

In this section we describe the numerical methods we have used to solve the equations
described in section 2. The system of equations has been decoupled into 3 parts,
which are solved iteratively. Each iteration consists of three steps. In the first
step we perform an iteration for the equations of motion. In the second step we
perform an iteration for the temperature equation. In the last step we perform an
iteration for the stress equation. The details of these three steps of the iteration
scheme can be found in subsections 3.1, 3.2 and 3.3. The equations of motion and
the temperature equation form the elliptic part of the problem. They have been
solved with a standard finite element method. The stress constitutive equation is a
hyperbolic equation. It has been solved with a streamline integration method. In the
following subsections we give for each equation a short description of its numerical
implementation and some problems that arise.
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3.1. Equations of Motion

To solve the equations of motion we have used an extended quadratic element: the
well known Crouzeix-Raviart element. See figure 1. The velocities in the centre
point and the pressure derivatives can be eliminated on element level. To eliminate
the pressure p in the centre point the penalty method has been used. Instead of the
divergence equation (1)

εpp+ ∇ · v
¯

= 0, (20)

is used. The penalty parameter εp is a small parameter, such that εpp is of the order
10−6 to 10−8.

To solve the discretized equations of motion, we use an incremental formulation
for the resulting matrix-vector equation:(

ηitSv +Mv(U i) + Cv
)
∆U i+1 = −Rv(U i,Υi, T i), (21)

where the Picard iteration matrix contains contributions of a proper linearisation of
the convective terms Mv, the penalty matrix Cv and a viscous matrix ηitSv. The
iteration viscosity ηit only slows down the iteration process. For our calculations in
section 5 we used ηit = 2η0, where η0 is the zero-shear-rate viscosity at the lowest
temperature in the flow. The increment of the velocities ∆U i+1 is defined by

∆U i+1 = U i+1 − U i. (22)

The residual Rv(U i,Υi, T i) depends on the discrete velocities U i, temperatures T i

and stresses Υi of a former iteration step:

Rv(U i,Υi, T i) =
(
ηs(T i) + ηco

)
SvU

i +Nv(U i) +

CvU
i − Fv +Q(Υi − 2ηcoD̄i). (23)

Nv contains the contribution of the convective terms, Fv the contributions of the
boundary integrals due to the natural boundary conditions and Q the contributions
of the divergence of the substresses. From this last term we have to subtract an
extra diffusive term based on the nodal point averages of the velocity gradient D̄i.
An analogous term based on the non-averaged velocity gradients is added to the
contribution of the solvent. This extra viscosity is necessary to avoid almost zero
effective viscosities, which may arise due to the use of averaged velocity gradients
for streamline integration. Introduction of ηco improves the condition of the system
but increases the viscosity of ’short wavelength’ velocity modes.

For checking convergence two conditions have to be satisfied. The first condition
is related to the increment of the velocity and the second to the residual of the
momentum equation:

maxj |∆U i+1
j |

maxj |U i+1
j | ≤ εv,inc,

||Rv(U i, T i)||f
||Rv(U i, T i)||t ≤ εv,res, (24)

where the maximum norm has been taken over all nodal points j. The norm || · ||f
denotes the Euclidean norm over the free degrees of freedom, without the essential
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Fig. 1. Crouzeix-Raviart element
with seven velocity points (diamonds)
and one point with the pressure and its
derivatives (circle).

Fig. 2. Correction of the internal de-
formation tensor in 2D. b1 and b2 are
the principal values of b

¯̄
. The solution

of the model lies in the dashed area,
which is bounded by two lines with
constant I3. The straight arrow is the
projection on the first quadrant used
by Hulsen & van der Zanden (1991).
The dashed arrow is a projection on
the lowest possible I3, which is neces-
sary to calculate the dissipation.

boundary conditions. The norm || · ||t denotes the Euclidean norm over the total
degrees of freedom, including the essential boundary conditions. For our calculations
in section 5 we have taken εv,inc = εv,res = 10−3.

3.2. Stress Equations

The Giesekus model can be written as a set of ordinary differential equations for the
internal deformation tensor, by applying the method of characteristics

db
¯̄k
ds

ds

dt
= − 1

λk(T )
(
L
¯̄
· b
¯̄k

+ b
¯̄k

· L
¯̄
T + I

¯̄
+ αk (b

¯̄k
− I

¯̄
) · (b

¯̄k
− I

¯̄
)
)
, (25)

where s is a streamline parameter. Integration is performed with a fourth order
Runge-Kutta scheme. Below we summarize some important aspects of the streamline
integration method and the difficulties that may arise. More details about the
isothermal streamline integration can be found in Hulsen & van der Zanden (1991).
− Computation of the streamlines.

From the quadratic velocities of the FEM-part we calculate a quadratic stream
function. With this stream function we calculate a piecewise quadratic stream-
line.

− Initial conditions.
For the integration of (25) we have to specify an initial condition for the internal
deformation tensor. There are 3 possibilities. Firstly the streamline may cross
an inflow boundary. Secondly the streamline may cross an element where it has
already been computed. Finally, to reduce the computing time, the integration
is stopped if the travel time is longer than 3λk(T ), the relaxation time at the
starting point. The initial values are then found by interpolation from the nodal
point values of the previous iteration.
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− Stepsize limitations.
The limitation of the stepsize of streamline integration is based on the linearized
form of equation (7). Furthermore it is possible to limit the stepsize further
when the change of a quantity during a step is too large. For example it is
necessary to limit the change in velocity gradient at start-up for high values of
the Deborah number.

− Shear flow correction.
On the wall numerical approximation errors may cause large false elongational
stresses for high Deborah numbers. This can be avoided by imposing an exact
simple shear flow on the wall.

− Correction of the internal deformation tensors.
Due to numerical approximation errors the internal deformation tensor can
become indefinite in regions where large gradients are present, for example
near sharp corners. Due to the Lange residence time near the wall, negative
determinants may blow up the quadratic term in (7). To avoid these nonlinear
instabilities we correct the internal deformation tensor with an isotropic term.
See figure 2. For the stress equation it is sufficient to put b

¯̄
back on one of the

axes, so it becomes semi-positive definite. However for the calculation of the
dissipation this is not sufficient, because we need the inverse of the b

¯̄
tensor in

equation (19). For some other models it is possible to find a sharper lower bound
for the determinant of b

¯̄
. For the Leonov model, for example, the determinant

always equals I3 = 1 and for the Phan-Thien/Tanner model I3 ≥ 1. This
can be used to make a projection on the curve I3 = 1 instead of one of the
principal axes. For the 2D Giesekus model it is also possible to find a lower
bound which depends on the parameter α in the Giesekus model (see Hulsen
(1988)). However for the 3D axisymmetrical Giesekus model we were not able
to find such a lower bound and had to proceed differently. If the determinant
of the internal deformation tensor is smaller than 10−6 we took the stress work
of the specific mode instead of the dissipation. In our examples in section 5
we had to take the stress work for points near the sharp corner of the first two
modes, the ones with the largest elasticity.

3.3. Temperature Equation

To solve the temperature equation we have used a quadratic element. For the inter-
polation of quantities to the Gauss integration points we use quadratic interpolation.
The quadratic interpolation may destroy the positive definiteness of the internal de-
formation tensor. This can give rise to large numerical errors in terms where the
inverse of b

¯̄
has to be calculated. Therefore all quantities that depend on b

¯̄
−1 must

first be calculated in the nodal points and can only then be interpolated to the
integration points.

For convection dominated problems the standard Galerkin method can give rise to
unphysical solutions, with a globally oscillating character. For our type of problems
the temperature equation is often convection dominated due to the small value of
the diffusivity of a viscoelastic material. The value for our examples in section 5
is κ

ρcp
= O(10−7). To avoid the unphysical wiggles the value of the mesh Péclet

number must fulfil in all elements the severe condition Pem = ρcpv∆x
κv

≤ 2, where v,



NUMERICAL SIMULATION OF NONISOTHERMAL VISCOELASTIC FLUIDS 9

∆x and κv are the velocity, the size of the element and the heat conduction in the
streamwise direction. To fulfil this restriction the size of the elements of the mesh
must be extremely small. This limits of course the practical use of the Galerkin
method. To avoid extreme mesh refinement for high values of the mesh Péclet
number an upwind technique can be used. The wiggles can be suppressed with help
of such methods, but they can cause inaccurate solutions through the introduction
of false (extra) diffusion, especially for coarse grids. The false diffusion reduces when
the element size becomes smaller.

For the consistent upwind methods all terms are multiplied with an upwind test
function ψu and added to the weak formulation of the temperature equation.∫

Ω

(ρcpv¯
· ∇T −Dm −∇ · (κ

¯̄
· ∇T )) (ψ + ψu) dΩ = 0,

∀ψ ∈ Ψt, ∀ψu ∈ Ψt
u. (26)

These upwind testfunctions consist of an upwind direction that determines the di-
rection of the upwinding and an upwind function that determines the amount of
upwinding.

The Streamline upwind Petrov-Galerkin method (SUPG) has been described by
Hughes & Brooks (1982). They take the streamlines as the upwind direction,

ψu = τv
¯
· ∇ψ, (27)

so this upwind method shows no false crosswind diffusion. With this choice of ψu
sufficiently smooth exact solutions can be approximated very well. The presence
of sharp layers can create local oscillations, in contrary to the standard Galerkin
method which creates globally-propagating oscillations. The local wiggles can be
suppressed by adding some diffusion in the direction of the temperature gradient as
described by Mizukami & Hughes (1985). However for anisotropic heat conduction
this method does not work, because the direction of the heat flux does not equal the
direction of the temperature gradient.

The upwind function τ indicates the amount of upwinding. It is based on an
element Péclet number βu

βu =
||v
¯
||hρcp
2κv

,

κv =
v
¯
· κ
¯̄
· v
¯||v

¯
||2 , (28)

where h is the maximum distance in the element in the direction of v
¯

and κv is a
measure for the heat conduction in the streamwise direction. If βu < 1 the upwind
function can be chosen small, because the standard Galerkin approach still gives
accurate solutions. For βu > 1 however, upwinding has to be applied to avoid
unphysical wiggles. Several choices for τ are used in the literature. We have used
the ’optimal’ upwind function for the examples in section 5.

τ =
hξu
2||v

¯
|| ,

ξu = cothβu − 1
βu
, (29)
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where ξu is a non-dimensional numerical diffusivity. The choice of τ seems not of
great importance. In our test examples we could not find significant differences
between different choices of τ .

To solve the discretized temperature equation we also use an incremental for-
mulation. All of the matrices and vectors may contain contributions of the upwind
scheme: (

κitST (Υi) +MT (U i, T i)
)
∆T i+1 = −RT (U i,Υi, T i). (30)

The Picard iteration matrix contains contributions of the convective terms MT and a
diffusive matrix κitST . The iteration diffusivity κit slows down the iteration process.
This avoids convergence problems. A constant and isotropic iteration diffusivity
gives good results for our examples in section 5. The increment ∆T i+1 is defined by

∆T i+1 = T i+1 − T i, (31)

and the residual RT (U i,Υi, T i) equals

RT (U i,Υi, T i) = ST (Υi)T i +NT (U i, T i) − FT (U i,Υi, T i). (32)

where the diffusive matrix ST (Υi) may depend on the stresses due to the anisotropic
heat conduction. NT contains the contributions of the convective terms. The dissi-
pation and the boundary integrals of the natural boundary conditions contribute to
FT .

For checking convergence two conditions analogous to the momentum equations
have to be satisfied. The first condition is related to the increment of the temperature
and the second to the residual of the temperature equation:

maxj |∆T i+1
j |

maxj |T i+1
j | ≤ εT,inc,

||RT (U i, T i)||f
||RT (U i, T i)||t ≤ εT,res, (33)

where the maximum norm has again been taken over all nodal points j. The norms
|| · ||f and || · ||t again denote the Euclidean norm over the free and total degrees of
freedom. For our calculations presented in section 5 we have taken εT,inc = εT,res =
10−3.

3.4. Boundary conditions

This last part of the numerical implementation deals with the boundary conditions.
Especially the boundary conditions at the inflow and outflow:
− Inflow boundary.

At an inflow boundary we have to specify the velocity, the temperature and
all substresses. We assume that these quantities are fully developed. For the
calculation we have a simple 1D program. We decouple the temperature equa-
tion and the equations of motion. This results in an algebraic equation for the
shear rate and an ordinary differential equation for the stresses. The algebraic
equation for the shear rate is solved with a simple Picard or secant method.
To obtain a convergent scheme we had to add an iteration diffusivity in the
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integration of the temperature equation. This procedure is analogous to the
finite element temperature equation.

− Outflow boundary.
In principle it is possible to impose fully developed boundary conditions at
the outflow, as we do for the isothermal calculations. For nonisothermal flows
with high Péclet numbers, however, this would require very long exit lengths.
This would require long computation times and a large memory capacity of your
computer. To avoid this, we impose for the outflow natural boundary conditions
that are based on the fully developed flow. The procedure is as follows. For
the temperature we suppose a zero heat flux in the normal direction. For
the momentum equations we prescribe the normal stress and a zero tangential
velocity. The only problem is to find a good approximation of the normal stress
at the outflow. We have done that by using the temperature resulting from
the natural temperature boundary conditions for calculation of the viscosities
and relaxation times. With these calculated viscosities and relaxation times we
calculate a fully developed pressure and a fully developed extra stresses, which
form the normal stress at the outflow.

4. Problem Description

By Hulsen & van der Zanden (1991) an eight-mode Giesekus model has been used
to calculate the steady, isothermal flow of a low density polyethylene (LDPE) melt
through a 4 to 1 contraction. For the nonisothermal calculations we have also used
this model described by Bird et al. (1987). The viscoelastic material parameters for
this model can be found in table I. The thermal properties in table II are also from
Bird et al. (1987). So far we know there are no measurements of the anisotropical
heat conduction parameters of LDPE. For our calculations we therefore assumed
some parameters, which are given in table III. This means that 80% of the heat
conduction takes place through the polymer chains. This value is not unusual for
rubbers, see van den Brule (1989). In figure 3 and 4 we have plotted the shear
viscosity and the elongational viscosity for this model for the temperature range we
use in our calculations in section 5.

The temperature boundary conditions we have used for our axisymmetrical ex-
amples in section 5 have been plotted in figures 5 and 6. In the first example the wall
near the vortex has been heated. In the second example the wall has been cooled
from the contraction to the outflow. On the fixed wall we have assumed that the
no-slip boundary condition holds for the equations of motion. For the inflow and
outflow we have prescribed fully developed profiles as described in subsection 3.4.

For our calculations we varied two dimensionless numbers, the Deborah number
and the Péclet number. Because of the problems with the calculation of the dissi-
pation for the 3D Giesekus model we didn’t look more closely at the influence of
the dissipation. In our examples the temperature rise due to dissipation is small,
less than 0.5K. Both the dimensionless numbers are calculated at the outflow. The
Deborah number, which denotes the ratio of the characteristic time scale of the fluid
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TABLE I
Viscoelastic properties of LDPE,
from Bird et al. (1987)

k ηk(Pa · s) λk(s) αk

1 1.00 · 103 103 0.03

2 1.80 · 104 102 0.05

3 1.89 · 104 101 0.2

4 9.80 · 103e 100 0.5

5 2.67 · 103 10−1 0.4

6 5.86 · 102 10−2 0.3

7 9.48 · 101 10−3 0.2

8 1.29 · 101 10−4 0.1

TABLE II
Thermal proper-
ties of LDPE, from Bird et
al. (1987)

ρ 7.82 · 102kg/m3

cp 2.57 · 103J/kgK

κ 2.41 · 10−1W/mK

Tref 423K

c1 4.50 · 103K

TABLE III
Heat conduction con-
stants in (W/mK) for
all modes k

κ0 4.82 · 10−2

κ1,k 2.41 · 10−2

κ2,k 0

Fig. 3. Shear viscosity for the LDPE
melt versus shear rate at different tem-
peratures.

Fig. 4. Elongational viscosity for the
LDPE melt versus shear rate at differ-
ent temperatures.

and a characteristic time scale of the flow, is defined by

De =
λ0,ref〈v〉
Dd

,

with 〈v〉 the average velocity and Dd the diameter at the outflow. The mean relax-
ation time at reference temperature λ0,ref is defined as

λ0,ref =
K∑
k=1

λk,refηk,ref
η0,ref

,

with η0,ref = ηs,ref +
∑K
k=1 ηk,ref the zero-shear-rate viscosity at reference temper-
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Fig. 5. Boundary conditions
for problem 1 and definition of
the opening angle β. The wall
near the vortex (dashed line)
has been heated. The other
part of the wall has been kept
at reference temperature.

Fig. 6. Boundary condi-
tions for problem 2. The wall
at the inflow (dashed line) has
been kept at reference temper-
ature. The other part of the
wall (straight line) has been
cooled.

Fig. 7. A part of the finite ele-
ment mesh near the sharp cor-
ner.

ature. The Péclet number, denoting the ratio of the convective transport and the
transport by conduction, is based on the equilibrium thermal conductivity coeffi-
cient:

Pe =
ρcp〈v〉Dd

2κeq
.

We have examined three characteristic quantities for the flow through a contrac-
tion. Firstly the opening angle β, defined in figure 5. The second quantity is the
vortex intensity, the ratio of the amount of fluid flowing in the vortex and in the
main flow:

Iψ =
ψsep − ψcen

ψaxis − ψsep
,

where ψ is the stream function value at the separating streamline ψsep, the centre
of the vortex ψcen and the symmetry axis ψaxis. Finally we examine an entrance
correction, defined by

niso
c =

−σen
n + σex

n − (
∆pdev

en + ∆pdev
ex

)iso

2τ iso
w

.

σen
n and σex

n are the total normal stresses at the wall of the entry and exit. ∆pdev
en

and ∆pdev
ex are the pressure differences in the entrance and exit region that would
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exist if the isothermal flow at reference temperature was fully developed. The quan-
tity is normalized with the wall shear stress from the isothermal flow at reference
temperature. For isothermal flows this quantity gives the extra pressure loss due to
the contraction. For nonisothermal flows there is also an effect due to the cooling or
heating of the fluid.

For our computations we have used a HP9000-720 computer with a Linpack speed
of 14 Mflops and a HP9000-735 computer with a Linpack speed of 40 Mflops. To
obtain a converged solution we used an iteration viscosity of ηit = 2η0, ηco = η0
and for the nonisothermal problems κit = 5κeq. For the isothermal calculation with
a Deborah number of 100 the largest number of iterations were needed, 189 itera-
tions which took 6 seconds per iteration on the HP9000-735. For the nonisothermal
problems, with De = 10, we needed 40 - 60 iterations, which took 15-20 seconds
per iteration on the HP9000-735. The mesh we have used consists of 1452 nodal
points. To give an idea of the mesh we have plotted the part near the sharp corner
in figure 7. The mesh is rather coarse near the inflow and outflow boundary. It has
been refined towards the sharp corner, where large gradients are present. The inflow
length is Lu = 20Dd and the outflow length Ld = 60Dd.

5. Results

In this section we will examine the influence of the Deborah number, the Péclet
number and the cooling temperature on the flow. Figure 8 shows the influence of
the Deborah number for isothermal flows. The opening angle β becomes larger
when the Deborah number increases. The idea is that the growth of the vortex is a
mechanism to fulfil the balance of momentum in the z-direction:

1
r

∂rτrz
∂r

+
∂τzz
∂z

' 0, (34)

where we have neglected the pressure gradient. The build-up of the dominant term
in this equation, τzz , before the contraction can be more gradually with a larger
vortex. For low Deborah numbers the vortex intensity increases with increasing De.
For high Deborah numbers the vortex intensity slowly decreases with increasing De.
Some numerical values can be found in table IV.

For all the nonisothermal examples with boundary conditions defined in figure 5
and 6 the opening angle didn’t change significantly. The influence of the tempera-
ture changes was too small or too locally. The differences in the vortex intensities,
however, are relatively large.

For problem 1 the heating has two opposite effects. On the one hand the vortex
intensity is decreased. An increase in the temperature gives rise to a fluid that is
less elastic. A temperature rise of 10K of the whole fluid with De = 10 corresponds
to an isothermal flow with De = 7.8. In this region the vortex intensity increases
with increasing elasticity, see table IV. On the other hand the vortex intensity
will be increased due to the temperature differences in the flow. Due to the higher
temperatures in the vortex region, the viscosity is locally smaller than in the main
flow. This results in larger velocities in the vortex and consequently larger vortex
intensities. In table V we see that for the isotropic heat conduction the first effect
is dominant for the lowest Péclet number and the second effect is dominant for the
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TABLE IV
Vortex intensity and
opening angle for different
Deborah numbers

De Iψ(%) β(deg)

1 1.8 25

7.8 10.8 47

10 11.3 47

100 10.5 58

TABLE V
Vortex intensity for dif-
ferent Péclet numbers for
problem 1. The first col-
umn is without anisotropy,
the second with
the anisotropy parameters
from table III. The
Deborah number equals
De = 10.

Pe Iψ(%) Ia
ψ
(%)

10 11.1 12.1

100 12.4 12.4

1000 12.6 12.6

others. The reason for this can be seen in figure 9. For the lowest Pe the temperature
difference between the vortex and the main flow is relatively small, in contrary to
the other Péclet numbers. In table V and figure 10 the influence of the anisotropy on
the vortex intensity and the temperature field can be found. For the smallest Péclet
number the influence of the anisotropy is relatively large. The anisotropy of the heat
conduction influences the temperature field near the contraction drastically. Due to
the large elongational stresses the polymer chains will be oriented in the direction of
the flow. This results in an increase of the heat flux in the direction of the flow and
a decrease in the direction perpendicular to it. This results in a larger temperature
difference between the vortex region and the main flow, and consequently a larger
vortex intensity. For Pe = 100 and Pe = 1000 the flow is too convection dominant to
give large differences between the figures 9 and 10. There are only small differences
near the sharp corner, where the stresses are relatively large and the velocity is
relatively small.

In the second example we will examine the influence of the cooling temperature.
Again the influence on the opening angle is relatively small. The influence on the
vortex intensity and the entrance correction has been summarized in table VI. For
these calculations De = 10, Pe = 1000 and anisotropy is taken into account. Due
to the cooling of the wall the temperature in the vortex and outflow region becomes
lower. In the vortex region, however, the cooling is more effective. Firstly because
the velocity is smaller and thus the local Péclet number is smaller in the vortex
region. Secondly because the stresses in the outflow region are larger, which results
in a stronger orientation of the polymer chains. This gives a reduction in the heat
conduction in the r-direction. This results in a decreasing vortex intensity for a
decreasing wall temperature. Additionally we calculated the entrance corrections for
the different cooling temperatures. Due to the low thermal diffusion perpendicular to
the flow direction compared to the convective transport parallel to the flow the cold
temperature boundary layer develops very slowly along the wall. Consequently the
temperature profile is far from fully developed at the outlet and near the symmetry
axis there is no decrease of the temperature at all. This can be seen in figure 11,
where the temperature isolines have been plotted for 1/6 of the exit length and 3/10
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Fig. 8. Streamlines for isothermal flows with increasing Deborah number. De = 1, De = 10 and
De = 100.

Fig. 9. Temperature isolines for increasing Péclet numbers for problem 1. Pe = 10, Pe = 100 and
Pe = 1000, without anisotropic heat conduction. Each isoline differs about 0.9K from the next
one.
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Fig. 10. Temperature isolines for increasing Péclet numbers for problem 1. Pe = 10, Pe = 100
and Pe = 1000, with anisotropic heat conduction. Each isoline differs about 0.9K from the next
one.

of the entry length. The isoline nearest to the axis of symmetry is only 1K below
the reference temperature. Figure 11 also shows that a relatively large part of the
cold layer in the exit is due to the convection from the entry region. In this region
the local Péclet number is smaller, so the cold front can penetrate more easily in the
main flow there. Although the cold temperature layer is relatively small in radial
direction the influence on the magnitude of the entrance correction is large compared
to the isothermal flow. For the lowest wall temperature the entrance correction is
more than 10 times larger than for the isothermal flow. Note that the magnitude of
niso
c depends strongly on the exit length, the longer the exit length the larger niso

c .
Of course it would be better to have a quantity that does not depend on the exit
length. This is however very difficult, if not impossible, because the cold layer is
determined by both convection from the vortex region and diffusion from the cold
wall in the exit.

6. Concluding remarks

We have extended the numerical implementation of Hulsen & van der Zanden (1991)
for steady and isothermal flow of viscoelastic fluids with some nonisothermal effects.
The viscosities and relaxation times have been made temperature dependent by
means of a shift factor. In the energy equation two effects that are special for
viscoelastic fluids have been taken into account. The first is the anisotropy of the heat
conduction due to molecular orientation of the polymer chains. The second is storage
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TABLE VI
Shift factor at the cooled wall, vortex
intensity and entrance correction for
different cooling temperatures at the
wall.

Twall(K) awall
T Iψ(%) niso

c

423 1.00 11.3 1.5

413 1.29 10.1 5.6

403 1.70 8.8 10.3

393 2.25 7.4 15.4

383 3.04 6.1 20.9

Fig. 11. Temperature isolines for different wall cooling temperatures (30% of the entry length
and 16% of the exit length). For Twall = 413K the isolines are between T = 413K and T = 422K.
For Twall = 383K the isolines are between T = 383K and T = 422K.

of elastic energy, through which the dissipation does not equal the stress work. For
the axisymmetrical Giesekus model we used, we have still some problems for the
calculation of this quantity near sharp corners. This is caused by the indefiniteness
of the internal deformation tensor.

In our examples we examined the influence of the Péclet number, the anisotropical
heat conduction and the wall cooling on the flow. The influence on the opening angle
and the main flow velocity is small. The vortex intensity and the entrance correction,
however, show large differences. The influence of the anisotropical heat conduction
is relatively small for high Péclet numbers.



NUMERICAL SIMULATION OF NONISOTHERMAL VISCOELASTIC FLUIDS 19

Acknowledgements

We want to acknowledge J.P.P.M. van der Zanden for his advices and help with the
extension of the numerical code to nonisothermal flows and G.D.C. Kuiken for his
comments on this work.

References

Bird, R.B., Armstrong, R.C. & Hassager, O.: 1987, ’Dynamics of polymeric liquids’, Vol. 1 2nd
edn., Wiley, New York

Brule, B.H.A.A. van den: 1989, ’A network theory for the thermal conductivity of an amorphous
polymeric material’, Rheol. Acta Vol. no. 28 pp. 257-266

Brule, B.H.A.A. van den: 1990, ’The non-isothermal elastic dumbbell: a model for the thermal
conductivity of a polymer solution’, Rheol. Acta Vol. no. 29 pp. 416-422

Crochet, M.J.: 1989, ’Numerical simulation of viscoelastic flow: a review’, Rubber Chem. Technol.
Vol. no. 62 pp. 426–455

Giesekus, H.: 1982, ’A simple constitutive equation for polymer fluids on the concept of
deformation-dependent tensorial mobility’, J. Non-Newtonian Fluid Mech. Vol. no. 11 pp. 69–
109

Hands, D.: 1980, ’The effect of biaxial orientation on the thermal coductivity of vulcanized and
unvulcanized rubber’, Rubber Chem. Technol. Vol. no. 53 pp. 80–87

Hughes, T.J.R. & Brooks, A.: 1982, ’A theoretical framework for Petrov- Galerkin methods with
discontinuous weighting functions: application to the streamline-upwind procedure’ Finite el-
ements in fluids (ed. Gallagher, R.H., Norrir, D.H., Oden, J.T. & Zienkiewicz, O.C.), Vol. no.
4, Wiley, New York, pp. 47–65

Hulsen, M.A.: 1988, ’Some properties and analytical expressions for plane flow of Leonov and
Giesekus models’, J. Non-Newtonian Fluid Mech. Vol. no. 30 pp. 85–92

Hulsen, M.A.: 1990, ’A sufficient condition for a positive definite configuration tensor in differential
models’, J. Non-Newtonian Fluid Mech. Vol. no. 38 pp. 93–100

Hulsen, M.A. & van der Zanden, J.P.P.M.: 1991, ’Numerical simulation of contraction flows using
a multi-mode Giesekus model’, J. Non-Newtonian Fluid Mech. Vol. no. 38 pp. 183–221

Jongschaap, R.J.J.: 1991, ’Towards a unified formulation of microrheological models’, Lecture Notes
in Physics Vol. no. 381, pp. 215–247

Keunings, R.: 1989, ’Simulation of viscoelastic fluid flow’, Fundamentals of computer modeling for
polymer processing (ed. Tucker, C.L. III), Carl Hanser Verlag, pp. 403–469

Leonov, A.I.: 1987, ’On a class of constitutive equations for viscoelastic liquids’, J. Non-Newtonian
Fluid Mech. Vol. no. 25 pp. 1–59

Mizukami, A. & Hughes, T.J.R.: 1985, ’A Petrov-Galerkin finite element method for convec-
tion dominated flows: an accurate upwinding technique for satisfying the maximum principle’,
Comp. Meth. Appl. Mech. Eng. Vol. no. 50 pp. 181–193

Washo, B.D. & Hansen, D.: 1969, ’Heat conduction in linear amorphous high polymers: orientation
anisotropy’, J. Appl. Phys. Vol. no. 7 pp. 2423–2427


