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Abstract
Stability of a second-order finite element/finite volume hybrid scheme is investigated

on the basis of flows with increasing Weissenberg number. Finite elements are used
to discretise the balances of mass and momentum. For the stress equation a finite
volume method is used, based on the recent development with fluctuation distribution
schemes for pure convection problems. Examples considered include a start-up channel
flow, flow past a cylinder and the non-smooth 4:1 contraction flow for an Oldroyd-B
fluid. A considerable gain in efficiency per time step can be obtained compared to an
alternative pure finite element implementation. A distribution based on the flux terms
is unstable for higher Weissenberg numbers, and this is also true for a distribution
based on source terms alone. The instability is identified as being caused by the
interaction of the balance equations and stress equation. A combination of distribution
schemes based on flux and source terms, however, gives a considerable improvement
to the hybrid FE/FV implementation. With respect to limiting Weissenberg number
attenuation, the hybrid scheme is more stable than the pure finite element alternative
for the smooth flow past a cylinder, but less so for the non-smooth contraction flow.
The influence of additional strain-rate stabilisation techniques is also analysed and
found to be beneficial.

Keywords: Hybrid finite element/finite volume, stability, flux and source distribution, Oldroyd-
B.
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1 Introduction
This study is concerned with establishing the properties of a new hybrid finite element/finite
volume method (FE/FV) for solving viscoelastic flows, that was first proposed in Wap-
perom and Webster [1]. There the general rational behind such an approach was pre-
sented. The features of this technique combine the benefits of a time stepping Pressure-
correction/Taylor–Galerkin discretisation, for mass and momentum balance, with those of
a cell-vertex finite volume scheme for differential constitutive equations. The introductory
article [1] focused on a benchmark flow for the Oldroyd-B model, that displayed analytic
form and permitted the development of a second-order formulation, competitive on efficiency
with a Galerkin-Recovery finite element scheme that incorporates Petrov–Galerkin upwind-
ing for stress (FE/SUPG). Such advances, within this cell-vertex finite volume sub-element
approach, were made through the judicious treatment of flux, source and time terms of the
constitutive equation. This introduced the concept of flux distribution (linear and non-linear
versions), the procedure of upwinding for cell-vertex schemes and the association of cell con-
tributions to nodal equations. In addition, for area integrals such as arise with source or time
terms, the Median Dual Cell approach was considered. Consistency was observed to be a key
aspect. This work was novel in the cell-vertex context, as the initial development for flux dis-
tribution was soley for pure advection problems, considered here under extension with source
terms. Second order accuracy was also achieved by appealing to the parent finite element
solution representation in evaluation of the sub-cell finite volume integrals. This proved to
be an effective strategy to overcome the lower order of a finite volume representation based
on vertex quantities.

The aim of the present work is to lay the foundations for establishing the stability prop-
erties of this FE/FV hybrid scheme, as we shift in consideration from smooth model flows
to complex problems (not necessarily smooth). This leads naturally to addressing issues
relevant to the derivation of steady solutions for nonlinear coupled differential problems,
where stability is essential to attaining highly elastic solutions. In this manner we give care-
ful consideration to a variety of stabilisation techniques. These include combinations of flux
distribution and source/time term treatments, identifying such properties as linearity preser-
vation and positivity, and their influence on convergence; various Recovery implementations
demonstrating dependency to reach high Weissenberg numbers and different treatments for
the constitutive equation; strain rate smoothing for momentum; and contrasting between
quadratic and linear FV solution representation. Comparison with finite element counter-
parts may be used as a guidance, in terms of stability limits, accuracy and efficiency of
computation.

The literature in this area was covered extensively in our precursor study [1]. Here we
wish to draw particular note to the hybrid FE/FV paper of Sato and Richardson [2] for its
similarity in philosophy, the articles by Tanner and co-workers [3], [4] with artificial stress
diffusion, and the Discontinuous Galerkin and Galerkin least squares approach of Baaijens
[5], [6]. The Sato and Richardson work for the 4:1 contraction differs from the present in
adopting a FV approach for pressure and stress, with implicit time stepping and a cell-
centred construction for stress. Flux corrected transport was applied to the advection terms
of the constitutive equation (inconsistent treatment). The direction adopted by Tanner and
co-workers is interesting in the present context due to its alternative stress stabilisation
technique, that contrasts against those adopted here. The studies of Baaijens are useful for
two reasons: this points to various alternative additional stabilisation possibilities from a
Galerkin least squares approach, that may be incrementally incorporated consistently into
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the formulation; also there is the strain-rate smoothing for momentum, a technique explored
in a number of guises [6]. For strain-rate stabilisation, see also Hulsen and van der Zanden
[7], who state that this approach is common in simulations with integral models.

The algorithmic structure around which the present formulations are developed is one of a
fractional stage time-stepping form. This incorporates a semi-implicit Taylor–Galerkin/Pressure-
Correction scheme for mass and momentum, with a combination of two-step Lax–Wendroff
and Crank–Nicolson procedures. The choice for the stress discretisation is either a Taylor–
Galerkin form, with consistent Petrov–Galerkin streamline upwinding and recovery of ve-
locity gradients, or a version of the FV cell-vertex sub-element scheme. Considering a two-
dimensional setting, first a structured triangular finite element mesh is constructed, with
pressure nodes located at the vertices and velocity/stress components at both vertices and
mid-side nodes. By connecting the mid-side nodes of each parent quadratic FE triangular
element, four linear FV triangular subcells are formed. An advantage of such a choice is that
no interpolation is required to recover the finite element nodal stress values, as the stress
variables are located at the vertices of the FV cells (see also [8]).

The flow problems considered for an Oldroyd-B model, include a start-up channel flow,
flow past a cylinder and flow through a four to one contraction. It is acknowledged that
a limiting Weissenber number will normally be met for this model, once non-smooth flow
situations are encountered. Nevertheless, this does provide a fertile regime of study for
benchmark flows. In this regard, the three standard test problems are used to validate the
various scheme implementations. Principally for each problem, we employ a direct compar-
ison of FV variants against FE/SUPG under identical meshing. The start-up channel flow
has an analytic solution. This is a smooth flow that may be used to investigate performance
characteristics, seeking to identify the stability behaviour of a range of different FV imple-
mentations. During the time stepping procedure to steady-state numerical noise is present
in the solution. It is the response of each individual implementation to this scenario that
is under scrutiny here, and in particular, the success of the FV schemes in dealing with
dominant source terms when fluxes tend to vanish. Armed with this knowledge we proceed
to investigate two complex flows, flow past a cylinder that displays bifurcation points and
steep stress boundary layers on curved walls, and flow through a four to one contraction
with a sharp re-entrant corner as an example of a non-smooth flow. For such flows, we
employ the superior implementations derived from the start-up channel flow study, seeking
the path towards a limiting Weissenberg number and contrasting the quality of solutions
gained, noteably in stress, from the FE/SUPG solutions.

2 Theory
2.1 Governing equations
The associated equations are those for viscoelastic incompressible flow, namely those gov-
erning the conservation of mass, transport of momentum and a constitutive law for stress.
For the Oldroyd-B model the system may be expressed in non-dimensional form as:

∇ · uuu = 0, (1)

Re
∂uuu

∂t
= −Re uuu · ∇uuu −∇p + ∇ ·

(
2
µs

µ
ddd + τττ

)
, (2)

We
∂τττ

∂t
= −We uuu · ∇τττ + We (LLL · τττ + τττ ·LLLT ) + 2

µe

µ
ddd − τττ , (3)
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where uuu is the fluid velocity, p the hydrodynamic pressure, τττ the extra-stress tensor, µs the
solvent, µe the polymeric and the total viscosity µ = µe + µs, with LLLT = ∇uuu the velocity
gradient and ddd = (LLL + LLLT )/2 the rate-of-deformation tensor.

Two non-dimensional group numbers are introduced of Reynolds and Weissenberg num-
ber, defined as

Re =
ρUL

µ
, We =

λU

L
, (4)

where ρ is the fluid density, λ the fluid relaxation time, U a characteristic velocity and L
a characteristic length scale of the flow. Here we expound the theory for the base case
of Oldroyd-B, but note that this may be extended in a direct manner to other classes of
differential models, such as the generalised Phan-Thien–Tanner, Giesekus or FENE models
(see for example [9]).

2.2 Numerical method
The numerical approach follows a time-splitting semi-implicit formulation that, via a combi-
nation of temporal Taylor series expansions [10] and operator splitting of pressure-correction
form [11], [12], generates a three fractional-stage structure per time step. Spatial discreti-
sation then distinguishes between a pure finite element or a hybrid finite element/volume
implementation, the departure lying within the treatment for stress. At the momentum-
continuity level, the implementation is that of a direct Taylor–Galerkin/Pressure-Correction
scheme, well documented elsewhere [13]. This displays such features as two-step Lax–
Wendroff time stepping, Crank–Nicolson treatment for pressure splitting and diffusion terms,
a non-solenoidal solution field at stage one, a Poisson equation for temporal pressure differ-
ence at stage two, and a continuity correction for velocity at stage three.

Following Ref. [1], a general statement of the problem in discrete form is provided as
follows:

Stage 1a Au(Un+1/2 − Un) = bu(Pn,Un, T n,Dn),

2We

∆t
Aτ (T n+1/2 − T n) = bτ (Un, T n,Dn),

Stage 1b Au(U∗ − Un) = bu(Pn,Un,Un+1/2, T n+1/2,Dn+1/2),

2We

∆t
Aτ (T n+1 − T n) = bτ (Un+1/2, T n+1/2,Dn+1/2),

Stage 2
∆t

2Re
A2(Pn+1 − Pn) = b2(U∗),

Stage 3
2Re

∆t
A3(Un+1 − U∗) = b3(Pn,Pn+1),

(5)

where the superscript n denotes the time level, ∆t the time step and U , U∗, P, T and D
are the nodal velocity, non-solenoidal velocity, pressure, elastic stress and recovered velocity
gradient vector respectively. The matrix A2 is the standard stiffness matrix and A3 the mass
matrix. The velocity matrix Au is given by

Au =
Re

∆t∗
M +

µs

µ
S (6)

where ∆t∗ is the actual time step, either ∆t/2 or ∆t and the last term on the right-hand side
arises via the semi-implicit discretisation of the diffusion term. This implicitness enhances
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stability, as discussed in [12]. The matrix Aτ equates to the identity matrix for the finite
volume method, whilst for the finite element implementation would assume a mass matrix
form. The exact discretisation for both Aτ and right-hand side bτ are discussed in section
2.3. The right-hand-side vector bu, represented in its individual terms, is given by

bn′
u (P,U , T ,D) = LTPn− µs

µ
SUn −

(
ReN(Un′

) +
µr

µ
S

)
Un′ −D

(
T n′ − µr

µ
Dn′

rec

)
+F n′

, (7)

where the superscript n′ denotes time level n in stage 1a and level n + 1/2 in stage 1b. The
matrix L is the incompressibility matrix, N the convection matrix, S the diffusion matrix,
D the elastic stress matrix and F a vector containing contributions of natural boundary
conditions. The term −2µr(SU−DDrec)/µ, containing the difference of the discontinuous and
the recovered continuous velocity gradient, is a strain-rate smoother. Strain rate smoothing
has also been used by [7] and [6]. For µr we will take µr = αµe. With an appropriate choice
of α, stability may be increased further, as we demonstrate below.

On the temporal increment of pressure, homogeneous Neumann boundary conditions are
imposed, and for U∗ the same boundary conditions are imposed as to Un+1, see [11] and [12]
for details. The pressure is fixed at the outflow to specify the constant of integration.

The momentum equation in stage one, and the pressure correction parts at stages two
and three, are discretised via a Galerkin finite element method. The solution representation
for velocity is performed with quadratic shape functions per triangular finite element, using
vertices and mid-side nodes. The pressure is approximated by a linear function using the
vertices alone. The extra stress, within the momentum equation, is approximated in finite
element form as for velocity. As a result we obtain matrix-vector equations, which can be
solved by a direct or iterative method. For reasons of accuracy, the equation for pressure
in stage 2 is solved by a direct solution method, using Choleski decomposition. The mo-
mentum equations in stage one, and the incompressibility correction equation in stage three,
are solved with a Jacobi iterative method using no more than five iterative sweeps [12].
In the finite volume method, the stress can be obtained directly, as we outline in section
2.5. This is in contrast to the purely finite element scheme that we use to benchmark the
hybrid finite element/finite volume scheme. The purely finite element version of the Taylor–
Galerkin/pressure-correction method employs SUPG for the stress equations, see [14] or [1].
Furthermore, to enhance stability, recovered velocity gradients are used in this FE/SUPG
method as discussed in [15]. Using the hybrid FE/FV approach avoids the need to solve a
matrix-vector equation for the extra stress, and the right-hand-side vector is more straight-
forward to construct. This is advantageous from an efficiency viewpoint, particularly for 3D
or multi-mode computations. To determine steady-state solutions, the truncation criteria for
the time stepping procedure is scaled on the time step as outlined in Ref. [1], being typically
O(10−m), where m is greater than or equal to three.

2.3 Finite Volume sub-cell scheme for stress
In two dimensions, the finite element discretisation is based on piecewise continuous quadratic
interpolation on triangles for velocity and stress, and linear for pressure. Solution nodal val-
ues are located at the vertices and mid-side nodes for velocity and stress, and vertices for
the pressure. To apply a flux distribution scheme, we require triangles with only vertices.
A cell-vertex finite volume scheme can be constructed by considering a hierarchical trian-
gular subdivision of each parent finite element into four finite-volume subcells, as indicated
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in Fig. 1. A flux distribution scheme may then be devised, providing the updates to the
individual equations associated with each vertex.

Adopting the notation of [1], the source QQQ, flux R and time terms of the Oldroyd-B
model may be expressed in conservative form as,

∂τττ

∂t
= −∇ · R + QQQ, (8)

R = uuuτττ, (9)

QQQ =
1

We
(2

µe

µ
ddd − τττ) + LLL · τττ + τττ ·LLLT . (10)

Taking each scalar stress components, τ , acting in an arbitrary volume Ω, its variation is
controlled through the variation of the flux vector RRR = uuuτ and the scalar source term Q.
With the aid of the Gauss divergence theorem on the flux term, integration of Eq. (8) over
a control volume Ω for each stress component τ yields

∂

∂t

∫
Ω
τ dΩ =

∮
Γ
RRR · nnn dΓ +

∫
Ω
Q dΩ. (11)

For linear FV-subcells, a linear representation (FVL) employs only its three vertex nodal
values. Alternatively, as the FV-mesh is constructed directly from the parent FE-mesh
(with quadratic functions), we may still retain the quadratic functions for evaluation of the
FV integrals (FVQ). Clearly, this will demand more computational effort than the linear
representation. However, as we have demonstrated in [1], an FVQ approach retains the
second-order accuracy of the method, that would otherwise be degraded using FVL instead.
For evaluation of ddd and LLL, we have the following alternative choices available:

1. Based on velocity per FV subcell; constant velocity gradients per FV subcell.

2. Based on velocity over parent FE; linear velocity gradients per FV subcell, discontin-
uous over FE boundaries.

3. Recovered velocity gradients over surrounding finite elements; linear velocity gradients
per FV subcell, continuous over FE boundaries.

The use of recovered velocity gradients is found to considerably enhance stability for the
FE/SUPG implementation, see [15].

2.4 Distribution of fluxes
In this section, we discuss some specific choices for the distribution of flux integrals on the
control volume triangle T over its nodes {i, j, k}. The coefficients αl indicate the fraction of
the integral sent to node l. To fulfil conservation, αl must sum to unity. For flux distribution
schemes, it is important to distinguish between instances of triangles with one and two inflow
sides. Both situations are illustrated in Fig. 2. The inflow sides are determined by the sign of
the coefficients kl = aaa ·nnnl/2, where aaa is the advection speed, that is the averaged velocity in
a FV-cell, and nnnl the inward normal on the side opposite to vertex l. A positive kl indicates
that the constant advection speed vector aaa is inflowing across the side opposite vertex l. Due
to the property, nnni + nnnj + nnnk = 0, it is ensured that each triangle has a maximum of two
inflow and two outflow sides.
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By sending the flux of the FV-cell to the downstream node, triangular cells with only
one inflow side can satisfy both the positivity and linearity preservation properties simulta-
neously, see [16]. For example, in the case with ki > 0, kj < 0, kk < 0, see Fig. 2, we would
have

αi = 1, αj = 0, αk = 0. (12)

The various flux distribution schemes only differ for the case of two inflow sides, as
illustrated in Fig. 2, for which the flux is distributed over the nodes i and j (αk = 0). We
deliberate here to discuss briefly two specific flux distribution schemes that we shall consider.
A linear LDB-scheme, that satisfies linearity preservation, and the PSI-scheme, a nonlinear
scheme that is both positive and linearity preserving. It is noted in passing, that under
general conditions, a scheme must be nonlinear to satisfy both such requirements. See [16]
for an extensive discussion of these properties and other flux distribution schemes.

2.4.1 Low Diffusion B scheme
The Low Diffusion B (LDB) scheme is a linear α-scheme that is linearity preserving, which
demonstrates a relatively small amount of numerical diffusion in comparison with a linear
positive scheme. Based on our previous experience for model problems [1], this LDB-scheme
was found to be superior on accuracy to alternatives that satisfied positivity instead. The
LDB-scheme is based on the angles in the triangle on both sides of the advection speed
vector aaa. With the angles γ1 and γ2, defined in Fig. 2, the coefficients αl are

αi = (sin γ1 cos γ2)/ sin(γ1 + γ2),
αj = (sin γ2 cos γ1)/ sin(γ1 + γ2),
αk = 0,

(13)

The closer the advection speed aaa is to being parallel to one of the boundary sides, the larger
is the contribution to the downstream node at that boundary.

2.4.2 PSI-scheme
The PSI-scheme is a non-linear scheme that is both positive and linearity preserving. Such
a variant permits us to identify the benefits of additionally satisfying positivity. With defi-
nitions βi = −ki(τi − τk) and βj = −kj(τj − τk), we have for βi + βj > 0,

αi = βi/(βi + βj), αj = βj/(βi + βj), (14)

and for βi + βj < 0,

αi = 1, αj = 0, for |βi| > |βj|,
αi = 0, αj = 1, for |βj | > |βi|. (15)

For βj = −βi (zero flux), the default setting of αi = αj = 1/2 prevails.

2.5 Distribution of sources
A natural choice of control volume for the sources would be the median dual cell (MDC),
shown in Fig. 3 for node i. This zone is constructed around a node on its unique control
volume, by connecting midside positions to triangle centroids, and has area one third of the
complete surrounding cell volume. In the original method of [16], the MDC approach has
also been used for the distribution of time-derivative terms with pure convection flows. As
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the source terms are of a similar form, it would seem appropriate to treat these in a likewise
fashion, by recourse to a MDC approach. However, this approach is inconsistent: there
is incompatibility due to the selection of different areas for the source and flux terms, see
[1]. It is our experience that, source and flux terms must be treated in a more consistent
manner. Accuracy dictates the same distribution scheme should be used for both terms
(recall consistent upwinding in FE).

The above deliberations lead to the following generalized form of finite volume distribu-
tion schemes in the presence of source terms,

Ω̂l
τn+1
l − τn

l

∆t
= δT αT

l (RT + QT ) + δMDC(Rl
MDC + Ql

MDC), (16)

where RT and QT are the flux and source integral over triangle T , and Rl
MDC and Ql

MDC are
the flux (uuu ·∇τ) and the source associated with node l taken over the area of the surrounding
MDC, respectively. Integration of the flux and source terms on triangle T is performed by
an integration rule with appropriate accuracy.

We will consider the following possibilities for the coefficients δ in Eq. (16):

I δT = 1, δMDC = 0: pure convection approach; anticipated to be appropriate for
flux dominated flows.

II δT = 1, δMDC = ΩT /ΩMDC, QT = 0, RMDC = 0: (inconsistent) finite volume up-
winding; the multiplication factor with the areas is needed to avoid inconsistency
due to the different areas over which the flux and source terms are evaluated,
leaving only inconsistency in different control volume calculations.

III δT = 0, δMDC = 1: pure MDC approach; anticipated to be appropriate for source
dominated flows.

IV δT = f(We), δMDC = 1: similar to the consistent streamline upwind approach
in finite elements; the function f may be chosen as f = ξ/3 if |ξ| ≤ 3 and 1
otherwise. Here ξ = WeU/h with U the magnitude of the average velocity per
FV-cell and h the square root of the area of the FV-cell.

V δT = 1, δMDC = f : f = 1 at the boundary points with zero velocity, f = 0
elsewhere.

For integral evaluation on the MDC, we have used a central node sampling multiplied
by the area, as in scheme IV. This is equivalent to taking a piecewise constant integrand
representation. As an alternative, in scheme IVa, we have also employed a four point sam-
pling rule based on the MDC-vertices of the FV-cell, signifying a higher order quadrature
implementation (piecewise linear integrand representation).

The consistent treatment of the time-derivative term leads to Ω̂l = αT
l Ω̂T , with Ω̂T the

area of control volume triangle T. For the MDC approach, where αT
l = 1/3, Ω̂l is the area

of the median dual cell around node l in triangle T . The latter, which we will use for
computations in sections 4-6, is a one point sampling rule and avoids the need to solve a
matrix-vector equation.
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3 Problem specification
As a model problem, we consider the start-up of Poiseuille flow in a rectangular channel.
The geometry and the 2x2 mesh is displayed in Fig. 4. The geometry is confined by two
walls at y0 = 0 and y1 = 1, where no-slip boundary conditions are adopted. Both velocity
and elastic stress are imposed at the inlet (x0 = 0), and the velocity and pressure at the
outlet. The prescribed velocity and stress at inflow and outflow are given by smooth time-
dependent boundary conditions. This is an identical flow geometry as to that considered
in Carew et al. [17], although there, true transients were computed under a fixed pressure
gradient, which permitted converged solutions for high Weissenberg numbers to be reached.
In this paper, we solve the complete system of equations including the pressure, which is
a much more severe test for the performance of the numerical method. The steady state
solution consists of a quadratic profile for ux and τxx, and a linear profile for pressure and
shear stress. With a quadratic representation for velocity and stress, and a linear form for
pressure, the solution can be computed to machine precision.

For more complex problems, we consider the flow past a cylinder in an infinite domain.
The domain and mesh around the cylinder are shown in Fig. 4. The mesh corresponds to the
mesh in [15], containing 2575 nodes in total and 20 elements on the cylinder surface. The
upstream and downstream lengths are 20R and 40R, where R is the radius of the cylinder.
To approximate the infinite domain we take the width of the domain equal to 40R. Boundary
conditions are plug flow at the inlet, vanishing normal stress and tangential velocity at the
outlet, and zero normal velocity, and vanishing tangential stress at the top surface. At the
centreline symmetry conditions apply and at the cylinder wall no-slip boundary conditions
are specified. Steep stress gradients near the top of the cylinder are encountered for this
problem. To compare with the literature, we cite the experimental work of James and
Acosta [18], Manero and Mena [19] and the numerical results of Townsend [20], and Pilate
and Crochet [21].

A third problem, used to validate the present methodology for a complex non-smooth
flow, is that of the 4:1 contraction with a sharp corner. The length of the inlet and outlet
sections are 27.5L and 49L, respectively, where L is the downstream channel half-width. At
the inlet both velocity and stress are imposed, and at the outlet the velocity and pressure.
We have recourse to smooth Waters and King transient inlet/outlet boundary conditions [22]
to reach the steady state solution. At the wall no-slip boundary conditions are specified and
at the centreline symmetry conditions hold. Fig. 4 displays the computational grid, which
corresponds to mesh M2, previously used with the FE/SUPG scheme of [15], consisting of
2427 nodes, with a minimum mesh size of 0.023L in the vicinity of the corner. For this
problem, comparison can be made widely against the literature, a survey of which was
presented in [15]; see for example, Marchal and Crochet [23], Marchal and Crochet [8], Yoo
and Na [24], Bassombrio et al. [25], and Evans and Walters [26].

In all calculations performed, we select the non-dimensional numbers of µe/µ = 8/9 and
µs/µ = 1/9. For the start-up channel flow and the 4:1 contraction we take Re = 0, whilst
for the flow past a cylinder Re = 10. To investigate the stability behaviour of the proposed
hybrid FE/FV scheme we vary the Weissenberg number from a low value of We = 0.1 in
specified increments of say 0.1. This is continued until a limiting Weissenberg number Wecrit

is encountered, beyond which a converged steady-state is unattainable, giving rise to either
transient oscillatory solutions or numerical divergence.
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4 Results for start-up channel flow
In all calculations a time step of ∆t = 0.01 is employed. Due to speed in attaining steady
state solutions, convergence tolerances on the time-stepping scheme are varied from ε = 10−m

with m = 6 for We = 0.1 till We = 3, to m = 4 for larger Weissenberg numbers.

4.1 Comparison of FV-schemes
The various possibilities for flux and source term treatment are outlined above in section 2.5.
The generalised form of these schemes allows us to investigate a variety of combinations of
treatments for source and flux terms, taking into account both flux and source distribu-
tion, with both consistent and non-consistent approaches. Five such schemes were uniquely
identified.

The main points to observe with respect to the results charted in Tables 1-3 for start-
up channel flow and the comparison of the performance characteristics for the various FV
scheme alternatives may be summarised as follows. Table 1 substantiates the results obtained
without the application of strain-rate smoothing. Here, all schemes are seen to converge at
the low value of We of 0.1. The most efficient is scheme IV, with a form of consistent
streamline upwinding similar to FE/SUPG. This situation gradually worsens through the
scheme choices taking δT of unity in scheme V; worse still for scheme III (pure MDC) and
scheme I (pure convection); and worst of all, is the performance of scheme II with inconsistent
FV upwinding.

Across the schemes, the solution can be represented to machine precision, hence attaining
identical steady state solutions. Scheme I only converges for We = 0.1 and slowly compared
to scheme V, whilst their only difference lies in the treatment for points at the wall. Hence,
it would appear that (pure) flux distribution schemes have a problem with the vanishing
velocity condition at the wall. Schemes V and IVa perform similarly, noteably as We in-
creases. This would imply that the MDC treatment is of considerable significance zonally
and is manifest particularly for this one-dimensional flow in the shear layers near the wall.
Such a shortcoming may well apply in other flows.

At higher levels of We of say unity, the situation is reversed; scheme II (with inconsistent
FV upwinding) is the superior choice. Also, we note that both schemes I and IV diverge,
so that neither approaches of pure convection alone, nor MDC central-node sampling prove
effective. At the same time, pure MDC of scheme III is uncompetitive, and the increased
MDC sampling of scheme IVa renders convergence where scheme IV fails. It is noted that, up
to this point, the FE/SUPG scheme displays superior converges properties up to We of two.
This would be in keeping with our prior comparative observations on accuracy for model
flows, linking superior accuracy attainment with improved high We stability behaviour.

4.2 Recovery and strain rate stabilisation
Table 2 represents the results with the additional strain rate stabilisation factor included.
Clearly this strategy admits solutions at larger Weissenberg numbers than was previously
possible. Here, a dash (-) in notation means no further solutions were attempted as the
results were deteriorating from the optimal; an (X) implies that divergence was encountered.
Globally, comparable levels of We are attainable for both FV and FE/SUPG, though larger
α factors are necessary beyond We of four. This is only made possible by the careful
adjustment of the weighting factor α. An optimal setting remains to be gathered, yet it is
clear that this parameter is dependent on the flow, mesh and We. At this point we have not
persevered to reach an upper limit in each individual case, if indeed such applies. Clearly, a
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pure LDB-scheme (scheme I) would require a much larger value of α to reach convergence.
Hence, computations were ceased at We = 3. In this instance, the distribution of fluxes
and sources near the wall is not good, just as observed above in the results of Table 1. For
scheme II, it seems to be the one-point MDC sampling that gives the problems. Invariably,
the inaccuracy of one-point MDC sampling incurs more severe convergence penalties. This
is where schemes IIa and IVa benefit. The consistency of scheme IVa eventually generates
the preferred scheme of choice.

For this problem and standardising on scheme IVa, it is our observation that there is little
difference between the implementations using the velocity gradient representation from the
parent FE cell (discontinuous over FE cell boundaries, yet continuous over interior FV subcell
boundaries) as opposed to a continuous recovered representation. This is certainly the case
up to We = 1. The significant advantage of the latter choice is that strain rate smoothing
may be invoked, the advantages of which are clearly apparent (see also Baaijens [6]).

4.3 Alternative FV implementations
First we comment on the inclusion of positivity within the nonlinear PSI-scheme in contrast
to the LDB-scheme, both within the context of MDC approach IVa as the superior alternative
cited above. On interrogating the results of Table 3, one concludes on the grounds of
improved iteration count that PSI is a superior choice to the LDB scheme beyond We =
2. Nevertheless, the temporal convergence trends with the PSI scheme display oscillatory
behaviour, whilst this is smooth for the LDB-scheme, and one must be careful in drawing
immediate conclusions on this basis. We note that α = 4 for We = 3. A larger value of α
usually decreases the number of time-steps, in the marginal region of convergence-divergence.
So, if α = 2 does not converge and α = 3 does, there is an intermediate value for which the
scheme converges, but is extremely slow. Taking α somewhat larger improves convergence
considerably. For more complex flows, we would have more quantitative data to be able to
illuminate the comparison, such as quality of solution.

Performance characteristics with increasing We for FVL and FVQ integral evaluation
are charted in Table 4. For the linear representation FVL, strain rate stabilisation is found
necessary to reach a solution at We = 1, and by We = 2, a solution could not be obtained
even for a large value of α = 9. The superior level of accuracy afforded by the FVQ alternative
clearly enhances stability. The FVL implementation lacks accuracy on such a coarse mesh
and this is clearly demonstrated at in- and outflow regions.

We consider a decoupled approach to demonstrate that it is the coupling, and not the
choice of stress discretisation, that restricts convergence from reaching high Weissenberg
numbers solutions. Here, we solve for stress, whilst freezing the velocity and pressure fields
at the analytical solution (a form of linearisation). In this manner, we indicate in Table 5,
that high Weissenberg number solutions may be attained without difficulty. This data should
be viewed in comparative form and is not intended to convey limitation on Weissenberg
number attenuation. We provide the number of iterations for convergence of FE/SUPG
and two FV schemes in Table 5. Such scheme variants are selected as representative of
general behaviour. In addition, we have observed that fixing the stress at the analytical
solution and solving for velocity and pressure, also provides no convergence difficulties for
high Weissenberg numbers. It is apparent that it is not the FV discretisation itself that is
responsible for the breakdown in convergence. Note that convergence of the finite volume
scheme is much faster than with the finite element alternative. This leads to the realisation
that as far as stability is concerned, it is the treatment of the coupling, rather than the form
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of distribution scheme, that is crucial.
Henceforth, FV-scheme IVa is adopted within the testing for complex flows.

5 Results for cylinder flow
For this more complex problem we adopt a time step of ∆t = 0.005 and a truncation tolerance
ε = 10−3. Results for We = 0.1 are obtained starting from vanishing initial conditions. For
higher Weissenberg numbers, a solution is initiated from one of a lower Weissenberg number.
A setting of Re = 10 is taken, for which solutions are known to display vortex activity in the
wake. It has not been found expedient to impose strain rate stabilisation for this problem, as
the unstabilised FV results prove quite satisfactory in this predominately non-shearing type
of flow. We will focus on scheme IVa, where we utilise the LDB-scheme for flux distribution.

In Fig. 5 at We = 1, we note almost identical patterns in all stress components between
hybrid FE/FV and FE/SUPG schemes. The location of the top point of the cylinder is
denoted by the cross-hatch. The FV scheme generally attains slightly lower peak stress
values, with the exception of τyy at the leading bifurcation point. The steepest boundary
layer is observed in the τyy component. At We = 1.5, as displayed in Fig. 6 for FV alone,
the maximum value of τyy triples, from almost twenty to above sixty, over the instance of
We = 1. Along with the large overshoot of τyy for We = 1.5, oscillations are apparent in the
two remaining stress components around the cylinder. For this problem instance, the FV
implementation is able to attain a slightly larger peak We value of 1.5, compared with 1.4 for
FE/SUPG. A fact that may be attributable to the lower stress values that arise for the FV
implementation, see stress line plots around the cylinder in Fig. 5. For the hybrid FE/FV
scheme, divergence was observed for We = 1.6, commencing from the result of We = 1.5.
For the FE/SUPG scheme, divergence was encountered sooner at We = 1.5, when starting
from We = 1.4 as the initial field. Replacing the LDB-scheme by the PSI-scheme (and so
adding positivity to the flux distribution scheme), did not improve the convergence trends
for high Weissenberg numbers. To illustrate this point, for a Weissenberg number of 1.4
when starting from We = 1, convergence could not be obtained whilst equivalently this was
possible for the LDB implementation.

In Fig. 7, we provide the field contour plots for stress, in two normal components and
the shear stress, to compare the results for FE/SUPG and hybrid FE/FV schemes at We of
unity. The overall structure for the stress fields follow a largely similar pattern, with only
minor differences being exposed around the cylinder. By default, some eighteen contours
are plotted between the minimum and maximum values indicated. This agreement between
both FV and FE implementations confirms accord with the literature. We note that the
FE results correspond to those of Matallah et al. [15], that compared well against those of
Townsend [20] and Pilate and Crochet [21].

Streamlines plots for increasing Weissenberg number and both schemes are given in Fig. 9.
Following Matallah et al., six contours are plotted between values of 2.5 and 0.1 in core flow,
whilst seven are plotted in the vortex between 0.01 and - 0.008. We note that the size,
strength and location of the downstream vortex follow the results of Matallah et al. [15].
There is no discernible difference between the FE/SUPG and hybrid FE/FV solutions. No
vortex enhancement is detected with increasing elasticity and the downstream shift, away
from the cylinder as one moves from Newtonian to elastic solutions, is replicated.

The results in Table 6 reflect the increment in number of time steps and time from
one value of Weissenberg number to the next, in comparative form for FV and FE/SUPG
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implementations. The FV form always proves more economical across the range of We
attempted. At We = 0.1, FV version is half the cost of the FE/SUPG alternative in time.
This improvement degrades as We increases, to about 80 percent of the FE/SUPG time at
We of unity, commencing from the previous We value. Timings are dominated in the FV case
by the momentum portion of the computation (up to 75 percent); this is reduced to less than
40 percent for the FE case. Restricted to the stress equation only, the current implementation
of the finite volume method is about five times more efficient than the FE/SUPG alternative.
The expectation is for yet further improvement once optimisation has been accomplished.
The main point here is that, for this smooth flow with steep gradients, the hybrid FE/FV
scheme outperforms its FE/SUPG counterpart. We remark in passing that, in contrast, the
FE/FV scheme seems to encounter more difficulties in solving predominately shear flows.

Fig. 8 is included to demonstrate the trends with increasing We and the difference in
solutions as limiting We values are approached. It is surprising that the FV scheme can
reach a larger critical Weissenberg number, although the FE/SUPG scheme gives smoother
solutions. Large τyy values are present with FV and the increase from We = 1 till 1.4 and 1.5
is a signal of pending divergence. Furthermore, we observe the following. With increasing
Weissenberg number the stress levels are generally falling in τxx and τxy. This is true for
Weissenberg numbers higher than unity and is consistent with decreasing drag as others have
observed. The wiggliness is associated with the occurence of a steep stress gradient before
the cylinder and the lack of adequate mesh resolution there.

We note that the inclusion of the MDC approach to the LDB-scheme is a necessity
for this type of flow. To clarify, we consider the element containing the bifurcation point
downstream of the cylinder, see Fig. 4. This element has two points at the cylinder wall
having zero velocity, and one point at the axis of symmetry, with zero normal velocity. In
the case of a positive ux, the bifurcation point will never be updated. This mechanism is
not restricted to this point alone. Depending on the local velocity field, a number of nodes
on the downstream side of the cylinder wall may suffer similarly, even though such nodes
are connected to more elements. Consider, for example, the vertex on the cylinder wall just
above the downstream bifurcation point, which is connected to three elements. In the case
when the velocity in the x-direction is larger than that in y-direction, at the only node of
the three elements in the interior of the flow domain, the node on the cylinder wall under
consideration the will never be updated. This can be checked in a straightforward manner
by applying the LDB-scheme to the three elements (two elements with one inflow side and
one with two inflow sides). For the PSI-scheme, which mainly updates one node, we have
noticed in our simulations that the bifurcation point upstream of the cylinder is only updated
during the early stages of the time-stepping scheme (producing unphysical solution fields).
Afterwards, the two elements connected to that point only send updates to the node within
the domain interior and the other node at the cylinder wall. Including an MDC approach
provides for nodal updates at the cylinder wall and so circumvents such difficulties.

6 Results for 4:1 contraction flow
For this non-smooth flow, we adopt a time step of ∆t = 0.01 and a truncation tolerance
as above of ε = 10−3. Results are provided for various Weissenberg numbers, using Waters
and King transient boundary conditions [22], and restart fields from a lower Weissenberg
number. Only the case of creeping flow is considered and timing performance is recorded in
Table 7.
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The FE/SUPG scheme reaches converged solutions for We = 2, whilst FV does less well
in this respect (see below). The FV implementation at We = 1 takes just over half of the
time for the FE/SUPG instance.

In Fig. 10, normal stress and shear stress are plotted at the axis of symmetry and along
the horizontal line through the re-entrant corner containing the downstream wall. This
provides a basis for solution comparison across the FE/SUPG and hybrid FE/FV schemes
at We = 1. There is no discernible difference in the solution on the centreline. Some
differences do become apparent between the solutions for the alternative discretisations, in
the vicinity of the re-entrant corner and along the downstream wall. The location of the
re-entrant corner is denoted by the cross-hatch coincident with the origin. For FV in contrast
to FE/SUPG, there is a larger normal stress maximum in τxx, and oscillation after the corner
on the downstream wall is more pronounced. It is this response that is most probably the
clearest indicator as to why FV fails sooner in We than does FE/SUPG for this flow. In
shear stress, there is a larger peak value observed in the case of FE/SUPG.

Contour plots for normal stress and shear stress at We = 1 are displayed in Fig. 11. This
allows one to discern whatever differences there are on the field between the solutions derived
from either scheme, FE/SUPG and hybrid FE/FV, at an appropriately largest Weissenberg
number attained by both. It is clear, that both methods display very similar patterns in
keeping with the stress line plots above. Most adjustment takes place in the re-entrant corner
neighbourhood. With increments of 0.1, the maximum Weissenberg number observed for the
FE/FV scheme corresponds to 1.3.

Streamlines for We = 1 and the limiting Weissenberg numbers for both FE/SUPG and
the hybrid FE/FV scheme are displayed in Fig. 13, following the format of Matallah et al.
[15]. For FE/FV, there is no evidence of vortex enhancement, with the salient corner vortex
reaching a strength of −8 ∗ 10−4 up to We = 1.5. The FE/SUPG solutions are similar prior
to We = 2, whereupon a lip vortex appears of strength −1.6 ∗ 10−3. These findings are
consistent with those reported in Matallah et al..

The additional consideration of strain rate stabilisation is also attempted for this problem.
We note that, both this and channel start-up flows, have a dominant shear flow character.
Here we have observed, as for the channel start-up flow, that calculations are somewhat
sensitive to the setting of the weighting factor α. For example, it was possible to increase
the level of convergence from We of 1.3 to 1.4, with a setting of α = 0.3. One needs to
increase α further to 0.5, to make the corresponding step from We of 1.4 to 1.5. Beyond this
stage, convergence could not be achieved with any value of α in the range of 0.5 to unity.
It would appear that fine tuning is demanded here; α too low is not sufficiently effective to
damp numerical oscillations, whilst α too high will simply amplify the same and at an earlier
point in the temporal procedure. From We = 1.5 onwards, no value of α could be found
to provide convergence. The reason for this is most probably attributable to interaction
with the pressure-correction scheme. What seems to be required is either to amend the
pressure-correction scheme or to incorporate additional stabilisation to the stress equation
(cf. Tanner [3]).

Fig. 12 shows the behaviour of the stress for high Weissenberg number flow for both
FE/SUPG and FE/FV. Two conclusions can be drawn here: the non-zero value of α does
not seem to influence the accuracy of the stress solutions, just convergence trends. The dip
in the xx-component of the stress, along the downstream wall after the re-entrant corner, is
unique to the FV solutions, and does not appear at We = 2 with FE/SUPG for example.
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7 Conclusions
To establish the stability of a cell-vertex finite volume method with flux distribution, we
have employed three test flows for an Oldroyd-B fluid: smooth start-up channel flow, flow
past a cylinder with steep gradients and non-smooth contraction flow with a sharp corner.
With the start-up channel flow, we have been able to demonstrate that a distribution scheme
based on fluxes alone is stable only for low Weissenberg numbers. Improved stability could
be captured by including a distribution based on the source terms as well. Using a consistent
combination of flux and source distribution schemes leads to a much more stable method
that is competitive with the FE/SUPG implementation. An optimal combination of the flux
and source distribution remains to be established. It is conspicuous that distributions based
on fluxes alone experience severe problems near no-slip boundaries, and that including a
supplement to the distribution from sources at wall nodes improves stability considerably.
This is a finding that may well have universal application across general upwinding FV
implementations. Including positivity in the flux distribution scheme, by means of the PSI-
scheme as instigated here, simply degrades convergence.

Solutions may be attained at considerably larger Weissenberg numbers via the incor-
poration of strain-rate stabilisation. Compared to FE/SUPG, however, the hybrid scheme
demands more of this stabilisation. It must be noted that it is the coupling between the
balance equations and the stress equations, and not the distribution schemes itself, that is
responsible for such instabilities as demonstrated via a decoupled implementation. For fixed
velocity and pressure fields, convergence with FE/FV was much faster than for FE/SUPG.

The best choice scheme from the channel flow is found to be a consistent combination
of flux and source distribution, similar to streamline upwinding. This scheme is applied to
the more complex problems of flow past a cylinder and contraction flow. For the flow past a
cylinder, similar solutions are obtained at We = 1 with both FE/SUPG and FE/FV. Near
the limiting Weissenberg number, the stress solution with FE/SUPG remains smoother than
for the hybrid scheme, although the FE/FV scheme reaches a slightly larger Weissenberg
number. For the non-smooth four to one contraction flow, the situation is reversed with the
FE/SUPG scheme attaining a larger limiting Weissenberg number of two, compared to 1.5 for
the FE/FV case. Stress profiles appear similar on the field, with differences in the solutions
showing up in the re-entrant corner neighbourhood. In addition, oscillation in the normal
stress along the downstream wall is more pronounced with FE/FV than FE/SUPG. This is
an issue that demands more detailed attention with a view to local accuracy considerations.

The benefit of the FE/FV hybrid scheme for complex flows lies in the improvement on
efficiency. Compared to the FE/SUPG alternative it requires both less memory and CPU-
time. Future research will be directed towards a sytematic study of further optimisation,
where both reduction in CPU-time usage and improved stability will be sought. For ex-
ample, stability may be improved in a number of ways: by improving the flux and source
distribution, or its combination; including stabilisation in the stress equation; or addressing
the coupling of the system.
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Table legend

Table 1: Number of time steps for various FV-schemes and FE/SUPG, start-up channel
flow.

Table 2: Number of time steps for various FV-schemes and FE/SUPG; start-up channel flow,
with strain-rate stabilizing, results for We = 4 and higher from lower Weissenberg number
initial field.

Table 3: Number of time steps for LDB- and PSI-scheme with MDC approach IVa; start-up
channel flow, with strain-rate stabilizing, results for We = 4 from lower Weissenberg number
initial field.

Table 4: Number of time steps for FVL and FVQ; LDB-scheme with MDC approach IVa,
start-up channel flow.

Table 5: Number of time steps for FV and FE/SUPG for start-up channel flow; decoupled
equations.

Table 6: Number of time steps ∆N and CPU-time ∆T for FE/SUPG and hybrid FE/FV,
flow past a cylinder, various Weissenberg numbers, started from lower Weissenberg number
initial field.

Table 7: Number of time steps ∆N and CPU-time ∆T for various FV-schemes and
FE/SUPG, 4:1 contraction flow, result for We = 2 started from lower Weissenberg number
initial field.



Figure legend

Figure 1: Schematic diagram of finite element with four finite volume subcells, and variable
location.

Figure 2: FV triangular cell with (a) one inflow side, (b) two inflow sides, and (c) graphical
representation of LDB-scheme defining γ1 and γ2.

Figure 3: Triangular finite volume grid with median dual cell (MDC) for node i.

Figure 4: Finite element mesh for a) start-up channel flow, b) flow past a cylinder zoomed
at the cylinder, and c) 4:1 contraction flow zoomed at the corner.

Figure 5: Line plot of stress at centreline and cylinder wall, flow past a cylinder; We = 1,
FE/SUPG and hybrid FE/FV; a) τxx, b) τxy, c) τyy.

Figure 6: Line plot of stress at centreline and cylinder wall, flow past a cylinder for We = 1
and We = 1.5, hybrid FE/FV; a) τxx, b) τxy, c) τyy.

Figure 7: Contour lines of stress, normal and shear, flow past a cylinder, We = 1, FE/SUPG
and hybrid FE/FV, a), d) τxx: −0.72 to 25.29, b), e) τxy: −0.94 to 6.52 c), f) τyy: −0.43 to
2.88.

Figure 8: Line plot of stress at centreline and cylinder wall, flow past a cylinder for We = 1,
We = 1.4, and We = 1.5, hybrid FE/FV and FE/SUPG; a) τxx, b) τxy, c) τyy.

Figure 9: Streamlines for cylinder flow, FE/SUPG, a) We = 1, b) We = 1.4, and hybrid
FE/FV, c) We = 1, d) We = 1.4, e) We = 1.5.

Figure 10: Line plot of stress at centre line a) τxx and τyy and horizontal line through re-
entrant corner b) τxx and τyy, c) τxy; 4:1 contraction flow, FE/SUPG and hybrid FE/FV,
We = 1.

Figure 11: Contour lines of stress, normal and shear, 4:1 contraction flow, We = 1,
FE/SUPG and hybrid FE/FV a), d) τxx: −0.51 to 9.21, b), e) τxy: −0.04 to 9.25 c), f)
τyy: −0.31 to 17.85.

Figure 12: Line plot of stress at horizontal line through re-entrant corner a) τxx, b) τxy, and
c) τyy; 4:1 contraction flow, FE/SUPG and hybrid FE/FV, various Weissenberg numbers.

Figure 13: Streamlines for 4:1 contraction flow, FE/SUPG, a) We = 1, b) We = 2, and
hybrid FE/FV, c) We = 1, d) We = 1.3, e) We = 1.5.



Table 1: Number of time steps for various FV-schemes and FE/SUPG, start-up channel
flow.

FE FV
We SUPG I II III IV IVa V
0.1 291 419 1114 360 177 290 289
1.0 2058 X 2278 22080 X 7288 7976
2.0 5672 X X X X
3.0 X

Table 2: Number of time steps for various FV-schemes and FE/SUPG; start-up channel flow,
with strain-rate stabilizing, results for We = 4 and higher from lower Weissenberg number
initial field.

FE FV
We α SUPG α I α II α IIa α IVa
0.1 0 291 0 419 0 1114 - 1128 0 290
1.0 0 2058 1 3624 0 2278 - 2418 0 7288
2.0 0 5672 2 19594 1 20761 1 9814 1 17656
3.0 1 11196 7 18454 7 X 4 19509 3 14981
4.0 1 18745 - - 7 17040 7 10111
5.0 3 27968 - - - - 12 23055

Table 3: Number of time steps for LDB- and PSI-scheme with MDC approach IVa; start-up
channel flow, with strain-rate stabilizing, results for We = 4 from lower Weissenberg number
initial field.

We α PSI α LDB
0.1 0 290 0 290
1.0 0 6691 0 7288
2.0 1 18049 1 17656
3.0 4 10624 3 14981
4.0 7 6613 7 10111

Table 4: Number of time steps for FVL and FVQ; LDB-scheme with MDC approach IVa,
start-up channel flow.

We α FVL α FVQ
0.1 0 285 0 290
1.0 1 19453 0 7288
2.0 X 1 17656



Table 5: Number of time steps for FV and FE/SUPG for start-up channel flow; decoupled
equations.

We FE/SUPG FV-I FV-IVa
10 10005 8735 4683
100 13951 10385 5659
500 15210 11076 5945
1000 15662 11361 6050

Table 6: Number of time steps ∆N and CPU-time ∆T for FE/SUPG and hybrid FE/FV,
flow past a cylinder, various Weissenberg numbers, started from lower Weissenberg number
initial field.

FE/SUPG FV
We ∆N ∆T (s) ∆N ∆T (s)
0.1 1687 1092 1687 528
0.5 1226 780 1029 315
0.8 2214 1424 2705 841
1.0 2767 1766 4479 1382
1.5 X X 6971 2169
1.8 X X

Table 7: Number of time steps ∆N and CPU-time ∆T for various FV-schemes and
FE/SUPG, 4:1 contraction flow, result for We = 2 started from lower Weissenberg number
initial field.

FE/SUPG FV
We ∆N ∆T (s) ∆N ∆T (s)
0.1 328 260 338 162
1.0 1396 1128 1740 885
2.0 2593 2333 X X



FV vertex nodes (τττ)
FE midside nodes (uuu,τττ)
FE vertex nodes (p,uuu,τττ)
FV triangular sub-cells
FE triangular element

Figure 1: Schematic diagram of finite element with four finite volume subcells, and variable
location.
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Figure 2: FV triangular cell with (a) one inflow side, (b) two inflow sides, and (c) graphical
representation of LDB-scheme defining γ1 and γ2.
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Figure 5: Line plot of stress at centreline and cylinder wall, flow past a cylinder; We = 1,
FE/SUPG and hybrid FE/FV; a) τxx, b) τxy, c) τyy.
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Figure 6: Line plot of stress at centreline and cylinder wall, flow past a cylinder for We = 1
and We = 1.5, hybrid FE/FV; a) τxx, b) τxy, c) τyy.
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Figure 7: Contour lines of stress, normal and shear, flow past a cylinder, We = 1, FE/SUPG
and hybrid FE/FV, a), d) τxx: −0.72 to 25.29, b), e) τxy: −0.94 to 6.52 c), f) τyy: −0.43 to
2.88.
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Figure 8: Line plot of stress at centreline and cylinder wall, flow past a cylinder for We = 1,
We = 1.4, and We = 1.5, hybrid FE/FV and FE/SUPG; a) τxx, b) τxy, c) τyy.



a)

We =1

c)

We = 1

FE/SUPG FE/FV

b)

We =1.4

d)

We =1.4

e)

We =1.5

Figure 9: Streamlines for cylinder flow, FE/SUPG, a) We = 1, b) We = 1.4, and hybrid
FE/FV, c) We = 1, d) We = 1.4, e) We = 1.5.



-0.5

0

0.5

1

1.5

2

-2 0 2 4 6

FE/SUPG, txx
FE/SUPG, tyy

FE/FV, txx
FE/FV, tyy

a)

-5

0

5

10

15

20

25

30

-2 0 2 4 6

FE/SUPG, txx
FE/SUPG, tyy

FE/FV, txx
FE/FV, tyy

b)

0

1

2

3

4

5

6

7

8

-2 0 2 4 6

FE/SUPG, txy
FE/FV, txy

c)

Figure 10: Line plot of stress at centre line a) τxx and τyy and horizontal line through re-
entrant corner b) τxx and τyy, c) τxy; 4:1 contraction flow, FE/SUPG and hybrid FE/FV,
We = 1.
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Figure 11: Contour lines of stress, normal and shear, 4:1 contraction flow, We = 1,
FE/SUPG and hybrid FE/FV a), d) τxx: −0.51 to 9.21, b), e) τxy: −0.04 to 9.25 c), f)
τyy: −0.31 to 17.85.
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Figure 12: Line plot of stress at horizontal line through re-entrant corner a) τxx, b) τxy, and
c) τyy; 4:1 contraction flow, FE/SUPG and hybrid FE/FV, various Weissenberg numbers.
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Figure 13: Streamlines for 4:1 contraction flow, FE/SUPG, a) We = 1, b) We = 2, and
hybrid FE/FV, c) We = 1, d) We = 1.3, e) We = 1.5.


