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1 Introduction

For describing the rheological behaviour of en-
tangled polymers like polymer melts and con-
centrated solutions, the reptation theory [1] has
become a basic tool. It is based on the con-
ceptually simple idea that a polymer chain can
move more easily in the direction of its backbone
than perpendicular to it, because in that direc-
tion the motion is hindered by neighbouring poly-
mer chains. The constraints resulting from the
neighbouring chains e�ectively con�ne the move-
ments of a polymer chain to a surrounding tube-
like region. Although successful in predicting, for
example, the damping function and the plateau
modulus of linear viscoelasticity, the model also
shows some de�ciencies like an excessive shear
thinning in fast shearing ows. Recent progress
in the modeling of polymer melts has alleviated
the shortcomings in the Doi{Edwards model. Re-
cent modi�cations of the original model include
for example convective constraint release and ful-
�lling a force balance on the nodes [2], [3]. With
these modi�cations, a better agreement with ex-
perimental data of the shear stress and normal
stress ratio could be obtained. How the improved
model behaves in a more complex ow, however,
is still an open question.
Below, we discuss the behaviour of the new model
in a benchmark complex ow, the 4:1:4 con-
striction ow. For this, we have extended the
Backward-tracking Lagrangian Particle Method
[5], previously developed for computing di�er-
ential constitutive equations and kinetic theory
models for dilute solutions, to handle constitu-
tive equations of integral type that result from
reptation theory.

2 Governing equations

The usual conservation laws of mass and momen-
tum for incompressible and isothermal viscoelas-
tic ow are,

r � vvv = 0;(1)

�
Dvvv

Dt
= �rp+r � (2�sddd+TTT ) ;(2)

where � is the uid density, vvv the uid velocity,
p the hydrodynamic pressure, and D=Dt denotes
the material derivative. The extra-stress tensor
has been split in a polymeric contribution TTT and a
solvent contribution with �s the solvent viscosity
and ddd = (��� + ���T )=2 the rate-of-deformation ten-
sor, where ���T denotes the velocity gradient. The
extra-stress tensor TTT may either be obtained by a
micro or macrorheological model. Here, we con-
sider macrorheological models for polymer melts.
In that case the polymeric stress is governed by
either an integral or di�erential equation.
For integral models, the polymeric stress can be
written in the general form

TTT = G

Z t

�1

�(t; t0)QQQ(t; t0) dt0;(3)

where G is the shear modulus, � a memory func-
tion that may depend on the ow conditions and
QQQ denotes an orientation tensor of the tube seg-
ments. The memory function � takes the general
form
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�
;(4)

where � is a relaxation time that may depend on
the ow. In the Doi{Edwards model, � equals
the reptation or disengagement time �d. As �d is
a constant, the integral can be calculated analyt-
ically and only the integral in Eq. (3) remains to
be computed.
Recently, Ianniruberto and Marrucci [2] have in-
troduced in the reptation model the idea that
constraints surrounding a polymer chain are more
rapidly swept away in fast ows. To take into ac-
count this so-called convective constraint release
(CCR), they proposed to take for the overall re-
laxation time �
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�

G
��� : TTT ;(5)

where � is a positive numerical coeÆcient that
ensures an increasing shear stress as a function of



shear rate. Note that � is approximately equal to
�d for slow ows, and that only for fast ows the
relaxation time is decreased considerably. An ini-
tially overlooked drawback of Eq. (5) is the non-
positiveness of the stress work ��� : TTT , which may
lead to negative relaxation times. For this we also
consider an ad hoc alternative as suggested to us
by Marrucci [4] that guarantees 0 < � � �d,
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2G
(��� : TTT + j��� : TTT j) :(6)

In the Doi{Edwards model, the orientation ten-
sor QQQ equals the average orientation of the tube
segments. In a recent paper, Marrucci [3] argued
that a force balance on the nodes should be ful-
�lled, resulting in a modi�ed QQQ tensor. In this
manner, it was possible to obtain a better agree-
ment with experimental data for the normal stress
ratio. The modi�ed QQQ tensor is given by

QQQ =

p
BBB

tr
p
BBB
;(7)

where BBB denotes the Finger tensor that is a mea-
sure of the deformation of a uid element and
ful�lls the evolution equation

DBBB

Dt
= ��� �BBB +BBB ����T :(8)

As integral models are more computationally in-
tensive than di�erential equations, a di�erential
approximation of Eqs. (3), (4), and (8) has been
derived [3]. The resulting equation is a constitu-
tive equation for the square of the stress,

DTTT 2

Dt
= ��� �TTT 2 +TTT 2 ����T � 2TTT 2 (��� : TTT=G)(9)

�2

�

�
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TTT

�

where the total relaxation time � is again given
by Eq. (5) or (6).

3 Numerical method

In Lagrangian particle methods, at each time
step, the Eulerian solution of the conservation
equations is decoupled from the Lagrangian com-
putation of the polymer stress. In this manner,
we allow for di�erent solution methods well-suited
for di�usion-dominated equations and transport
equations, respectively.
The Eulerian form of the equations of motion (1),
(2) are discretised with the aid of the �nite ele-
ment method. To increase the stability of the nu-
merical scheme, the well-known Discrete Elastic-
Viscous Stress Splitting (DEVSS) method [6] has
been used. DEVSS involves a separate discretisa-
tion of the velocity gradient, which is obtained by

projecting the piecewise discontinuous �nite ele-
ment velocity gradient ruuu on a continuous linear
�eld. In the momentum equation, an extra sta-
bilizing term is then included that contains the
di�erence between ruuu and its projection, multi-
plied with an auxiliary viscosity �. For reasons of
eÆciency, the resulting matrix-vector equation is
solved with the aid of an LU factorisation, which
only has to be computed once, before the start of
the actual ow simulation.
For the computation of the stress integral (3), we
use the deformation �eld method as proposed in
[7]. This method involves a large number of Nd

deformation �elds, for the Marrucci model that
we consider here the Finger tensor �elds BBBi with
i = 1; � � � ; Nd, measuring the deformation be-
tween current time t and various reference times
t0i in the past. At every time step all �elds age by
�t, and for allNd �eldsBBBi the evolution equation
(8) is solved. Instead of solving a double integral,
which is computationally expensive, we solve the
equivalent evolution equation for �

D�

Dt
(t; t0) = ��(t; t0)

�
;(10)

with initial condition

�(t0; t0) =
1

�(t0)
:(11)

This is similar to the approach of Peters et al.
[8] for the Mead{Larson{Doi model. In case of
the Marrucci model the evolution equation for the
memory function becomes

D�CCR

Dt
= ��CCR �

G
��� : TTT ;(12)

�CCR(t0; t0) = 1 + �d
�

G
��� : TTT ;

where we have split the constant part and the
contribution of convective constraint release to
the memory function, � = �CST�CCR, with
�CST (t0; t) = exp (�(t� t0)=�d) =�d. In case we
use Eq. (6) instead of Eq. (5), the evolution equa-
tion and initial condition (12) are modi�ed ac-
cordingly.
The evolution equations for the Finger tensor
�elds BBBi are solved by means of a Lagrangian
method, the Backward-tracking Lagrangian Par-
ticle Method (BLPM) [5]. For Lagrangian par-
ticle methods the transport equations, Eqs. (8),
(12) for the integral and Eq. (9) for the di�eren-
tial model, are solved along the trajectories of the
Lagrangian particles that are convected by the
ow. In the Lagrangian Particle Method (LPM)
[9] particles are dropped in the ow at initial time,
and next these particles are convected by the ow
through the whole ow domain. A drawback of
LPM is that a large amount of particles is needed



in highly graded meshes, resulting in excessive
memory and CPU requirements.
To circumvent these problems, in BLPM a small
number of particle locations at the current time
are speci�ed a priori in each element of the mesh.
This results in a signi�cant reduction of memory
and CPU time requirements, which is particularly
important for calculations with integral models.
Here, we take for the �xed particle locations the
nodal points of a quadratic discontinuous �nite el-
ement representation. At each time step, the par-
ticle trajectories leading to these nodes are calcu-
lated by tracking one time step �t back in time.
At the obtained initial positions, the quantity to
be integrated has to be initialised. This is per-
formed by interpolation from the stored �nite el-
ement �eld at the corresponding time level t��t.
Finally, to obtain the values at the �xed particle
positions, the evolution equations are integrated
with a semi-implicit predictor-corrector scheme.
Further details about this numerical method are
given in [5].

4 Results

As a complex ow geometry we consider the ow
through a planar 4:1:4 constriction with rounded
corners. Around the constriction, the geome-
try and mesh for which we show numerical re-
sults, are displayed in Fig. 1. The mesh consists

� -H

?

6H

Figure 1: Mesh and geometry speci�cation of the
4:1:4 constriction ow with rounded corners.

of 1288 quadrilateral �nite elements. Note the
�ne meshing near the rounded constriction wall,
where very large stress gradients develop for high
Weissenberg ows.
To guarantee an increasing shear viscosity with
increasing shear rate, we employ � = 3:8 as pro-
posed by [3]. We only consider creeping ow, so
that in absence of a solvent viscosity, we have
one characteristic number. For this Weissenberg
number, which is a measure for the amount of

elasticity in the ow, we take We = �dU=H . The
characteristic velocity U is taken as the average
velocity at the smallest gap space H . For the
DEVSS method we take the auxiliary viscosity
� = �p.
For the integral model using Nd = 100 defor-
mation �elds, the computer requirements are 130
MB memory consisting of approximately 75 MB
for the 100 deformation �elds and 40 MB to store
the LU factorisation in the solver of the momen-
tum equation. The CPU time was 1.5 hours per
1000 iterations on a 533 MHz ev56 processor of
a DEC Alpha workstation, which results in an
overall CPU time of 15 hours per run for the used
time step �t = 10�3 and �nal time T = 10. The
di�erential approximation only contains one �eld
instead of the 100 deformation �elds, so need-
ing considerably less memory, approximately 50
MB including the 40 MB for the LU factorisa-
tion. The CPU time was typically 30 minutes for
1000 iterations, resulting in an overall CPU time
of about 5 hours per run for the used �t = 10�3

and T = 10.
For the integral Marrucci model, the isolines for
���� : TTT=G, the extra contribution to the overall
relaxation time due to convective constraint re-
lease, are displayed in Fig. 2.

We = 0:1

All isolines Negative isolines

��	

We = 3

Figure 2: Isolines of ���� : TTT=G for integral Mar-
rucci model at low and medium Weissenberg
number; for clarity negative isolines are also dis-
played separately on the right-hand side; We =
0:1: [-0.002,0.163], We = 3: [-4.89,48.4].

At the low Weissenberg number, the ow is al-
most Newtonian. Consequently, the isolines are
almost symmetric in the ow direction, and the
CCR contribution practically remains positive ev-
erywhere, since ��� : TTT ' 2G���� : ���, which is pos-



itive by de�nition. At the higher Weissenberg
number, however, the situation changes dramati-
cally. The maximum is shifted downstream along
the wall of the constriction. A large region of
negative values develops in the expansion part of
the ow, extending from the axis of symmetry till
close to the wall. Note that the maximum nega-
tive values are very close to the maximum positive
values at the wall, leading to very large gradients.
Figure 3 shows the impact of the enforcement (6)
of positiveness in the CCR contribution of the re-

� of Eq. (5) � of Eq. (6)

Figure 3: Isolines of ���� : TTT=G for Marrucci dif-
ferential approximation at We = 10; � of Eq. (5):
[-20.5, 109.0], � of Eq. (6): [-10.6, 94.1].

laxation time. Particularly in and near the region
of negative isolines, the solution di�ers consider-
ably. We remark in passing that a comparison
at this Weissenberg number was not possible for
the integral model, because the numerical scheme
diverged due to negative relaxation times when
using Eq. (5). Thus, further theoretical develop-
ments seem to be necessary to properly include a
negative ��� : TTT in convective constraint release.
A comparison between the CCR contribution
to the relaxation time for the Marrucci integral
model and its di�erential approximation atWe =
10 is provided in Fig. 4. Although, there are some

Integral model Di�erential model

Figure 4: Isolines of ���� : TTT=G for integral Mar-
rucci model and its di�erential approximation at
We = 10 using Eq. (6); integral model: [0, 112],
di�erential approximation: [0, 94.1].

di�erences in the numerical values, the overall
pattern of the isolines is very similar, even near
the steep boundary layer downstream at the con-
striction wall. Concluding, the di�erential model

is a very good approximation of the integral ver-
sion, even in complex ow at high Weissenberg
numbers.
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