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1 INTRODUCTION

This study investigates the application of a
new hybrid finite element/finite volume scheme
to the numerical solution of some viscoelastic
flows. Such an FE/FV approach (see similarly
Sato and Richardson [3]) is contrasted against a
purely finite element alternative, that has pre-
viously been developed to address highly elas-
tic problems, see Matallah et al. [2]. For in-
compressible viscoelastic flows, with non-trivial
source terms, the question arises as to whether
a finite element approach may be best suited to
solve for the parabolic field equations, concerned
with the conservation of mass and momentum,
whilst a finite volume approach may be more
appropriate for the hyperbolic constitutive law,
as originally devised. For example, recent work
on advection equations has shown that fluctua-
tion distribution schemes that handle upwinding
for fluxes, can yield accurate solutions for prob-
lems that manifest steep gradients, see Struijs
et al. [4]. Efficiency, accuracy and stability are
the prime considerations, to be achieved through
a localised control volume view, high resolution
TVD-type schemes and oscillation-free transient
solutions. Computational tractability follows as
a consequence.

2 THEORY

The basic equations are those derived from
conservation of mass and momentum, and trans-
port of stress. The finite element framework,
around which this work is centred and compared
to, is a semi-implicit second-order time-stepping
Taylor–Galerkin/Pressure-Correction scheme of
three fractional stages, that incorporates consis-
tent Petrov–Galerkin streamline upwinding and
recovery in the discrete treatment of the consti-
tutive equation (FE/SUPG). In two dimensions,
the finite element grid is constructed as a trian-
gular tessellation, with pressure nodes located
at the vertices (linear representation) and veloc-
ity/stress components at both vertices and mid-

side nodes (quadratic representation). In the
FE/FV hybrid scheme, a cell vertex approach
(Crumpton et al. [1]) is adopted in the FV part
for the constitutive equation. Lax–Wendroff
time-stepping is built into this scheme, as with
the FE scheme above. Four linear FV triangu-
lar cells are constructed as subcells of each par-
ent quadratic FE triangular cell, connecting the
mid-side nodes. With stress variables located at
the vertices of the FV cells, no interpolation is
required to recover the FE nodal stress values.
The governing FV stress matrix is the identity
matrix. For the FE method it is sparse, and ne-
cessitates the solution of a matrix-vector equa-
tion, hereby with an iterative method as for the
momentum equation. This step is circumvented
using the hybrid FE/FV, with straightforward
right-hand side construction, proving a partic-
ular advantage for three-dimensional or multi-
mode computations.

Various different alternative treatments are
considered for dealing with flux and source
terms, capturing such properties as positivity
and linearity preservation. This introduces the
concept of both linear (LDB and N-scheme)
and non-linear (PSI-scheme) fluctuation distri-
bution schemes [4]. Our objective is to com-
pare and contrast the discrete implementation
of these various schemes, to indicate their rela-
tive strengths and weaknesses. As their initial
development was for pure convection problems,
here their extension is considered also for those
with source terms, as for an Oldroyd-B bench-
mark flow.

3 PROBLEM DESCRIPTION

Orders of accuracy and efficiency in attaining
solutions are established for a two-dimensional
Cartesian test problem with analytical solutions
on a unit square domain, (x0, x1)x(y0, y1) with
x0 = 1, x1 = 2. This problem may be stated
in pure convection form, or for an Oldroyd-B
model that exhibits source terms. Structured,



uniform, quadrilateral-based, triangular finite el-
ement meshes are used to test for accuracy, of
2x2, 4x4, 8x8 and 16x16 elements. For the ve-
locity field, we define ux = x and uy = −y.
Boundary conditions for individual components
must be specified, for stress these are required
on the inflow boundaries x = x0 and y = y1.

4 RESULTS

For the pure convection problem and com-
parison of FE versus flux distribution schemes,
the difference from the exact solution with mesh
refinement, a fixed velocity field, linear represen-
tation of stress, and domain 1 (y0 = 1, y1 = 2),
are displayed in Table 1. Comparison is made

Table 1: Error norm behaviour for pure convection.
FE FV

SUPG N LDB PSI
2 2.0 10−3 1.9 10−2 1.9 10−3 2.4 10−3

4 2.8 10−4 1.2 10−2 4.8 10−4 5.2 10−4

8 3.8 10−5 6.4 10−3 1.2 10−4 1.4 10−4

16 5.0 10−6 3.4 10−3 1.2 10−4 3.5 10−5

on maximum error norm behaviour throughout,
here between the FE/SUPG, N-scheme (linear,
positive), LDB-scheme (linear, linearity preserv-
ing) and PSI-scheme (nonlinear, linearity pre-
serving, positive). The linearised advection ve-
locity approach, is assumed initially and results
are characterised via component scalar solutions
of the form 1+(xy)0.5, see Wapperom and Web-
ster [5]. The FE data shows almost O(h3) con-
vergence. What is immediately clear for this
model problem, is that the linearity preserva-
tion property is essential to obtain the higher
levels of accuracy. The PSI- and LDB-scheme
display O(h2) convergence, whilst the N-scheme
only achieves O(h0.8). Furthermore, the LDB-
scheme has a wider stability range on time step,
practically double that of the others. The LDB-
scheme renders the fastest convergence rate, that
results in 2% of the FE CPU time.

For the Oldroyd-B flow problem that has source
terms, we compare in Table 2 the FV method
employing linear (FVL) and quadratic integral
(FVQ) evaluation with FE/SUPG for the more
severe test case of domain 2 (y0 = 0.1, y1 =
1.1), where the velocity is almost parallel to the
lower boundary. For this problem and domain
1, FVL- and FVQ-schemes are approximately

second-order accurate and FE/SUPG is almost
cubic. On domain 2, FE/SUPG achievesO(h2.3)

Table 2: Error norm behaviour of τxx for Oldroyd-B.
FE/SUPG FVL FVQ

2 1.4 10−3 2.2 10−3 7.3 10−4

4 3.6 10−4 1.2 10−3 1.9 10−4

8 6.5 10−5 5.4 10−4 3.6 10−5

16 9.7 10−6 2.3 10−4 5.7 10−6

accuracy. Table 2 shows the loss of accuracy
with linear integral evaluation; this appears in
all components. In worst case, we observe O(h)
convergence for τxx. In contrast, we recover the
desiredO(h2) convergence in FVQ with quadratic
integral evaluation.

5 CONCLUSIONS

The introduction of source terms in a consis-
tent manner, does not detract from the accuracy
of the FV scheme. The effective coupling of the
FE and FV components of the hybrid scheme
has been demonstrated elsewhere [5], with accu-
racy between O(h2) and O(h3), hence showing
no deterioration from the FE discretisation. As
the FVQ implementation for stress alone takes
10% of the time for its FE counterpart, solution
time is reduced to that of the base Navier–Stokes
solver. Hence, a considerable gain in efficiency
is anticipated with this hybrid FE/FV scheme
for large problems, involving either multi-mode
or three-dimensional calculations.
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