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Abstract 

 
Mechanical properties of long glass fiber composites, 

used in various industrial applications, are dependant 
upon the fiber orientation within the part.  To date, 
however, simulations with the ability to predict fiber 
orientation as a function of mold design are not available.  
In this study, several options are explored to predict the 
orientation of long glass fibers in the concentrated regime 
that take the flexible nature of these fibers into account. 
Flow through a center gated disk geometry is simulated 
numerically for high concentrations of long glass fiber in 
a polypropylene (PP) matrix.  For this, a flow uncoupled 
2D finite element (FEM) analysis was performed using a 
discontinuous Galerkin method for the orientation 
equations.  Numerical results, based on the uncoupled 
simulations, are compared with experiment for 
verification. 
 

Introduction 
 

In an effort to produce lightweight energy efficient 
parts with high moduli, thermoplastics are reinforced with 
fibers to increase their stiffness, strength, and impact 
toughness.  Such fibers of interest, within this research, 
are long glass fibers.  Currently, glass fiber provides a 
relatively inexpensive means of producing high strength 
materials used in energy demanding structures such as 
automobiles, buildings, and aircraft9.  Additionally, long 
glass fibers provide much higher properties, such as Izod 
Notch Impact (ASTM D256) strength and flexural 
modulus, in the finished part as compared to the same part 
manufactured with short glass fibers, and are therefore are 
the focus of this research.  Here the term “long” is used to 
describe a fiber that may exhibit flexibility in the presence 
of polymer melt flow, whereas “short” fibers will be said 
to remain rigid under such deformation. 

In order to obtain parts with optimum mechanical 
properties, it is desired to predict fiber orientation and 
configuration as a function of mold design and processing 
conditions. Hence, the goal of this work is to understand 
the dynamic behavior of long glass fibers in complex 
polymer melt flow.  Much work has been accomplished in 
simulating the orientation of short glass fibers in 
polymeric melts5,7, however relatively few efforts have 
produced applicable models that can be efficiently used to 

model long glass fiber orientation.  This is, in part, due to 
the flexible nature of the long glass fibers, whereas short 
fibers are assumed to be rigid.  In this research, we 
explore several models, in a complex flow, that take the 
semi-flexible nature of long glass fibers into affect.  We 
then compare these to experimentally determined results.     
 

Experimental Methods 
 

In this research, long fiber orientation is studied in 
isothermal pressure driven flow between two center gated 
parallel disks.  Forty weight percent, 11 mm long glass 
fibers, pultruded in a polypropylene matrix, is extruded 
into the parallel disk geometry with a gap height 
dimension of approximately 2 mm and a short shot radius 
of approximately 53 mm (Figure 1).   

 

 
Figure 1: Center gated disk geometry, “h” is the half 
thickness and “R” and “Ro” are the outside and inside 
radii of the disk, respectively.   
 
In this research, the flow field is assumed to be uncoupled 
from the fiber orientation dynamics and can therefore be 
solved analytically4 for cylindrical coordinates:  
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In these equations, h is half of the thickness of the disk 

and 
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Q
.

 is the volumetric flow rate.  The experimental fill 
time of such a disk is approximately 1 second.   

Fiber orientation, within this research, is 
experimentally measured using the method proposed by 
Leeds.  This method refers to optically analyzing 
metallographically polished fiber samples, in a plane of 



 

 

interest.  In general, a surface of the injection molded 
sample may have fibers intersecting it from various angles 
(Figure 2). 
 

 
Figure 2: Top: Surface exhibiting fibers with various 
orientations with respect to the plane. Bottom: 
Metallographically polished surface exhibiting ellipses. 
  
The angle with which the fiber intersects the plane is 
determined by its tangential orientation vector.  The word 
“tangential” is used here because a fiber that exhibits 
flexibility will have curvature.  The plane of interest is 
then metallographically polished to reveal the ellipse with 
which the fiber penetrated the plane (Figure 2).  The 
sample is then digitally analyzed to recreate the geometry 
of the ellipses.  This information can then be used to 
determine the vector components of the fiber’s 
orientation6.  Injection molded samples, in this paper, are 
analyzed in the “r-z” plane at 40% of the short shot 
length.   
 

Orientation 
 

Fiber orientation may be predicted by an orientation 
distribution function2, ψ(

€ 

p), where 

€ 

p  denotes a unit 
vector that is parallel to the orientation of a rigid fiber 
(Figure 3).  Here, ψ(

€ 

p) represents the probability density 
of finding a fiber with a specific orientation, and thus may 
be used to determine average orientation properties.  
Furthermore, the distribution function is normalized such 
that its integration over all configurational space is unity.  
Though completely valid, the orientation distribution 
function is cumbersome to work with and is usually used 
to construct an orientation tensor.  This can be 
accomplished by taking the second moment of the 

orientation vector with respect to the distribution function 
(Eqn. 3).   
 

 
Figure 3: Left: Fiber with unit orientation vector 
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p . 
Right: Probability of finding a fiber with the specified 
orientation.   
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A = p→ p→ψ(p→)∫ dp→ (3)

A4 = p→ p→ p→ p→ψ(p→)∫ dp→ (4)
 

 
The orientation tensor provides a measure of the degree of 
orientation of the fiber in space. Furthermore, the tensor is 
symmetric and its trace is always equal to unity.   Hence, 
if the A11 component is unity (A22 = A33 = 0), then the 
fiber is fully aligned in the “1” direction (r direction for a 
center gated disk).  Furthermore, a fourth order orientation 
tensor (Eqn. 4) arrives in orientation models as a 
consequence of the kinematic behavior of the fibers.  
Numerically, a closure approximation is needed to 
decouple this tensor into two second order tensors.  
Although this type of development was formulated for 
rigid fibers, the models in this research extend the 
definition of the orientation tensor to flexible fibers by 
allowing the orientation tensor to describe the tangential 
orientation of the long fiber.   

 
Models 

 
Now that the tools for quantifying orientation are 

apparent, a model is needed to explain its dependence 
within a flow field.  Both the Folgar-Tucker2 model and 
Bead-Rod model, suggested by Strautins and Latz7, will 
be used to try to predict the orientation development of 
long glass fibers in the specified geometry (Figure 1).  
The models are used to predict the orientation at 40% of 
the short shot length starting from an assumed random 
orientation (Aii = 1/3) at the gate (Figure 4).  These values 
are compared experimentally.  
 
 
 
 



 

 

Folgar-Tucker Model  
 

The Folgar-Tucker model, which has seen much use 
since its introduction in the 1980’s, was developed for 
short glass fibers in the concentrated regime.  Here, the 
term concentrated is used to describe the ability for 
significant fiber-fiber interactions to occur.  The model 
has been developed to extend Jeffry’s model, introduced 
in the early 1920’s, by introducing a phenomenological 
Brownian motion term.  This term, called the Folgar-
Tucker term, inhibits the steady state alignment of the 
fibers from being fully oriented.   
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= A •κT +κ • A − 2 D : A4 + 2C1IID (δ − 3A)[ ] (5)

 
Within this model, D/Dt is the material derivative, 

€ 

κT is 
the velocity gradient tensor, 

€ 

D is the rate of strain tensor, 
CI is the Folgar-Tucker constant, IID is the second 
invariant of the rate of strain tensor, and 

€ 

δ  is the unit 
tensor.  For the simulation of this model, the quadratic 
closure approximation is used for the fourth order 
orientation tensor, within this research.   
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A4 = AA (quadratic closure) (6)  
 
Although not discussed here, evaluations of different 
closure approximations have been reported in the 
literature3.  The Folgar-Tucker constant used in this 
simulation was taken from a previous analysis performed 
on short glass fibers by Eberle1, et al. whom, through 
fitting rheological data, determined CI = 0.01.  Both fiber 
evolution models, used in this paper, were accomplished 
using the discontinuous Galerkin finite element method.  

Results for the Folgar-Tucker (FT) model and the 
experimentally measured data for long glass fiber 
orientation in the “r-z” plane, at 40% of the short shot 
length, are show in Figure 5.   
 

 
Figure 4:  Visual description of mathematical problem 
using a cylindrical coordinate system. Orientation is 
assumed random at gate. 

 
Figure 5:  Folgar-Tucker (FT) simulation and 
experimentally measured results, for the trace components 
of the orientation tensor, versus the dimensionless mold 
thickness.  The components are give by “r = 1”, “z = 2”, 
“θ = 3.”   
 
From the experimental data, one will note the relative 
maxima and minima of the A11 and A33 components.  This 
behavior is expected to the flow kinematics.  The A11 
component is affected by the shearing flow, which is 
greater close to the walls of the mold (z = +/- h), where as 
the A33 component is affected by the extensional behavior, 
which is greater far away from the walls of the mold (z = 
0).  Hence, the A11 components are a maximum near the 
walls of the mold and pass through a minimum near the 
center.  The opposite is true for the A33 component.   

Although the Folgar-Tucker model captures this 
qualitative behavior, the accuracy of it is unsatisfactory 
(with the exception of A22).  The Folgar-Tucker model 
predicts the location of the maxima and minima correctly, 
however the values do not agree with experiment.  
Perhaps most noticeable within Figure 5, Folgar-Tucker 
model over predicts the rate of change of the A11 and A33 
components.  Experimentally it is seen that, although the 
values pass through local extrema, the rate of change of 
the components is quite low throughout the height of the 
part.  In our experience, this relatively flat profile seems 
to be an attribute of long fibers as compared with short 
fibers.   

 
Bead-Rod Model 

 
The model being referred to here was published in 

2007, by Strautins and Latz8.   Published explicitly as a 
semi-flexible fiber model for dilute solutions, the authors 
construct a continuum model that provides a first 
approximation to flexibility.  This is accomplished by 
modeling a fiber as two rods connected by a pivot 
allowing bead (Figure 6).   

 



 

 

 
Figure 6:  Fiber model, with segment length lB, allowing 
semi-flexibility. The segment orientations are denoted by 
unit vectors

€ 

p  and

€ 

q , and are separated by an angle θ with 
some given bending rigidity.   

 
The model constructs two rigid segments with length lB 
that are allowed to slightly pivot about the connecting 
bead, with some restorative bending rigidity.  Both 

€ 

p  and 

€ 

q  are unit vectors that represent the orientation of the 
corresponding fiber segments, with respect to the center 
bead.  Restrictions, associated in the mathematical 
development of this model, mandate the fiber be only 
semi-flexible and hence 

€ 

q  ≅

€ 

− p .  Additional assumptions 
used in this development states that the fiber has 
negligible inertia, inferring that the center of mass of the 
fiber instantaneously adjusts to changes in solvent 
velocity, and that the fiber is neutrally buoyant within the 
suspending medium.  Nonetheless, the kinematics and 
governing Smoluchowski equation are developed for the 
representative fiber and used to form the following model,   
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where the two orientation tensors represent the second 
moment of the distribution function of the unit vectors,

€ 

p  
and

€ 

q , in the following manner: 
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A = p→ p→ψ(p→,q→)∫ dp→ dq→ (11)

B = p→q→ ψ(p→,q→)∫ dp→ dq→ (12)
 

 
As a direct consequence to the bending rigidity, 
encompassed within the model parameter k, the 
expectancy of a segment orientation (with respect to the 
orientation distribution function) may be non-zero in 
general, and is accounted in Eqn. (9) by the following 
definition: 
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C = p→ψ(p→,q→)∫ dp→ dq→ (13)  
 
Lastly, Eqn. (10) contributes second order derivatives of 
the velocity field that originate from a Taylor series 
approximation applied to the bead kinematics.  In simple 
shear flow, for example, all components are 0.  This 
vector, in Eqn. (10), is formed by the unit dyads 

€ 

ei .  
As with the Folgar-Tucker model, the simulation of 

the Bead-Rod model was given random initial orientation 
at the gate and analyzed at 40% of the short shot length.  
Similar to the simulations conducted by the model’s 
author, the mode parameter k was set equal to a 
dimensionless value of 0.5.  Additionally, the segment 
length lB was given a dimensionless value that 
approximately corresponds to 0.5 mm; however fiber 
attrition data may be needed for accuracy.  The numerical 
results, and same experimental data, are given in Figure 7.   

 

 
Figure 7:  Bead-Rod (BR2) simulation and experimentally 
measured results, for the trace components of the 
orientation tensor, versus the dimensionless mold 
thickness.  The components are give by “r = 1”, “z = 2”, 
“θ = 3.” 
 
The Bead-Rod simulation predicts a much broader 
orientation distribution, as compared to what was obtained 



 

 

using the Folgar-Tucker model.  Although the qualitative 
behavior of the orientation is better represented in this 
figure (especially for A11), the results for A33 and A22 are 
different from what is observed experimentally.   The 
simulation results with the Bead Rod model are therefore 
also not satisfactory in comparison with the results 
obtained experimentally.  It should, however, be noted 
that the parameters available within this model should be 
more precisely determined, and/or fit, before full 
judgment of this model may be passed.  This will 
therefore become the nature of future work.   
  

Conclusion 
 

In conducting the aforementioned simulations, it 
becomes evident that the nature of long fiber kinematics, 
in complex flow, is not accurately explained by either of 
these models and/or the assumptions used in the 
simulation of these models.  One solution to this would be 
to more accurately determine and/or fit parameters for the 
Bead Rod model (as was done with the Folgar Tucker 
model) and use initially determined orientations within the 
simulations.  This would ensure that these particular 
models are functioning most properly.  If indeed these 
efforts still produce less than convincing results, the next 
step may be to first try understanding long fiber behavior 
in simple flow (rather than complex) by using well 
defined flows to study the desired behavior. Additionally, 
well-defined flows may be utilized to obtain rheological 
data, from which parameter data may be obtained.  It is 
thus believed that studying long fibers in simple flow will 
provide a more fundamental opportunity to understand 
their behavior.  Specifically, a sliding plate rheometer10, 
that we believe is capable of conducting such studies, has 
been fabricated and will become the nature of further 
publications.    
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