Aaron P. R. Eberle, Gregorio M. Vélez-García, Donald G. Baird, and Peter Wapperom

Fiber orientation kinetics of a concentrated short glass fiber suspension in startup of simple shear flow

Journal of Non-Newtonian Fluid Mechanics 165 (2010) 110-119

Abstract

The common approach for simulating the evolution of fiber orientation during flow in concentrated suspensions is to use an empirically modified form of Jeffery's equation referred to as the Folgar-Tucker (F-T) model. Direct measurements of fiber orientation were performed in the startup of shear flow for a 30 wt % short glass fiber-filled polybutylene terephthalate (PBT-30); a matrix that behaves similar to a Newtonian fluid. Comparison between predictions based on the F-T model and the experimental fiber orientation show that the model over predicts the rate of fiber reorientation. Rheological measurements of the stress growth functions show that the stress overshoot phenomenon approaches a steady state at a similar strain as the fiber microstructure, at roughly 50 units. However, fiber orientation measurements suggest that a steady state is not reached as the fiber orientation continues to slowly evolve, even up to 200 strain units. The addition of a "slip" parameter to the F-T model improved the model predictions of the fiber orientation and rheological stress growth functions.

Keywords

Short glass fiber; fiber orientation; concentrated suspension; transient rheology