8.3: Gradient Fields

Examples of gradient fields

• Electric field: $\underline{E} = -\underline{\nabla}V$

V: electric potential

• Gravitational field: $\underline{F} = -\underline{\nabla}V$

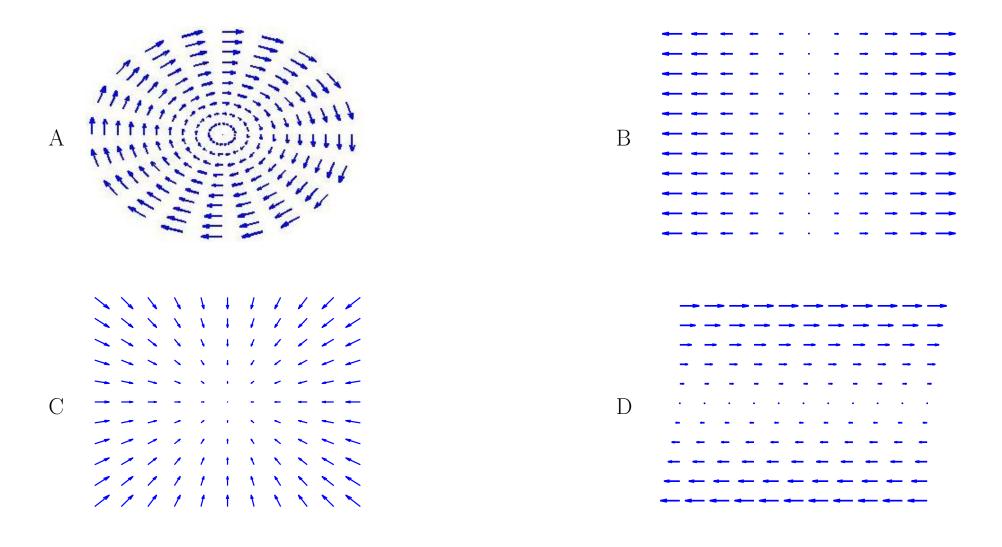
V: gravitational potential energy

• Velocity field: $\underline{v} = -\underline{\nabla}\phi$

 ϕ : velocity potential (used in irrotational flows)

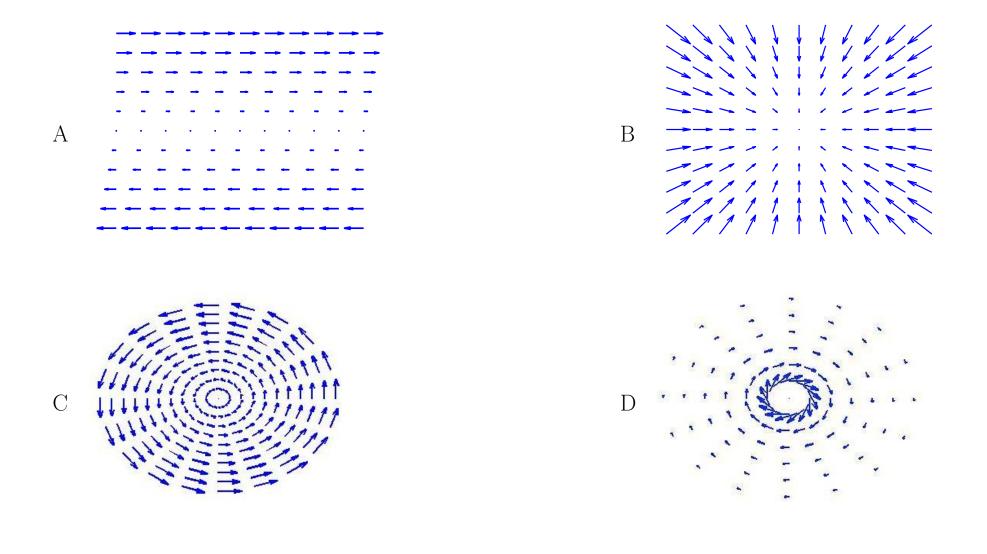
8.4/4.4: Interpretation of $\underline{\nabla} \cdot \underline{F}$ in \mathbb{R}^2

Is $\underline{\nabla} \cdot \underline{F}$ positive, negative, or zero?



Sec. 8.2/4.4: Interpretation of $(\underline{\nabla} \times \underline{F}) \cdot \underline{k}$ in \mathbb{R}^2

Is $K(x, y) = (\underline{\nabla} \times \underline{F}) \cdot \underline{k}$ positive, negative, or zero?



Choosing Integral Theorems or Directly

- 1. Compute $\int_{\underline{c}} \underline{F} \cdot d\underline{s}$ where $\underline{c}(t) = (3\cos t, 3\sin t, t)$ with $0 \le t \le \pi$ and $\underline{F}(x, y, z) = (e^y \cos z, xe^y \cos z, -xe^y \sin z).$
- 2. Compute the flow rate through the surface $x^2 + y^2 + z^2 = 1$ with $z \ge 0$. The surface is oriented by the normal pointing away from the origin. Velocity: $\underline{v}(x, y, z) = (x, y, z)$.

3. Compute
$$\iint_S \underline{\nabla} \cdot (x+y, \ x-y, \ z^2) \ \mathrm{d}S$$
 where S is the unit sphere.

4. Compute
$$\iint_{S} (\underline{\nabla} \times \underline{F}) \cdot d\underline{S}$$
 with $\underline{F}(x, y, z) = \left(\sin y^{3}, xy^{2}z^{3}, \frac{1}{1 + x^{2}y^{2}z^{2}} \right)$.
S: union of $z = 2 - x^{2} - y^{2}$ with $1 \le z \le 2$ and $z = x^{2} + y^{2}$ with $0 \le z \le 1$.

Choosing Integral Theorems or Directly

5. Compute $\iint_{\partial W} z^2 dS$ where W is the unit cube.

6. Compute
$$\int_{\underline{c}} (\mathrm{e}^{1/(x^2+1)}, \ z, \ y) \cdot \ \mathrm{d}\underline{s}$$

 \underline{c} is the boundary of $z = x^2 + y^2$ with $0 \le z \le 2$.

 \underline{c} is oriented clockwise when viewed from the top.

7. Compute $\int_{\underline{c}} (x+y) \, \mathrm{d}s$ along the closed curve $\underline{c}(t) = (\cos t, \sin t)$ with $0 \le t \le 2\pi$.

8. Compute
$$\int_{\underline{c}} x^7 dx + e^{y^4} dy$$
 where $\underline{c}(t) = (3\cos t, \sin t)$ with $0 \le t \le 2\pi$.

9. Compute the flow rate out of $x^2 + y^2 + z^2 = 4$. Velocity: $\underline{v}(x, y, z) = (3x, z, x)$.