## Test 1: All Unit 1 notes and posted Unit 1 slides

## Basic calculus/ Diff. Eq. knowledge

• Solving simple 1st and 2nd order linear DEs like in the HWs; Differentiate and integrate basic functions  $(\sin t, \cos t, e^t, t^n, 1/t^n)$ .

## Sec. 1.1-1.3: Vectors

• 1.1-3 Euclidean space; Vector notation; Vectors between two points; Equation of a line; Inner product; Length of a vector; Unit vector; Angle between 2 vectors; Perpendicular; Work; Cross product (and geometrical interpretation); Area of a parallelogram; Volume of a parallelepiped; Equation of a plane.

## Sec. 2.1, 2.3-6, 7.3, 3.1, 3.2: Differentiation

- 2.1 Functions from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ : scalar and vector-valued functions and functions of several variables; Graphing quadric surfaces with elliptical traces, planes, and cylinders (see notes and Ch.2 slides).
- 2.3 Partial derivatives; Gradient vector; Matrix of partial derivatives; Linearization
- 2.4 Curve parametrization; Graphing 2D and 3D curves; Velocity; Speed; Tangent vector; Tangent line.
- 2.5 Sum, product, and quotient rule; Composite functions:  $f \circ g$ ; Chain rule.
- 2.6 Tangent plane to a (level) surface; Normal vector to a (level) surface.
- 3.1 Class  $C^n$  functions; Second and higher-order partial derivatives; Mixed derivatives theorem.
- **3.2** Taylor polynomial for a function of 2 variables  $(T_1(x, y), T_2(x, y), \text{ and } T_3(x, y))$ .

Sec. 7.3, 4.1, 4.3, 4.4: Parametrized surfaces; Vector-valued functions

- **7.3** Surface parametrization; Tangent vector, normal vector, and tangent plane for parametric surfaces; Regular surface.
- 4.1 Acceleration and Newton's second law; Regular path. Sum, product, dot product, cross product, and chain rule (Use and simple proofs).
- 4.3 Vector plots; Flow lines; Gradient vector field.
- 4.4 Del operator; Divergence, Curl; Scalar curl; Laplace operator; Vector identities (use and proofs).

What not to know (everything we did not discuss in class):

- Historical Notes.
- 1.2-3: Cauchy–Schwartz Inequality and Ex. 5 (p.23-24); Orthogonal Projection and Triangle Inequality (p.25-27); Distance: Point to Plane (p.43-44).
- 2.1, 2.3 Level Sets, Curves, and Surfaces (p.78-85); Limit definition of partial derivatives (p.106); Ex. 4 (p.107); Differentiability and TangentPlane (p.109-112); Some Basic Theorems (p.113-114).
- 2.5-6 Proof of Theorems 10 and 11 (p.125-126, p.129), Proof of Eq. (2) on p.127-128; Directional Derivative and Direction of Fastest Increase (p.136-138); The Gradient Vector Field (p.140-141).
- 3.1-2 Example 6 (p.156); Proof of Theorem 3 and Remainder term of Taylor formula (p.161-162).
- 4.1-2 Circular orbits and Supplement to Sec. 4.1 (p.220-226); Example 5 and 6 (p.238-239); Consevation of Energy and Escaping the Earth's Gravitational Field and Escape Velocity (p.240-241).
- 4.4 Interpretation of Divergence (p.246-248), Interpretation of curl (p.250-251).