Math 3214: Homework 8 (Due Friday 4/4, 5pm)

To obtain (full) credit, show all reasoning and work. No calculator or other electronic devices for HWs.

1. Section 7.4: 9.

Problems 2-6 require 1) a good sketch of S AND D.

2) a comment on whether Φ is regular at a finite number of points.

You do <u>not</u> need to check if Φ is one-to-one.

- 2. Review exercises for Ch. 7 (p. 424): 15.
- 3. 7.6: 3a. The book answer misses a factor 3, I think.
- 4. 7.6: 5. Take S to be oriented by the normal pointing away from the y-axis.
- 5. Let S be the surface given by $x = y^2$ with $0 \le y \le 1$ and $1 \le z \le 3$.
 - (a) <u>Compute</u> $\iint_S y \, \mathrm{d}S$ <u>using a parametrization with y = u and z = v.</u>
 - (b) Explain what $\iint_S y \, dS$ would be if S is parametrized using y = v and z = u.
 - (c) Compute the flow rate through the surface S using a parametrization with y = u and z = v. The velocity is v(x, y, z) = (x, y, z).
 - (d) Explain what the flow rate through the surface S would be when S is parametrized using y = v and z = u. The velocity is v(x, y, z) = (x, y, z).
- 6. Consider the surface S given by $y = x^2 + z^2$ with $x^2 + z^2 \le 2$.
 - (a) Use a single parametrization to set up a double integral for the mass of S. The density is $\delta(x, y, z) = y$.
 - (b) Use a single parametrization to set up a double integral for the flowrate through S. The velocity is $\boldsymbol{v} = (xy, 2, 0)$ and S is oriented according to the upward pointing normal.
 - Note: A setup includes computing a cross product, dot product, and magnitude. Only evaluating integrals can be skipped.