Math 3214: HW3 (Due Wednesday 2/12, 5pm)

To obtain (full) credit, show all reasoning and work. If you use a formula, include it in the write-up of that problem. No calculator or other electronic devices for HWs.

- 1. Section 4.1: 24.
- 2. Section 4.1: 26 (Don't answer part 3: whether this is the case for planetary motion).
- 3. Section 2.6: 13.
- 4. Review exercises for Chapter 2 (p.145): 27.
- 5. Sketch AND parametrize the following surfaces using a single vector function Φ . Use either a graph, sphere, or surface of revolution parametrization. Include the bounds of the parameters in your parametrization.
 - (a) Section 7.3: 19a. Use u and v: no z as in the back of the book.
 - (b) Review exercises for Chapter 7 (p.424): 7a.
 - (c) $x^2 + z^2 = 1$ in the first octant.
 - (d) $x^2 + y^2 + z^2 = 4$ for $z \ge -1$,
 - (e) $x^2 4y^2 + z^2 = 1$ for $-1 \le y \le 1$.
 - (f) $x^2 + y^2 2z^2 = 0$ for $z \le 1$.
 - (g) x y + z = 1 for $x \ge 0$ and $y \ge 0$.
 - (h) $x^2 + y^2 + z^2 = 4$ for $0 \le y \le 1$, $0 \le z \le 1$, and for negative x.
- 6. Section 7.3: 1.
- 7. Section 7.3: 5.
- 8. Consider the surface S parametrized by $x = u^2 v$, y = u + v, $z = u^2 + 4v$.
 - (a) Find the equation of the tangent plane to S at the point where (u, v) = (1, 1).
 - (b) Determine whether S is regular.
- 9. Section 4.3: 3 (**By hand**: Plot several vectors along the lines x = 0, y = 0, y = x, and y = -x so that you get a good representation of the vector field).
- 10. Section 4.3: 8 (**By hand**: Plot several vectors along the lines x = 0, y = 0, y = x, and y = -x so that you get a good representation of the vector field).