Math 3214: Homework 10 (Due Tuesday 4/22, 5pm)

To obtain (full) credit, show all reasoning and work. No calculator or other electronic devices for HWs.

For problems 1-8:

- (i) Include an appropriate sketch of the solid W, 2D region D, or curve C.
- (ii) Include the orientation of curves and surfaces in your sketch.
- (iii) Include the Ch. 7 and Ch. 8 formulas you used in each problem.
 - 1. Section 8.3: 13. A very rough sketch of C using endpoints is sufficient.
 - 2. Section 8.3: 19a.
 - 3. Compute $\int_{c} \mathbf{F} \cdot d\mathbf{s}$ where $\mathbf{F}(x, y) = \left((x^2 + \sin(x^2))^5, -\cos(y^2) \right)$ and C the circumference of the square $[-1, 1] \times [-1, 1]$.
 - 4. Section 8.4: 3. You need to compute the triple integral and boundary integral.
 - 5. Compute the flow rate out of the rectangular box $[0,1] \times [0,2] \times [0,3]$. The velocity is $\boldsymbol{v}(x,y,z) = (x^2 + y^2, 3xz, 2)$.
 - 6. Let W be the $x \leq 0$ part of the solid enclosed by z = 1 and $z = x^2 + y^2$. Compute $\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = (xz, x + yz, 2z^2)$.
 - 7. Section 8.1: 12. You need to compute the double integral and boundary integral.
 - 8. Let D be the 2D region enclosed by $y = 1 x^2$ and y = 0 and F(x, y) = (2x, x).
 - (a) Compute $\int_{\partial D} \boldsymbol{F} \cdot \boldsymbol{n} \, \mathrm{d}s$ directly, i.e. without integral theorem.
 - (b) Compute $\int_{\partial D} \boldsymbol{F} \cdot \boldsymbol{n} \, ds$ using Gauss' divergence theorem.