1.1: Basics of Vectors

■ Notation for Euclidean space

 \mathbb{R}^n : all points (x_1, x_2, \ldots, x_n) in *n*-dimensional space

Examples:

- 1. \mathbb{R}^1 : all points on the real number line
- 2. \mathbb{R}^2 : all points (x_1, x_2) or (x, y) in the plane
- 3. \mathbb{R}^3 : all points (x_1, x_2, x_3) or (x, y, z) in space

■ Notation for vectors

Printed: v (bold symbol)

Handwritten: \underline{v} (underlined) or \vec{v} (right arrow)

NEVER JUST v which is the scalar (number) v

• Notation for vectors in component form Examples (in \mathbb{R}^3):

In the book: $\underline{v} = (1, 2, 3)$ or $\underline{v} = \underline{i} + 2j + 3\underline{k}$

Alternatives: $\underline{v} = \langle 1, 2, 3 \rangle$ or $\underline{v} = \hat{i} + 2\hat{j} + 3\hat{k}$

1.1: Equation of a Line

■ Vector equation of a line: $\underline{l}(t) = \underline{a} + t\underline{v}$ $-\infty < t < \infty$ Needed: a point \underline{a} and a direction vector \underline{v}

Example: Equation of the line through (4, 5, 6) in the direction of (1, 2, 3)

Point $\underline{a} = (4, 5, 6)$ and direction $\underline{v} = (1, 2, 3)$ Eqn of the line: $\underline{l}(t) = \underline{a} + t\underline{v} \implies \underline{l}(t) = (4, 5, 6) + t(1, 2, 3)$

Geometrical interpretation

Any point on the line can be reached when you start at a position \underline{a} on the line and go in the direction of the direction vector \underline{v} of the line

1.2: Inner Product

Definition: inner product in \mathbb{R}^n (dot product)

$$\underline{a} \cdot \underline{b} = (a_1, a_2, \ldots, a_n) \cdot (b_1, b_2, \ldots, b_n) = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

Example: $(1, 2, 3) \cdot (4, 5, 6) = (1)(4) + (2)(5) + (3)(6) = 32$

• Definition: length of a vector

$$\|\underline{a}\| = \sqrt{\underline{a} \cdot \underline{a}} = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$$

Example: $\|(1, 2, 3)\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$

Definition: unit vector \underline{u} in direction of vector $\underline{v} \neq \underline{0}$.

$$\underline{u} = \frac{\underline{v}}{\|\underline{v}\|}$$
 A unit vector has length 1

Example: Unit vector \underline{u} in direction of vector $\underline{v} = (1, 2, 3)$

$$\underline{u} = \frac{\underline{v}}{\|\underline{v}\|} = \frac{(1,2,3)}{\|(1,2,3)\|} = \frac{1}{\sqrt{14}}(1,2,3)$$

1.2: Inner Product

■ Angle between two vectors: $\underline{a} \cdot \underline{b} = ||\underline{a}|| ||\underline{b}|| \cos \theta$ with $\theta \in [0, \pi]$ Example: Angle between $\underline{a} = (0, -1, 1)$ and $\underline{b} = (0, 2, 0)$. $(0, -1, 1) \cdot (0, 2, 0) = \sqrt{0^2 + (-1)^2 + 1^2} \sqrt{0^2 + 2^2 + 0^2} \cos \theta$ $\cos \theta = \frac{0(0) + (-1)2 + 1(0)}{2\sqrt{2}} = -\frac{1}{\sqrt{2}} \implies \theta = 3\pi/4$

Perpendicular (orthogonal)

Two non-zero vectors \underline{a} and \underline{b} are perpendicular if and only if $\underline{a} \cdot \underline{b} = 0$. **Example:** (1,1) and (1,-1) are perpendicular since $(1,1) \cdot (1,-1) = 0$.

• Work: $W = \underline{F} \cdot \underline{d}$ "Force times displacement"

Example: Force $\underline{F} = (1, -1, 3)$ moves a particle along a straight line from point (1, 0, -2) to point (6, 2, 4). Find the work W $\underline{d} = (6, 2, 4) - (1, 0, -2) = (5, 2, 6)$ "Endpoint minus initial point" $W = \underline{F} \cdot \underline{d} = (1, -1, 3) \cdot (5, 2, 6) = 21$

1.3: Cross Product

Definition: cross product in \mathbb{R}^3 (outer product)

$$\underline{a} imes \underline{b} = egin{bmatrix} rac{i}{a} & rac{j}{a_2} & rac{k}{a_3} \ b_1 & b_2 & b_3 \end{bmatrix} = rac{i}{b}egin{bmatrix} a_2 & a_3 \ b_2 & b_3 \end{bmatrix} - rac{j}{b}egin{bmatrix} a_1 & a_3 \ b_1 & b_3 \end{bmatrix} + rac{k}{b}egin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix}$$

Example: Cross product of $\underline{a} = (1, 2, 3)$ and $\underline{b} = (4, 5, 6)$:

$$\begin{split} \underline{a} \times \underline{b} &= \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = \underline{i} \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} - \underline{j} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} + \underline{k} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} \\ &= (2 \cdot 6 - 3 \cdot 5)\underline{i} - (1 \cdot 6 - 3 \cdot 4)\underline{j} + (1 \cdot 5 - 2 \cdot 4)\underline{k} = (-3, 6, -3) \end{split}$$

- Geometrical interpretation: <u>a × b</u> is perpendicular to both <u>a</u> and <u>b</u>
 <u>a × b</u> is oriented according to the right-hand rule:
 "Fingers from <u>a</u> to <u>b</u> over smaller angle, then thumb is in direction of <u>a × b</u>"
- Area of parallelogram: $A = ||\underline{a} \times \underline{b}||$ Example: Area of parallelogram spanned by $\underline{a} = (1, 2, 3)$ and $\underline{b} = (4, 5, 6)$. $A = ||(-3, 6, -3)|| = \sqrt{(-3)^2 + 6^2 + (-3)^2}$

1.3: Equation of a Plane

• Equation of a plane:
$$\underline{n} \cdot \overrightarrow{P_0P} = 0$$

 $P_0 = (x_0, y_0, z_0)$: (given) point on plane P = (x, y, z): any possible point on plane

 \underline{n} : normal vector to plane

Example: Plane through (4, 5, 6) and perpendicular to the vector (1, 2, 3)

Point on plane
$$P_0 = (4, 5, 6)$$
 and normal vector $\underline{n} = (1, 2, 3)$
 $\underline{n} \cdot \overrightarrow{P_0P} = 0$ gives $(1, 2, 3) \cdot [(x, y, z) - (4, 5, 6)] = 0$
Compute dot product: $1(x - 4) + 2(y - 5) + 3(z - 6) = 0$

• Geometrical interpretation

Normal vector \underline{n} is perpendicular to any vector in the plane, $\overrightarrow{P_0P} = (x - x_0, y - y_0, z - z_0)$ Thus the dot product is zero: $\underline{n} \cdot \overrightarrow{P_0P} = 0$

- **Sketching planes:** Connect points by straight lines
 - Convenient points: intercepts, vertices, or intersections