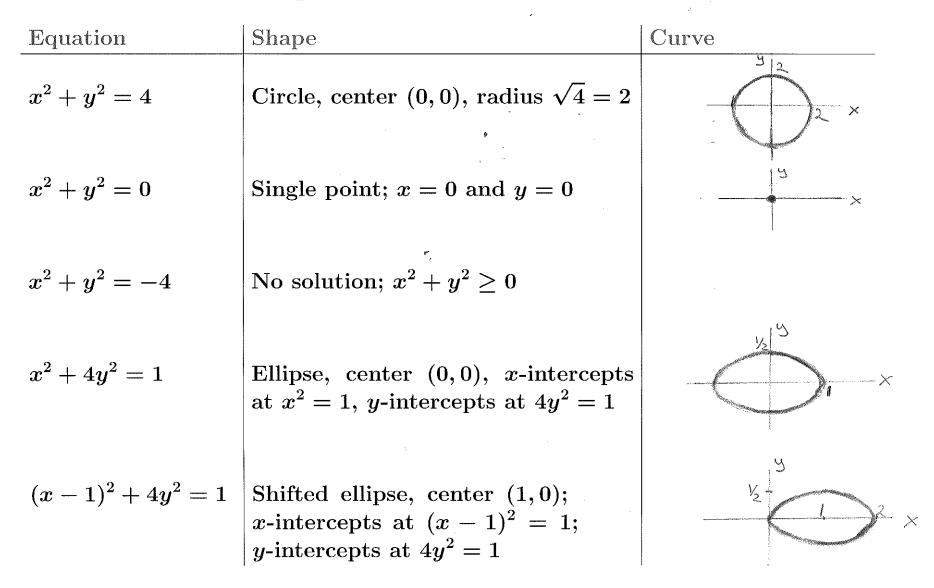
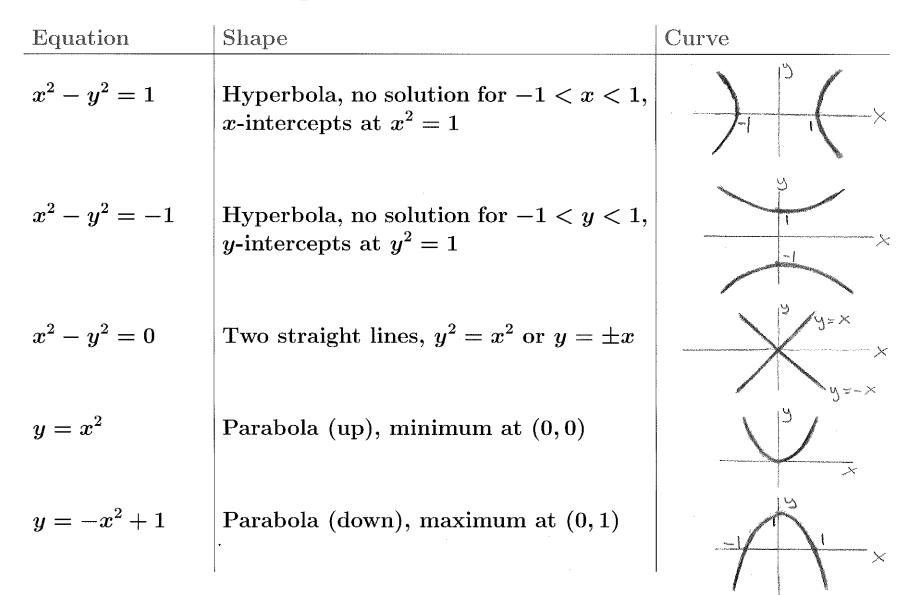
Prerequisites: Curves in 2D



Prerequisites: Curves in 2D

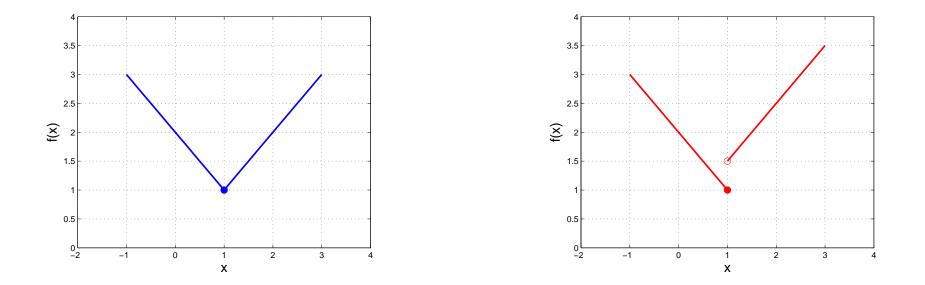


Prerequisites: Domain and Range of f(x)

Function	Domain D	Range R
f(x)=2	f(x) defined for all x values thus D is $(-\infty,\infty)$	f(x) can only reach the value 2, thus R is $\{2\}$
$f(x) = 2 \sin x$	f(x) defined for all x values thus D is $(-\infty,\infty)$	Since $-1 \leq \sin x \leq 1$, we have <i>R</i> is $[-2, 2]$
$f(x) = rac{1}{x-1}$	when $x - 1 \equiv 0$; Thus D is	$egin{array}{llllllllllllllllllllllllllllllllllll$
$f(x) = \sqrt{x+2}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	On D , we have $0 \le x + 2 < \infty$ which implies $0 \le \sqrt{x + 2} < \infty$; Thus R is $[0, \infty)$

Prerequisites: Limits for Functions f(x)

 $\lim_{x \to a} f(x) \text{ exists if you see the same function value when approaching } x = a \text{ from all directions (from left and right for } f(x))$



 $\lim_{x \to a} f(x) \text{ does not exist if you see different function values when approaching } x = a \text{ from different directions (from left and right for } f(x))$

Prerequisites: Limits for Functions f(x)

• Limits for indeterminate forms "0/0" and " $\pm \infty/ \pm \infty$ "

(1) l'Hospital's rule:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Example: $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\operatorname{dsin} x/\operatorname{d} x}{\operatorname{d} x/\operatorname{d} x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$

(2) Multiply by conjugate

Example:
$$\lim_{x \to 0} \frac{1 - \sqrt{x+1}}{x} = \lim_{x \to 0} \frac{1 - \sqrt{x+1}}{x} \frac{1 + \sqrt{x+1}}{1 + \sqrt{x+1}} =$$
$$\lim_{x \to 0} \frac{1 - (x+1)}{x(1 + \sqrt{x+1})} = \lim_{x \to 0} \frac{-x}{x(1 + \sqrt{x+1})} = \lim_{x \to 0} \frac{-1}{(1 + \sqrt{x+1})} = -\frac{1}{2}$$

Prerequisites: Derivatives of f(x)

Function	Rule	Derivative
$f(x) = x \sin(x)$	Product rule: $(uv)' = u'v + uv'$	$f'(x)=\sin(x)+x\cos(x)$
$f(x) = rac{\sin(x)}{x}$	Quotient rule: $\left(rac{u}{v} ight)'=rac{u'v-v'u}{v^2}$	$\left(rac{\sin(x)}{x} ight)' = rac{\cos(x)x - 1\sin(x)}{x^2}$
$f(x)=\sin(x^2)$	Chain rule: f(y) with $y = g(x)$, $\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$	$f=\sin(y) ext{ with } y=x^2: \ rac{\mathrm{d}f}{\mathrm{d}x}=\cos(y)(2x)=\cos(x^2) \ (2x)$