13.3: Arc Length

• Arc length definition: $L = \int_a^b |\underline{r}'(t)| \, \mathrm{d}t$

- Meaning: Length of a curve between points corresponding to $\underline{r}(a)$ and $\underline{r}(b)$
- L is a non-negative scalar
- $|\underline{r}'(t)|$ is the speed along the curve (See 13.4)

"Speed \times time = length", the distance traveled along a curve

Arc length function:
$$s(t) = \int_a^t |\underline{r}'(u)| \, \mathrm{d} u$$

- Meaning: Length along a curve as a function of t
- **Reparametrization w.r.t. arc length:** $\underline{r}(t(s))$
 - Meaning: $\underline{r}(t(s))$ is the position after traveling distance s along the curve

13.3: Curvature

Curvature definition: $\kappa(t) = \left| \frac{\mathrm{d}T}{\mathrm{d}s} \right|$

- Meaning: How fast the curve changes direction
- Large κ : Rapid change of direction

Small κ : Slow change of direction

Zero curvature (no change in direction): straight line

• Disadvantage: Hard to compute κ

Eq. (10):
$$\kappa(t) = \frac{|\underline{r}'(t) \times \underline{r}''(t)|}{|\underline{r}'(t)|^3}$$
 Often easiest to compute curvature!

Eq. (9): $\kappa(t) = \frac{|\underline{T}'(t)|}{|\underline{r}'(t)|}$ Only easy if $|\underline{r}'(t)|$ is constant

Curvature for 2D curves y = f(x): $\kappa(x) = \frac{|f''(x)|}{\left[1 + (f'(x))^2\right]^{3/2}}$

• Follows from Eq. (10) with $\underline{r}(x) = \langle x, f(x), 0 \rangle$, i.e. z = 0 (2D) and $t \to x$