12.2: Vectors

■ Applications of vectors: force, velocity, position, acceleration, displacement

Definition of a vector: line segment having a direction and magnitude

•Vectors with same direction and length are equal Ex. People at different locations can have same velocity

•Vectors with opposite direction are not equal



Note: if the starting point of a vector is not specified, it starts at the origin Ex. Vector to point A is \overrightarrow{OA}

12.2: Vectors

■ Notation for vectors

- 1. v (bold symbol in printed text)
- 2. \vec{v} or \underline{v} . Never just v which is the scalar (number) vNote: $\vec{0}$ is the zero vector (all components zero)

■ Notation for vectors in component form

1. $\vec{v} = \langle v_1, v_2, v_3 \rangle$ in \mathbb{R}^3 2. $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ in \mathbb{R}^3 $\vec{v} = v_1 \vec{i} + v_2 \vec{j}$ in \mathbb{R}^2

Standard basis vectors: Note the vector notation

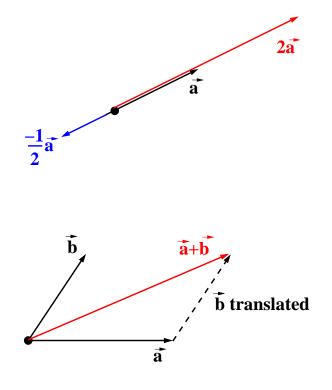
1. In
$$\mathbb{R}^2$$
: $\vec{i} = \langle 1, 0 \rangle$ and $\vec{j} = \langle 0, 1 \rangle$
2. In \mathbb{R}^3 : $\vec{i} = \langle 1, 0, 0 \rangle$, $\vec{j} = \langle 0, 1, 0 \rangle$, and $\vec{k} = \langle 0, 0, 1 \rangle$

Alternative notation: $\hat{i}, \, \hat{j}$, and \hat{k}

12.2: Vectors

• Scalar multiplication: "Multiply each component" $\alpha \vec{a} = \alpha \langle a_1, a_2, \ldots, a_n \rangle = \langle \alpha a_1, \alpha a_2, \ldots, \alpha a_n \rangle$ Example: $2\langle 1, 2, 3 \rangle = \langle 2, 4, 6 \rangle$

• Vector addition: "Add each component" $\vec{a} + \vec{b} = \langle a_1, a_2, \dots, a_n \rangle + \langle b_1, b_2, \dots, b_n \rangle$ $= \langle a_1 + b_1, a_2 + b_2, \dots, a_n + b_n \rangle$ Example: $\langle 1, 2, 3 \rangle + \langle 4, 5, 6 \rangle = \langle 5, 7, 9 \rangle$



• Vector subtraction: "Subtract each component" $\vec{a} - \vec{b} = \langle a_1, a_2, \dots, a_n \rangle - \langle b_1, b_2, \dots, b_n \rangle$ $= \langle a_1 - b_1, a_2 - b_2, \dots, a_n - b_n \rangle$ Example: $\langle 1, 2, 3 \rangle - \langle 4, 5, 6 \rangle = \langle -3, -3, -3 \rangle$

