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Abstract. We carry out error estimation of a class of immersed finite element
(IFE) methods for elliptic interface problems with both perfect and imperfect
interface jump conditions. A key feature of these methods is that their par-
titions can be independent of the location of the interface. These quadratic
IFE spaces reduce to the standard quadratic finite element space when the
interface is not in the interior of any element. More importantly, we demon-
strate that these IFE spaces have the optimal (slightly lower order in one case)
approximation capability expected from a finite element space using quadratic
polynomials.

1. Introduction. The main purpose of this article is to carry out error estimation
of a class of quadratic immersed finite element (IFE) methods for elliptic interface
problems: find a function u(x) such that

− (β(x)u′)′ = f, x ∈ (0, 1), (1.1)

u(0) = u0, u(1) = u1, (1.2)

[u]|x=α = A, [βu′]|x=α = B at x = α, (1.3)

where the solution domain Ω = (0, 1) is separated by the interface x = α into two
sub-domains, the coefficient β(x) is a piecewise smooth function such that

β(x) =

{

β−(x), x ∈ (0, α),
β+(x), x ∈ (α, 1).

The methods and their related analysis considered here can be easily extended to
more sophisticated cases in which, for example, there might be multiple interfaces,
and the involved differential equation might contain certain nonlinearity. The need
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to efficiently solve elliptic interface problems appears in many applications, see
[6, 11, 22, 18, 27, 28] for only a few specific examples.

Numerous methods, such as finite difference (FD) methods [16, 30, 33], finite
element (FE) method [2], and collocation methods [29], have been developed to
solve elliptic interface problems. As proposed by [3], a general idea of solving
interface problems or boundary value problems with rough coefficients is to use a
finite element space constructed specifically according to the problem to be solved.
One way to implement this idea in a finite element method is to align element edges
of the partition along the interface (the so called boundary conforming partition),
and consequently the resulted finite element method can produce approximation
with an optimal convergence rate [2, 7, 10].

However, the finite element methods based on boundary conforming partitions
are awkward for those applications such as the optimal shape design problem [13,
15] in which an interface problem has to be solved repeatedly, each time with a
different interface Γ (either due to variation in its shape or position) because all of
those quantities involving the partition have to be generated over and over again.
Also, there are many applications such as those in [27, 32] that require to solve
interface problems efficiently over a structured (preferably a Cartesian) partition.
For these types of applications, [4] implements the fundamental idea of [3] using
linear polynomials with a partition independent of the interface. This idea has
been further developed as the so called immersed finite element methods [8, 21, 23,
24, 25, 26].

The main differences between the IFE methods and the standard FE methods
for interface problems can be summarized as follows:

• To achieve the optimal accuracy, the partition used in a standard FE method
has to be formed according to the location of the interface, but the partition
of an IFE method can be formed independently of the interface.

• On the other hand, the basis functions in a standard FE method are formed
independent of the interface, but some of the basis functions in an IFE method
will incorporate the interface location and the interface jump conditions.

There have been publications about IFE spaces using linear [4, 23, 24, 25] and
bilinear [26] polynomials. A class of quadratic IFE spaces have been introduced
only recently [8] from which we can see that these quadratic IFE space have many
desirable features such as

• They have the partition of unit of the local nodal basis functions.
• They are consistent with the standard quadratic finite element space in the

sense that they reduce to the standard quadratic FE space when the discon-
tinuity in the coefficient disappears or when the discontinuity happens on the
edges of the elements in the partition.

Moreover, the extensive numerical data presented in [8] suggest that these quadratic
IFE spaces have the optimal or slightly lower order approximation capability ex-
pected from a finite element space using quadratic polynomials. We point out that
a class of immersed elements has been proposed in [3] and quadratic elements in this
paper are very different from [3]. In [3] the immersed elements are constructed by
jump continuities and moments (related to the mixed finite elements), but those in
this paper are constructed using high order jump continuity or hierarchically based
on the linear elements. As long as linear IFE is concerned the approaches in [3] and
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ours below are equivalent and thus generate the same linear elements, but the error
analysis and numerical implementations are different.

Recently, the authors of [9] considered a spherical interfaces dynamos modeling
where the interfaces are known spheres in the universe, and our 3D linear IFE
constructed in [21] can be extended to this case to provide a useful alternative
approach for such important problems in astrophysics. The authors of [5] studied
a simple PDE model for a pulsed amperometric ion working mechanism, where
the quadratic jump interface conditions are derived, the solution decomposition
and numerical method are provided in [17], our IFE here can also be employed
in such case to give a more accurate numerical solution techniques. The so-called
WPE method [31] is proposed for Fokker-Planck equations in bimolecular transport
process with interfaces when the motor potential is discontinuous function, IFE
discussed below can also be used for such equation with a proper homogeneity.
Recently higher order IFE with mixed setting for 1D elliptic problems has been
studied [1].

Our goal here is to present the pertinent analysis to theoretically confirm our
numerical results about the accuracy of these quadratic IFE spaces presented in [8].
In addition, we also discuss how to apply IFE methods to solve more complicated
interface problems such as those with imperfect interface jump conditions.

This paper is organized as follows. In Section 2, we derive the error estimates
in Sobolev norms for the interpolant in these quadratic IFE spaces. Section 3 is
dedicated to the applications of the IFE spaces to solve standard elliptic interface
problems and their extensions. We use the estimates in Section 2 to derive the
error estimates for the IFE solutions for the elliptic interface problems. The results
in both Sections 2 and 3 confirm that the IFE solutions to the elliptic interface
problems considered here definitely have the optimal (or slightly lower in one case)
approximation capability expected from a finite element space using quadratic poly-
nomials. As specific examples to show that the IFE spaces discussed here can be
applied to other problems, we will discuss interface problems with non-homogeneous
jump conditions, interface problems with imperfect interface jump conditions.

2. Errors bounds for the IFE interpolants. Since the accuracy of the finite
element solution is closely related with the accuracy of the interpolant constructed
in the finite element space used, it is important to derive the estimates for the
errors in the IFE interpolants. Without loss of generality, our discussion focuses
on the IFE spaces for the interface problems with homogeneous jump conditions,
i.e., A = B = 0 in (1.3). All the results obtained can be extended to the cases in
which the jump conditions are non-homogeneous, and the related discussions are
presented in Section 3.

Deriving the error estimates for the IFE spaces in the H1 and L2 Sobolev norms
are the main task of this section. From now on, we use the following modified
Sobolev spaces for those functions satisfying homogeneous jump conditions at the
interface: for k ≥ 1, we let

Hk
α(Ω) = {v ∈ L2(Ω) | v ∈ Hk(0, α) ∩Hk(α, 1), [v]x=α = [βv′]x=α = 0},

with the norms defined by

||v||k,α =
(

||v||2Hk(0,α) + ||v||2Hk(α,1)

)1/2

, k ≥ 0.
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The related space Hk
0,α(Ω) formed by those functions of Hk

α(Ω) with zero boundary
values can be defined as usual. We will also use ‖·‖r to denote the norm of the
usual Sobolev space Hr(S) defined over a set S.

2.1. The linear IFE space. In this section we consider the interpolation accuracy
of the IFE space based on linear polynomials. The original implementation in two
dimension can be found in [4] and its one dimensional version is discussed in [23].
Both of these article present some preliminary analysis on this IFE space. Our goal
here is to carry out the error estimation on the interpolation error of this IFE in
the Sobolev norms suitable for deriving error estimates of the related IFE solution
for interface problems.

First, let us recall the definition of the one dimensional linear IFE space [23].
Without loss of generality, let us consider a uniform partition of Ω̄ = [0, 1]:

0 = x0 < x1 < · · · < xN = 1,

hi = xi − xi−1 = h, i = 1, 2, · · · , N, (2.1)

Th = ∪N−1
i=0 ei = Ω̄, ei = [xi, xi+1], i = 0, 1, 2, · · · , N − 1.

At the node xj , we define a piecewise linear function φj(x) such that

φj(xi) =

{

1, if i = j,
0, if i 6= j,

and [φj ]x=α = [βφ′j ]x=α = 0.

It is easy to see that function φj(x) is uniquely determined by the conditions above.
Then the linear IFE space is defined as

S1
h(Ω) = span{φj , j = 0, 1, · · · , N}.

Since it is obvious that φj ∈ H1
α(Ω), we have S1

h(Ω) ⊂ H1
α(Ω).

We call the element ej a non-interface element if α 6∈ (xj , xj+1); otherwise we
call it an interface element. The definition of the linear IFE space S1

h(Ω) implies
that on each non-interface element we use the usual linear polynomials, but on the
interface element ej we use piecewise linear polynomials defined by the sub-intervals
(xj , α) and (α, xj+1).

Now, for any u ∈ C0([0, 1]), we consider its interpolation in S1
h(Ω):

Ihu(x) =

N
∑

i=0

u(xi)φi(x).

First, we can easily show that Ihu can be represented in terms of the linear Lagrange
cardinal polynomials on each element.

Lemma 1. The interpolation operator Ih is given for α ∈ (xj , xj+1) by

Ihu(x) =







−u(xj)Lj+1(x) + u(xj+1)Lj(x), α 6∈ [xj , xj+1], for all j,
u(xj)Lj,0(x) + uh,αLj,α(x), x ∈ [xj , α],
uh,αLj+1,α(x) + u(xj+1)Lj+1,1(x), x ∈ [α, xj+1].

(2.2)

where uh,α is the value determined by the interface jump conditions and is given by

uh,α = ∆−1(β+uj+1L
′

j+1,1(α) − β−ujL
′

j,0(α)),
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with

∆ = β−L′

j,α − β+L′

j+1,α =
β−

α− xj
+

β+

xj+1 − α
> 0,

Lj,0(x) =
x− α

xj − α
, Lj,α(x) =

x− xj

α− xj
,

Lj+1,α(x) =
x− xj+1

α− xj+1
, Lj+1,1(x) =

x− α

xj+1 − α
, and Lj(x) =

x− xj

h
.

�

With this lemma, we can show that the linear IFE space has the usual approxi-
mation capability expected from a finite element space using linear polynomials.

Theorem 1. For any u ∈ H2
α(Ω), there exists a positive constant C > 0, indepen-

dent of h and u such that

||u− Ihu||0,α + h||u− Ihu||1,α ≤ Cρh2||u′′||0,α. (2.3)

where ρ = max{β−/β+, β+/β−}.

Proof. Let Ĩh,α be the standard Lagrange linear interpolation operator defined on
the partition formed by nodes xi, i = 0, 1, · · · , N and additional node x = α. Thus
Ihu(x) and Ĩh,αu(x) are identical except on the interface element ej = [xj , xj+1].

Since u−Ihu = (u−Ĩh,αu)+(Ĩh,αu−Ihu), it is sufficient to estimate (Ĩh,αu−Ihu)
on the interface element only. It is easy to see that

Ĩh,αu− Ihu =







0, x 6∈ (xj , xj+1),
(u(α) − uh,α)Lj,α(x), x ∈ [xj , α],
(u(α) − uh,α)Lj+1,α(x), x ∈ [α, xj+1].

(2.4)

Thus we only need to estimate the difference u(α) − uh,α. By a simple calculation
and the interface jump conditions of u we find that

u(α) − uh,α = ∆−1{β−(Ĩh,αu− u)′(α−) − β+(Ĩh,αu− u)′(α+)}.

Let e = Ĩh,αu − u, then e(xj) = e(α) = e(xj+1) = 0, we thus see that there exist
ξ ∈ (xj , α) and η ∈ (a, xj+1) such that

|(Ĩh,αu− u)′(α−)| =

∣

∣

∣

∣

∣

∫ ξ

α

e′′(x)dx

∣

∣

∣

∣

∣

≤ (α− xj)
1/2

(

∫ α

xj

|u′′|2dx

)1/2

,

|(Ĩh,αu− u)′(α+)| =

∣

∣

∣

∣

∫ η

α

e′′(x)dx

∣

∣

∣

∣

≤ (xj+1 − α)1/2

(
∫ xj+1

α

|u′′|2dx

)1/2

.

Hence, by noticing that

∆−1 =
(α − xj)(xj+1 − α)

β−(xj+1 − α) + β+(α− xj)
≤

(α− xj)(xj+1 − α)

min{β−, β+}h
,

it follows from the above two inequalities that

|u(α) − uh,α| ≤ Ch3/2

(

∫ α

xj

|u′′|2dx+

∫ xj+1

α

|u′′|2dx

)1/2

,
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which and (2.4) imply that

||Ĩh,αu− Ihu||0,α + h||Ĩh,αu− Ihu||1,α

≤ Ch2

(

∫ α

xj

|u′′|2dx+

∫ xj+1

α

|u′′|2dx

)1/2

.

Finally the proof can be completed from the above inequality, the standard error
estimates of Ĩhu, and triangle inequality.

2.2. A hierarchical quadratic IFE space. We now consider the interpolation
accuracy of the quadratic IFE space that is hierarchically formed by multiplying
two linear IFE functions satisfying the interface jump conditions, see [8] for more
details and basic properties of this quadratic IFE space. The extensive numerical
experiments reported in [8] indicates that this IFE space does not have the optimal
order of accuracy associated with quadratic polynomials, but data there strongly
suggest that the order of accuracy of this IFE space seems to be O(h5/2) in the L2

norm and O(h3/2) in the H2 norm. The analysis in this section gives a positive
answer to these expectations.

Consider the partition Th of Ω defined by (2.1) in which each element ek has
three nodes:

tk,1 = xk, tk,2 = xk+1/2 =
xk + xk+1

2
, tk,3 = xk+1.

Assume that ej is the interface element. On a non-interface element ek, we let
ψk,i(x), i = 1, 2, 3 be the quadratic polynomials such that ψk,i(tk,i) = 1, ψk,i(tk,l) =
0, l 6= k, and let

S2
h(ek) = span{ψk,1, ψk,2, ψk,3}.

On the interface element ej, we let ψ̃j,i(x), i = 1, 2, 3 be the piecewise quadratic
polynomials hierarchically formed from the linear IFE functions as follows:

ψ̃j,1(x) = l1,2(x)l1,3(x), ψ̃j,2(x) = l2,1(x)l2,3(x), ψ̃j,3(x) = l3,1(x)l3,2(x). (2.5)

where

li,j(x) =

{

a1x+ a0, x < α,
b1x+ b0, x ≥ α,







li,j(tk,i) = 1, li,j(tk,j) = 0,

[

li,j ]x=α = 0,
[

βl′i,j ]x=α = 0.
(2.6)

We now let

S̃2
h(ej) = span{ψ̃j,1, ψ̃j,2, ψ̃j,3}.

The hierarchical quadratic IFE space S̃h(Ω) is then defined as follows: v ∈ S̃h(Ω) if

• v ∈ C(Ω̄).

• v|ek
∈ S2

h(ek), k 6= j, v|ej
∈ S̃2

h(ej).

By simple calculations we can see that v|ej
∈ S̃2

h(ej) is uniquely determined by its
values at tj,i, i = 1, 2, 3 and the interface jump conditions:

[v]x=α = [βv′]x=α = [β2v′′]x=α = 0.

Please refer to [8] for more details and basic properties of this quadratic IFE space.
Without loss of generality, we assume that xj < xj+1/2 < α < xj+1. For any

u ∈ H3
α(Ω), we let Ihu(x) be its interpolant in S̃h(Ω).
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We now consider an auxiliary partition T̃h whose elements are formed by xi, i =
0, 2, · · · , N and x = α together with the middle nodes xi+1/2, i = 0, 1, · · · , N − 1
in each of the elements except for the elements (xj , α) and (α, xj+1). We then

introduce a Lagrange-Hermite interpolant of u on T̃h as follows. On a non-interface
element ei of T̃h, we let Ĩh,αu(x) be the usual Lagrange quadratic interpolant of u
defined by the nodal points of ei. On the two elements adjacent to the interface
point α, we let

Ĩh,αu(x) =

{

ujLj(x) + uj+1/2Lj+1/2(x) + u(α)Lα(x), x ∈ (xj , α),
u(α)Hα,0(x) + u′(α+)Hα,1(x) + uj+1Hj+1(x), x ∈ (α, xj+1),

(2.7)

where

Lj(x) =
(x − xj+1/2)(x − α)

(xj − xj+1/2)(xj − α)
, Lj+1/2(x) =

(x− xj)(x − α)

(xj+1/2 − xj)(xj+1/2 − α)
,

Lα(x) =
(x − xj+1/2)(x − xj)

(α − xj+1/2)(α − xj)
, Hj+1 =

(x− α)2

(xj+1/2 − α)2
,

Hα,0(x) = 2
(x− xj+1)

(α− xj+1)
−

(x− xj+1)
2

(α− xj+1)2
, Hα,1(x) =

(x− α)(x − xj+1)

(α− xj+1)
.

For the above polynomials, we have the following estimates:
∫ α

xj

L2
α(x)dx ≤ C

h3

(α− xj+1/2)
2 ,

∫ α

xj

(L′

α(x))2dx ≤
Ch

(α − xj+1/2)2
. (2.8)

∫ xj+1

α

(Hα,0(x))
2dx =

8

15
(xj+1 − α),

∫ xj+1

α

(Hα,1(x))
2dx =

1

30
(xj+1 − α)3, (2.9)

∫ xj+1

α

(H ′

α,0(x))
2dx =

4

3

1

xj+1 − α
,

∫ xj+1

α

(H ′

α,1(x))
2dx =

1

3
(xj+1 − α). (2.10)

Lemma 2. The quadratic IFE interpolant Ihu(x) ∈ S̃h(Ω) has the following repre-
sentation:

Ihu(x) =







Ĩh,αu(x), x 6∈ (xj , xj+1),
ujLj(x) + uj+1/2Lj+1/2(x) + ūαLα(x), x ∈ (xj , α),
ūαHα,0(x) + ū′αHα,1(x) + uj+1Hj+1(x), x ∈ (α, xj+1).

(2.11)

where ūα and ū′α are defined by

ūα = ∆−1
5 {β−(β+)2Hα,1

′′(α)[ujL
′

j(α) + uj+1/2L
′

j+1/2(α)] (2.12)

+β+[(β+)2uj+1H
′′

j+1(α) − (β−)2(ujL
′′

j(α) + uj+1/2L
′′

j+1/2(α))]},

ū′α =
1

(β+)2H ′′
α,1(α)

{

(β−)2[ujL
′′

j(α) + uj+1/2L
′′

j+1/2(α) + ūαL
′′

α(α)]

−(β+)2[ūαH
′′

α,0(α) + uj+1H
′′

j+1(α)]
}

, (2.13)

∆5 = −β−(β+)2L′

α(α)H ′′
α,1(α) + β+[(β−)2L′′

α(α) − (β+)2H ′′
α,0(α)]. (2.14)

Proof. Applying the jump conditions [β(Ihu)
′]x=α = 0 and [β2(Ihu)

′′]x=α = 0 we
have

β−{ujL
′

j(α) + uj+1/2L
′

j+1/2(α) + ūαL
′

α(α)} = β+ū′α, (2.15)

(β−)2{ujLj
′′(α) + uj+1/2Lj+1/2

′′(α) + ūαLα
′′(α)} (2.16)

= (β+)2{ūαHα,0
′′(α) + ū′αHα,1

′′(α) + uj+1Hj+1
′′(α)}.
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This is a linear system for ūα and ū′α and the determinant of its coefficient matrix
is ∆5. It can be easily shown that ∆5 > 0; hence this system must have a unique
solution and the piecewise function defined by the second and the third formulas in
(2.11) are uniquely determined by uj, uj+1/2, uj+1 and the three jump conditions at
α, which must be the interpolant of u on the interface element ej . Therefore (2.11)
is proven.

The rest results of this lemma follow from solving the above linear system for ūα

and then use (2.16) to represent ū′α.

By the standard analysis, we know that
∥

∥

∥
u− Ĩh,αu

∥

∥

∥

0,α
+ h

∥

∥

∥
u− Ĩh,αu

∥

∥

∥

1,α
≤ Ch3 ‖u′′′‖0,α . (2.17)

Hence, to estimate the error in Ihu, we can consider the difference between Ihu and
Ĩh,αu because Ihu− u = Ihu− Ĩh,αu+ Ĩh,αu− u. Because of Lemma 2, we have

Ihu− Ĩh,αu =















0, x 6∈ (xj , xj+1),
(ūα − u(α))Lα(x), x ∈ (xj , α),
(ūα − u(α))Hα,0(x)
+(ū′α − u′(α+))Hα,1(x), x ∈ (α, xj+1).

(2.18)

Hence we only need to estimate Ihu− Ĩh,αu on the interface element, and this can
be done by studying (ūα − u(α)) and (ū′α − u′(α+)).

By straightforward calculations, we can have

ūα − u(α−) =
1

∆5

{

β−(β+)2H ′′

α,1(α)e′(α−) − (β−)2β+e′′(α−) (2.19)

+(β+)3e′′(α+) − (β−)2β+u′′(α−) + (β+)3u′′(α+)
}

ū′α − u′(α+) =
1

(β+)2H ′′
α,1(α)

{

(β−)2e′′(α−) − (β+)2e′′(α+) , (2.20)

+(ūα − u(α−))((β−)2L′′

α(α) − (β+)2H ′′

α,0(α))

+(β−)2u′′(α−) − (β+)2u′′(α+)
}

,

where e(x) = Ĩh,αu(x) − u(x). From the standard error estimates about quadratic
interpolation we can see that

|e′(α−)| ≤ (α − xj+1/2)(α − xj)
1/2||u′′′||L2(xj ,α),

|e′′(α−)| ≤ (α− xj)
1/2||u′′′||L2(xj ,α), (2.21)

|e′′(α+)| ≤ (xj+1 − α)1/2||u′′′||L2(α,xj+1).

Applying the estimates in (2.21) to ūα − u(α−) we have

∣

∣ūα − u(α−)
∣

∣ ≤
1

∆5

∣

∣β−(β+)2H ′′

α,1(α)e′(α−) − (β−)2β+e′′(α−) + (β+)3e′′(α+)
∣

∣

+
1

∆5

{

(β−)2β+
∣

∣u′′(α−)
∣

∣+ (β+)3
∣

∣u′′(α+)
∣

∣

}

(2.22)

≤ Ch3/2(α− xj+1/2) ‖u‖3,α + Ch(α− xj+1/2) ‖u‖3,α .

Here we have used the facts that
1

∆5
≤ C(xj+1 − α)(α− xj+1/2),

∣

∣u′′(α±)
∣

∣ ≤ C[‖u′′′‖0,α + ‖u′′‖0,α] ≤ C||u||3,α.
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Apply (2.8) and (2.22) to the second formula in (2.18) we can have

||Ihu− Ĩh,αu||L2(xj,α) + h||(Ihu− Ĩh,αu)
′||L2(xj ,α) ≤ Ch5/2||u||3,α. (2.23)

For the estimation on the interval (α, xj+1), we first note that

|ūα − u(α)|

≤
1

∆5

∣

∣β−(β+)2H ′′

α,1(α)e′(α−) − (β−)2β+e′′(α−) + (β+)3e′′(α+)
∣

∣

+
1

∆5

{

(β−)2β+
∣

∣u′′(α−)
∣

∣+ (β+)3
∣

∣u′′(α+)
∣

∣

}

(2.24)

≤ Ch3/2(xj+1 − α) ‖u′′′‖0,α + Ch(xj+1 − α) ‖u‖3,α ,

here we have used the fact:

1

∆5
≤ C(xj+1 − α)2.

Also, using (2.20) and (2.22), we have
∣

∣ū′α − u′(α+)
∣

∣

≤ C(xj+1 − α)(α − xj)
1/2 + C(xj+1 − α)(xj+1 − α)1/2 (2.25)

+C
(xj+1 − α) |ūα − u(α)|

(α − xj+1/2)(α − xj)
+ C

|ūα − u(α)|

xj+1 − α
+ C(xj+1 − α) ‖u‖3,α

≤ C

(

h3/2 + h3/2α− xj+1/2

xj+1 − α
+ h

)

‖u‖3,α ,

here we have used the facts that

xj < xj+1/2 < α < xj+1, xj+1/2 =
xj + xj+1

2
.

Now using (2.25), (2.24), (2.9), and (2.10) in (2.18), we have

||Ihu− Ĩh,αu||L2(α,xj+1) + h||(Ihu− Ĩh,αu)
′||L2(α,xj+1) ≤ Ch5/2||u||3,α. (2.26)

Finally, using (2.23), (2.26), and (2.18), we can obtain an error estimate of Ihu ∈

S̃h(Ω) in the following theorem which confirms our numerical experiments about
the order of accuracy of interpolant formed in the hierarchical quadratic IFE space
[8].

Theorem 2. Assume that u ∈ H3
α(0, 1) and Ihu ∈ S̃h(Ω) is its interpolation. Then

there exits a positive constant C > 0, independent of h and u, such that

||Ihu− u||0,α + h||Ihu− u||1,α ≤ Ch5/2||u||3,α.

�

2.3. A quadratic IFE space with an extra jump condition. We now consider
the quadratic IFE space with an extra second order derivative jump condition, see
below and [8]. On each non-interface element ek, this quadratic IFE space uses the
standard local quadratic finite element space S2

h(ek). On the interface element ej ,
it uses local nodal basis functions ψ̄j,i(x), i = 1, 2, 3 defined as follows

• ψ̄j,i|[xj ,α] ∈ P2([xj , α]), ψ̄j,i|[α,xj+1] ∈ P2([α, xj+1]) where P2 is the set of poly-
nomials of degree up to 2.

• ψ̄j,i(tj,i) = 1, ψ̄j,l(tj,l) = 0, l 6= j.
• [ψ̄j,i]x=α = [βψ̄′

j,i]x=α = [βψ̄′′
j,i]x=α = 0.
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We let

S̄2
h(ej) = span{ψ̄j,1, ψ̄j,2, ψ̄j,3}.

We then define the quadratic IFE space S̄h(Ω) with an extra jump condition as
follows: v ∈ S̄h(Ω) if

• v ∈ C(Ω̄).
• v|ek

∈ S2
h(ek), k 6= j, v|ej

∈ S̄2
h(ej).

Please refer to [8] for other properties of this quadratic IFE space.

Lemma 3. The quadratic IFE interpolant Ihu(x) ∈ S̄h(Ω) has the same represen-
tation given in (2.11) with

ūα = ∆−1
3 {β−β+Hα,1

′′(α)[ujL
′

j(α) + uj+1/2L
′

j+1/2(α)] (2.27)

+β+[β+uj+1H
′′

j+1(α) − β−(ujL
′′

j(α) + uj+1/2L
′′

j+1/2(α))]},

ū′α =
1

β+H ′′
α,1(α)

{

β−[ujL
′′

j(α) + uj+1/2L
′′

j+1/2(α) + ūαL
′′

α(α)] (2.28)

−β+[ūαH
′′

α,0(α) + uj+1H
′′

j+1(α)]
}

,

∆3 = −β−β+L′

j(α)H ′′
α,1(α) + β+[β−L′′

α(α) − β+H ′′
α,0(α)]. (2.29)

Proof. The arguments are similar those used in Lemma 2 except that we use a
different set of interface jump conditions: [β(Iu)′]x=α = 0, [β(Ihu)

′′]x=α = 0.

We now assume that u ∈ H3
α(Ω) also satisfy [βu′′]x=α = 0. Then, from (2.27),

(2.28), and the interface jump conditions of u, we have

ūα − uα = ∆−1
3

{

β−β+H ′′
α,1(α)e′(α−) + (β+)2e′′(α+) − β−β+e′′(α−)

}

, (2.30)

and

ū′α − u′(α+) =
1

β+H ′′
α,1(α)

{

β−e′′(α−) − β+e′′(α+) (2.31)

+(ūα − uα)(β−L′′
α(α) − β+H ′′

α,0(α))
}

,

where e(x) = Ĩh,αu(x)−u(x). Using the same arguments we can see that |ūα − uα|
and |ū′α − u′(α+)| have similar estimates as (2.22), (2.24), and (2.25) except for
the last term in each of them. Then, following arguments similar to those used for
(2.23) and (2.26), we have

||Ihu− Ĩh,αu||L2(xj,α) + h||(Ihu− Ĩh,αu)
′||L2(xj ,α) ≤ Ch3||u′′′||L2(xj ,xj+1). (2.32)

and

||Ihu− Ĩh,αu||L2(α,xj+1) + h||(Ihu− Ĩh,αu)
′||L2(α,xj+1) ≤ Ch3||u′′′||L2(xj ,xj+1).(2.33)

Finally, applying (2.17), (2.32), and (2.33) to Ihu − u = Ihu − Ĩhu + Ĩhu − u, we
can obtain the error estimate for Ihu(x) as stated in the following theorem.

Theorem 3. Assume that u ∈ H3
α(0, 1) is such that [βu′′] = 0 and Ihu ∈ S̄h(Ω) is

its interpolation. Then there exits a positive constant C > 0, independent of h and
u, such that

||Ihu− u||0,α + h||Ihu− u||1,α ≤ Ch3||u||3,α.

�
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3. Applications of the IFE spaces and imperfect contact interfaces. In
this section, we consider applications of the IFE spaces discussed in the previous
section to interface problems. Our goal is to demonstrate that the related IFE
solutions have the same orders of accuracy as their interpolation counter parts.
Another topic is to extend the IFE methods to other types of interface problems.
As specific examples, we discuss interface problems with non-homogeneous jump
conditions and interface problems with imperfect interface jump conditions.

3.1. The accuracy of the IFE solutions to interface problems. We first
consider interface (1.2)-(1.3) with homogeneous boundary and interface jump con-
ditions. The weak form of this interface problem is: find u(x) ∈ H1

0,α(Ω) such
that

Aα(u, v) = (f, v), v ∈ H1
0,α, (3.1)

where H1
0,α(Ω) is the subspace of H1

α(Ω) whose elements have zero values on the
boundary of Ω, and

Aα(u, v) =

∫ α

0

β−(x)u′v′dx +

∫ 1

α

β+(x)u′v′dx, (3.2)

and (·, ·) is the standard L2 inner product.
Let Vh be the space formed by functions with zero boundary values from one of

the IFE spaces discussed in the previous section. The IFE solution to the interface
problem generated from this IFE space is the function uh ∈ Vh such that

Aα(uh, vh) = (f, vh), vh ∈ Vh. (3.3)

First we note that these IFE methods are conforming methods because Vh ⊂
H1

0,α(Ω). Secondly, the bilinear form Aα(·, ·) is obviously symmetric, bounded,
and coercive. Then, by the usual finite element error estimation procedure for
linear elliptic boundary value problems and the error estimates obtained for the
interpolants in the previous section, we can easily obtain the error estimates for the
IFE solutions stated in the following theorem.

Theorem 4. Assuming that the exact solution u(x) to the interface problem has
the required regularity implied in the estimates below, then the IFE solutions to the
interface problem have the following error estimates:

‖u− uh‖0 + h ‖u− uh‖1,α ≤







Ch2 ‖u‖2,α , when Vh = H1
0,α ∩ S1

h(Ω),

Ch5/2 ‖u‖3,α , when Vh = H1
0,α ∩ S̃2

h(Ω),

Ch3 ‖u‖3,α , when Vh = H1
0,α ∩ S̄2

h(Ω).

�

The IFE spaces discussed in this paper can also be used to handle interface prob-
lems whose jump conditions are not homogeneous even though functions in these
IFE spaces are constructed according to the homogeneous jump conditions. This
can be achieved through the usual homogenization procedure. For example, let us
consider the general interface problem (1.2)-(1.3) with nonhomogeneous boundary
and interface jump conditions. We can first construct a piecewise smooth function
ψ as follows

[ψ]x=α = A, [βψ′]x=α = B, ψ(0) = u0, ψ(1) = u1. (3.4)
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Now letting U = u− ψ, we can see that U is the solution to the following interface
problem with homogeneous boundary and interface jump conditions:

− (β(x)U ′)′ = F, x ∈ (0, 1), (3.5)

[U ] = [βU ′] = 0 at x = α, U(0) = U(1) = 0. (3.6)

where F = f + β′ψ′ is a piecewisely defined on (0, α) and (α, 1).
Thus by letting Uh be an IFE solution of (3.5 -3.6) we can obtain the IFE

solution uh = Uh + ψ to the interface problem (1.2)-(1.3) with the accuracy stated
in Theorem 4.

For quadratic element case studied in §2.3, a piecewise quadratic function ψ can
be constructed by

[ψ]x=α = A, [βψ′]x=α = B, [βψ′′]x=α = [f ]x=α, ψ(0) = u0, ψ(1) = u1.

so that u = U + ψ with U satisfying the homogeneous jump interface conditions.
Thus the IFE can be applied to compute numerical solution Uh of U (which satisfies
a corresponding different equation with homogeneous jump conditions), then IFE
solution uh is defined by uh = Uh + ψ.

Also, we would like to point out all the discussions and results above can be read-
ily extended to the case in which the boundary problem has finite many interfaces.

3.2. Imperfect contact interface problems using linear elements. In this
section we consider using IFE spaces to solve an interface problem with “imperfect”
contact conditions at the interface, see [14] and references therein for more details
about this type of interface problems.

Specifically, we consider the problem in which we want to find a function u such
that

− (βu′)′ = f, x ∈ (0, 1), (3.7)

[u]x=α = λβ−u′(α−) = λβ+u′(α+), u(0) = u(1) = 0, (3.8)

where λ > 0, β = β− for x ∈ (0, α) and β = β+ for x ∈ (α, 1) are positive
constants, and f ∈ L2(0, 1). In fact λ > 0 is a physical constant related to the
gap of the imperfect contact of two materials. The main difference between the
standard interface jump condition and the imperfect jump condition (3.8) is that
the jump in u is unknown a-priori at x = α.

Let H1,λ
α (0, 1) be space defined by

H1,λ
α (0, 1) =

{

u ∈ L2(0, 1) | u ∈ H1(0, α) ∩H1(α, 1),

[u]x=α = λβ−u′(a−) = λβ+u′(α+)
}

.

As usual, we use H1,λ
0,α(0, 1) to denote the space formed by functions from H1,λ

α (0, 1)
whose values on the boundary are zero.

First, we introduce a bilinear form related with our imperfect interface problem:
for u, v ∈ H1,λ

α (0, 1) we let

Aα,λ(u, v) =
[u] [v]

λ

∣

∣

∣

∣

x=α

+

∫ α

0

β−(x)u′v′dx +

∫ 1

α

β+(x)u′v′dx. (3.9)

Then the weak form of (3.7)-(3.8) is to find u ∈ H1,λ
0,α(0, 1) such that

Aα,λ(u, v) = (f, v), for any v ∈ H1,λ
0,α(0, 1). (3.10)

Simple calculations can show that this bilinear form has the usual coercivity and
boundedness as sated in the following theorem.
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Theorem 5. Assume that f ∈ L2(0, 1), then the weak problem (3.10) has a unique
solution that satisfies

C−1||u||1,α ≤ Aα,λ(u, u) ≤ C||f ||,

for a positive constant C > 0.

�

All the IFE spaces discussed in the previous section can be extended to handle
this imperfect interface problem. Without loss of generality, we present details
about extending the linear IFE space. As before, at the node xj , we define a
piecewise linear function φλ

j (x) such that

φλ
j (xi) =

{

1, if i = j,
0, if i 6= j,

[φλ
j ]x=α = λβ−(φλ

j )′(α−) = λβ+(φλ
j )′(α+).

Then we define a linear IFE space for the interface problem (3.7)-(3.8) by

S1,λ
h (Ω) = span{φλ

j , j = 0, 1, · · · , N}.

Now, for any u ∈ H1,λ
α (0, 1), we let Ihu(x) ∈ S1,λ

h (Ω) be its interpolation, and let

Ĩh,αu be the standard piecewise linear Lagrange interpolation of u defined on the
partition formed by xj , j = 0, 1, · · · , N and α.

Again, we assume that ej is the only interface element. On this element, there

are two constants u−I and u+
I such that

Ihu(x) =

{

ujLj,0(x) + u−I Lj,α(x), x ∈ (xj , α),
u+

I Lj+1,α(x) + uj+1Lj+1,1(x), x ∈ (α, xj+1).

In fact, it follows from the jump interface condition that u−I and u+
I satisfy

u+
I − u−I = λβ−(Ihu)

′(α−) = λβ−(ujL
′

j,0 + u−I L
′

j,α),

u+
I − u−I = λβ+(Ihu)

′(α+) = λβ+(u+
I L

′

j+1,α + uj+1L
′

j+1,1).

Solving this linear system for u−I and u+
I we have

u−I =
−λβ−ujL

′
j,0(1 − λβ+L′

j+1,α) + λβ+uj+1L
′
j+1,1

∆1
, (3.11)

u+
I =

λβ+uj+1L
′
j+1,1(1 + λβ−L′

j,α) − λβ−ujL
′
j,0

∆1
, (3.12)

∆1 = −λβ+L′

j+1,α(1 + λβ−L′

j,α) + λβ−L′

j,α. (3.13)

On the other hand, we have

Ĩh,αu(x) =

{

ujLj,0(x) + u(α−)Lj,α(x), x ∈ (xj , α),
u(α+)Lj+1,α(x) + uj+1Lj+1,1(x), x ∈ (α, xj+1).

Hence

Ihu− Ĩh,αu =







0, x 6∈ ej = (xj , xj+1),
(u−I − u(α−))Lj,α(x), x ∈ (xj , α),
(u+

I − u(α+))Lj+1,α(x), x ∈ (α, xj+1),
(3.14)

and it is therefore important to estimate the differences of u−I − u(α−) and u+
I −

u(α+).
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By a simple calculations and the jump conditions satisfied by u, we can see that

u+
I − u(α+) =

J1 + J2 + J3

∆1
, (3.15)

where

J1 = −λβ−e′(α−), J2 = λβ+e′(α+), J3 = λ2β−β+e′(α+))L′

j,α

with e = Ĩh,αu − u. Because e(xj) = e(α−) = e(α+) = e(xj+1) = 0, we can follow
the standard procedure to obtain

|J1| ≤ λβ−(α− xj)
1/2 ‖u′′‖L2((xj ,α)) ,

|J2| ≤ λβ+(xj+1 − α)1/2 ‖u′′‖L2((α,xj+1))
,

|J3| ≤ λ2β−β+(xj+1 − α)1/2(α− xj)
−1 ‖u′′‖L2((α,xj+1))

.

Hence, it follows from (3.15) that

|u+
I − u(α+)| ≤ Ch1/2(xj+1 − α)(‖u′′‖L2((xj,α)) + ‖u′′‖L2((α,xj+1)

),

which leads to

||Ihu− Ĩh,αu||L2((α,xj+1)) + h||(Ihu− Ĩh,αu)
′||L2([α,xj+1])

≤ Ch2
(

||u′′||L2(xj,α) + ||u′′||L2(α,xj+1)

)

,

Applying a similar estimate to u−I − u(α−) we can obtain

||Ihu− Ĩh,αu||L2(xj,α) + h||(Ihu− Ĩh,αu)
′||L2(xj ,α)

≤ Ch2
(

||u′′||L2(xj,α) + ||u′′||L2(α,xj+1)

)

.

We can now derive an error estimate for Ihu(x) in the following theorem.

Theorem 6. Let u ∈ H1,λ
0,α(0, 1) be such that u|(0,α) ∈ H2(0, α) and u|(α,1) ∈

H2(α, 1). Then there exits a positive constant C > 0, independent of u and h, such
that

||Ihu− u||0,α + h||Ihu− u||1,α ≤ Ch2||u||2,α.

Proof. The result can be obtained by applying the estimate above to (3.14), error
estimates for the standard linear interpolation, and triangle inequality.

Now, we consider the IFE solution uh ∈ S1,λ
h (Ω) ∩ H1,λ

0,α(0, 1) for the interface

problem (3.7)-(3.8) defined by

Aα,λ(uh, vh) = (f, vh), for any vh ∈ Sλ
h ∩H1,λ

0,α(0, 1). (3.16)

Theorem 7. Assume that the weak solution u of (3.7)-(3.8) is such that u|(0,α) ∈

H2(0, α) and u|(α,1) ∈ H2(α, 1). Then there exits a positive constant C > 0, inde-
pendent of u and h, such that

||u− uh||0,α + h||u− uh||1,α ≤ Ch2||u||2,α.

Proof. The estimate can be derived from Theorems 5, Theorem 6, and the routine
procedure for finite element error estimation of elliptic problems.
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Remark 3.1. As before, following a similar homogenization procedure, we can
use the IFE space above to solve those interface problems with non-homogeneous
imperfect contact interface conditions, i.e.,

[u]x=α − λb−u′(α−) = A, [u]x=α − λb+u′(α+) = B, u(0) = u0, u(1) = u1.

3.3. Imperfect contact interface problems using quadratic elements. It is
easy to see that the hierarchical quadratic elements are not applicable here due to
the nature of the contact interfaces, thus we only consider the quadratic element
with an extra jump condition at the second order derivative [βu′′]x=α = 0. Following

§2.3 and §3.2 above, The quadratic IFE interpolant Ihu(x) ∈ S2,λ
h is defined by

Ihu(x) =







Ĩh,αu(x), x 6∈ (xj , xj+1),
ujLj(x) + uj+1/2Lj+1/2(x) + u−I Lα(x), x ∈ (xj , α),
u+

I Hα,0(x) + ū′αHα,1(x) + uj+1Hj+1(x), x ∈ (α, xj+1),

(3.17)

where S2,λ
h is the quadratic IFE element spaces with imperfect contact interface

conditions (3.8) and the extra second order derivative jump condition. It follows
from the jump conditions (3.8) and [β(Ihu)

′′]x=α = 0 that

u+
I − u−I = λβ−{ujL

′

j(α) + uj+1/2L
′

j+1/2(α) + u+
I L

′

α(α)},

u+
I − u−I = λβ+ū′α,

β−[ujL
′′

j (α) + uj+1/2L
′′

j+1/2(α) + u+
I L

′′

α(α)]

= β+[u+
I H

′′

α,0(α) + ū′αH
′′

α,1(α) + uj+1H
′′

j+1(α)].

The above is a linear systems for u+
I , u−I and ū′α, and the determinant of this system

is given by

∆0 = −λβ−L′′

α[β+H ′′

α,1 + λ(β+)2H ′′

α,0] − λβ+[β+H ′′

α,0 − β−L′′

α] > 0,

which is positive for all λ, β > and xj < xj+1/2 < α < xj+1. Thus the interpolation
operator Ihu is well-defined. The analysis on the error estimates for the interpo-
lations and IFE solution can be carried out in a similar fashion presented in the
previous sections, we therefore omit the proofs of the following results.

Theorem 8. (I) Let u ∈ H1,λ
0,α(0, 1) be such that u ∈ H3

0,α(0, 1). Then there exits a
positive constant C > 0, independent of u and h, such that

||Ihu− u||0,α + h||Ihu− u||1,α ≤ Ch3||u||3,α.

(II) Assume that the weak solution u of (3.7)-(3.8) is such that u ∈ H3
0,α(0, 1) .

Then there exits a positive constant C > 0, independent of u and h, such that the

IFE solution uh ∈ S2,λ
h of (3.16) (with S1,λ

h replaced by S2,λ
h ) satisfies

||u− uh||0,α + h||u− uh||1,α ≤ Ch3||u||3,α.

�

Remark 3.2. It is clearly seen that the homogenization procedure similar to that
described in §3.1 can also be extended to the quadratic case when the second order
jump is not zero.
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