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A RECTANGULAR IMMERSED FINITE ELEMENT SPACE
FOR INTERFACE PROBLEMS*

TAO LINT, YANPING LIN}, ROBERT ROGERS!, AND M. LYNNE RYANTY

Abstract. We consider an immersed finite element space for boundary value problems of partial
differential equations with discontinuous coefficients. The basis functions in this space are constructed
as piecewise bi-linear polynomials that satisfy jump conditions approximately (or even exactly in
certain situations). The mesh in this space does not have to be aligned with the interface because
the interface is allowed to pass through its elements. Therefore a structured Cartesian mesh can be
used to solve boundary value problems with arbitrary interfaces. Numerical results are presented to
show the convergence of the Galerkin method based on this space.
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1. Introduction. In this paper we consider an immerse finite element method
based on a rectangular mesh for the following boundary value problem:

-V (,BVU) = f: (l’,y) € Q:

ulaq = g,

together with the jump conditions on the interface T':

(1.3) [u]lr =0,
(1.4) [ﬂg—ﬂ I =0.

Here, we assume that 0 C R? is a rectangular domain (or a union of several rectan-
gular domains), the interface I' is a smooth curve separating ) into two subdomains
Q~, Q% such that Q = Q- UQT UT, see Figure 1.

The coefficient 3(z,y) is a piecewise constant function defined by

e ={ G (T e

Many applications and numerical methods involve solving such an interface problem,
for example, the projection method for solving two phase flow problem [11, 19], Navier-
Stokes equations [1, 2, 5], and Hele-Shaw flow [7, 8], to name just a few.

Standard numerical methods such as the Galerkin finite element method based on
linear polynomials can be used to solve such an interface problem, see [3, 4] and the
references therein. However, to maintain the best possible convergence rate, the mesh
used in the standard Galerkin finite element method has to be formed in a way such
that the interface is allowed to intersect with edges of an element only through its
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Fia. 1.1. Geometry of the BVP.

vertices. This restriction will prevent the Galerkin method from working efficiently for
those applications with a changing interface, because the mesh needs to be reformed
over and over again.

Immersed finite elements have been introduced recently to alleviate the above
limitation, see [6, 7, 9, 10, 12, 13, 16, 17, 18, 20]. A key feature of immersed finite
elements is that elements in a mesh do not have to be aligned with the interface
so that meshes with simple structure might be used for solving a boundary value
problem with an arbitrary interface. Here elements in a mesh are naturally separated
into two classes: non-interface elements and interface elements. Interface elements
are those through whose interior the interface passes; the non-interface elements are
those otherwise. While standard finite element functions can be used in non-interface
elements, macro local basis functions are constructed in every interface element such
that the interface jump conditions can be satisfied approximately /exactly. Immersed
finite elements based on a triangular mesh have been discussed in [15, 6, 14]. Our
intention here is to investigate the immerse finite elements defined by a rectangular
mesh.

This paper is organized as follows. In Section 2, we will introduce an immersed
finite element space based on a rectangular mesh. Basic features of this finite element
space will be presented in this section. Section 3 reports some numerical experiments
we have carried out with this immersed finite element space.

2. A rectangular immersed finite element space. Withour loss of general-
ity, we assume that the edges of Q are parallel to the  — y axes. A mesh T, = {T},}
is then formed by lines also parallel to z — y axes so that each element T}, in 7 is a
square with edges of length h.

We first consider local basis functions in a typical element T}, € 7. Assume that
the four vertices of T}, are A;,i = 1,2,3,4, with 4; = (z;,¥;)!. In a non-interface
element T}, we just let Sy (7}) be the standard local finite element space formed by
bi-linear polynomials:

Sp(Th) = span {qﬁl | ¢; is bilinear and ¢;(4;) = { (1)’ iz ; :;.’ i, = 1,2,3,4.}

For an interface element T},, we assume that the interface meets its edges at the points
D and E, see Figure 2.1. There are two types of interface elements. Type I are those
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for which the interface intersects two of its adjacent edges; Type II are those for which
the interface intersects two of its opposite edgeds.

Note that the interface I' separates T}, into T}j' and T}, and we can use this natural
partition of T}, to introduce four piecewisely defined local nodal basis functions ¢; as
follows:

. _ of (), if (xy) €T, .
¢Z(myy)_{ (bl_([]j’y)l lf (Q’,’ly)eTh—’ 2—1;2;3;4:

with bilinear functions ¢7,s = 4+, — determined by the following conditions:
(B1) Nodal values: for i,j =1,2,3,4,

(1, ifi=g,
¢’(AJ)_{ 0, ifi# .
(By) The continuity on the line DE:
¢j—(P]) = (ZS:(PJ), i = 172,374, ]: 172,37

where P, = D, P, = E, P3 = (D + E)/2.
(B3) Flux continuity on the line DE:

DE 3nDE an—DE

s —_—
where 3?1—’_ s = +, — is the normal derivative of ¢{ along the line segment DE.
DE

Note that ¢; has 4 coeflicients, and it can be shown that the 8 equations above
are enough to determine a nodal basis function ¢;. Using these local finite element
spaces, we can define a global basis function ¢y (z,y) piecewisely for each node py =
(zn,yn)t in the mesh Ty such that

1. ¢N|Th € Sh(Th) for any T} € Th.
2.

i) = [ 1 N =M,
NPM) =0, if N # M,

where pj; is a node of 7.
Figure 2.2 presents a plot of a typical global nodal basis function involving inter-
face elements.
Finally, the immersed finite element space in 2 is defined by

Sp(2) = span{yYn | pn is a node of Tp}.

We observe that this space has the following features:
e For a mesh 7p, the finite element space S, () has the same number of nodal
basis functions as that formed by the usual bi-linear polynomials.
e For a mesh 7}, fine enough, most of its elements are non-interface elements,
and most of the nodal basis functions of Sj,(Q2) are just the usual bi-linear
nodal basis functions except for few nodes in the vicinity of the interface T'.
e For any ¢ € S,(f), we have

(2.1) Plova € H (D),

where ' is the union of interface elements.
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Fia. 2.1. Two typical interface elements. The element on the left is of Type I while the one on
the right is of Type I1.

F1a. 2.2. A typical global nodal basis function involving interface elements.

We now give a group of propositions describing basic properties of the immersed
finite element space. Because of the page limitation, we will give no proof or just an
outline of proof for these results; the details will be presented in a forthcoming paper.

LEMMA 2.1. Assume that T}y is a Type I interface element. Then any function
¢ € Sy(Th) is uniquely determined by its values at the vertices of Tj,.

Proof. Without loss of generality, we assume that T}, is the reference element
whose vertices are

e (3 ()= (2) (1)

and the interface passes the edges of T} at
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Let

6:(z,y) = a; +b,x+c;y+d; xy, if(zv,y) e, ,
n af +bfz+cfy+dfzy, if (z,y) €T, .

Applying conditions (Bj)-(Bs) to this ¢;(x,y) leads to
= 1 0 0 0 0 0 0 0
bi 0 0 0 0 1 1 0 0
a 0 0 0 0 1 0 1 0
22‘_ 0 0 0 0 111 1
i — b A= N . 22 4 72 A . ~2 4 72
Al ar | ZPeA= 0 b ra REFE 0 b e -EFE
b 1 0 b 0 -1 0 —b 0
cf 1 a 0 0 -1 —-a 0 0
df 1 @ b a 1 _a _b _a
2 2 T 2 "2 T
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
b1: 0 7b2: O 7b3: O 7b4: 0
0 0 0 0
0 0 0 0
0 0 0 0

and the result of this lemma follows from the fact that the determinant of A is nonzero.
O

LEMMA 2.2. Assume that T}, is a Type II interface element. Then any piecewise
linear function ¢ € Sp(T}) is uniquely determined by its values at the vertices of T},.

LeEmMMA 2.3. If the coefficient 5 has no jump, then Sy (T})) becomes the space of
the standard bi-linear polynomials.

To describe the approximation capability of the immersed finite element space
Sp(T}y) for an interface element T}, we consider a space J(T},) consisting of functions
u(z,y) such that

u® € HQ(TI‘:); s = _7+7
(22) U_(PJ) :’LL+(PJ), ]:1’2}3’
Jrar, (B~Vu™ = 87Vu™) nds =0,

where

_ u‘(m,y), lf.’E € TI;’
(2.3) u(z,y) = { ut(z,y), iftzeT),

and n is the unit normal vector of I' N T},. For any u € J(T},) we let

2 2
el 7, = el 7+l s
4

2,7, = |u‘2,Th + Z (i, yi)l
i=1

[ 2 2
|u|27Th = |u|2,Th— + |u‘2,T}jr

[l
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Using Lemma 2.1, 2.2 and Green’s formula we can obtain the following result:

LEMMA 2.4. ||| -|||2,1, is a norm in the space J(T}), and this norm is equivalent
to 1z, -

We can also show that S, (T}) is a subspace of J(T}), and this important feature
implies that every function in S, (T},) satisfies the flux jump condition (1.4) locally in
a weak sense. Furthermore, if ' N T}, is a line segment, then every function in Sy, (T},)
can also satisfy the function jump condition (1.3) exactly.

For any u € J(T}), we let Tu € Sy(T}) be such that

IU’(AZ) = U(Ai)7 i = 17273747

and we call Tu the interpolant of w in S, (7}). Using the standard scaling argument
and Lemma 2.4, we can derive an error estimate for the interpolant given in the
following theorem.

THEOREM 2.5. For any u € J(T}) we have

(2.4) [ = Tull,, 7 < CR> ™ luly g, 0<m<2,

m, Ty

where h is the length of the edges of T},.
Now we consider a function u satisfying

(2.5) u€ C(Q), ulgs € HX (%), s = —, +
and
(2.6) (B~Vu~ — pTVut) -n=0,

on I'. We define its interpolant Iu in the immersed finite element space Sp,({2) by
Iou(z,y) = u(z,y), if (x,y) is a node of Ty,.

From Theorem 2.5 we can easily obtain the following error estimate for Iju.
THEOREM 2.6. Assume that u satisfies the conditions (2.5) and (2.6), then

(2.7) lu = Inully g + R llu = Tyully ., < CB* flullygq

where

allon = D Nllynz, -

Th€Th

3. A numerical example. We tested the rectangular immersed finite space in
the Galerkin finite element method for the following boundary value problem:

-V (BVu) =f, (z,y) €Q
[u]lr =0, [52—2] r=0,

ulon =g,
with

[ 1, if(x,y) €,
B(x’y)_{ 10, if (z,y) € QF,
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where Q = [—1,1] x [-1,1], 2 is the circle centered at (0,0) with radius ro = 0.5.

The function f and g are chosen so that

if r <o,

a=3,r=+x2+y2,

,r.D(
B
w(@,y) =9 Lo

1 1 a :

— 4+ | =— — = | ry, otherwise,
B (5 5*) 0
is the exact solution. A typical mesh in the numerical experiment is in given in Figure
3. Actual errors of the related immersed finite element solutions for various step size
h are given in Table 3 in which uy, is the immersed finite element solution. The data
in this table indicate that
[l = unll 20y ~ 0.2251 A0,

[l = unll g1 () =~ 0.7113 RO99%3,

which are within our expectation.

Fia. 3.1. A typical mesh used in numerical experiments.

h (mesh size) | [lu —unlloc | [Ju—unllz2Q) | [|u — un|la1 (@)
1/5 5.5196 x 1073 | 8.9137x 1072 | 1.4843 x 107!
1/15 2.4864 x 10 ° | 1.0736 x 10 3 | 4.6978 x 10 2
1/25 14891 x 10~2 | 3.9668 x 10~* | 2.9034 x 102
1/35 1.0760 x 1073 | 2.0403 x 10~* | 1.9965 x 102
1/45 8.6393 x 10=* | 1.1793 x 10~* | 1.6116 x 1072
1/55 7.1745 x 10~* | 7.7140 x 107° | 1.3569 x 102
1/65 6.1188 x 10~* | 5.5193 x 10~5 | 1.1787 x 102

TABLE 3.1

Actual errors of immersed finite element solutions.
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