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Summary. New finite element methods based on Cartesian triangulations
are presented for two dimensional elliptic interface problems involving dis-
continuities in the coefficients. The triangulations in these methods do not
need to fit the interfaces. The basis functions in these methods are construct-
ed to satisfy the interface jump conditions either exactly or approximately.
Both non-conforming and conforming finite element spaces are considered.
Corresponding interpolation functions are proved to be second order accu-
rate in the maximum norm. The conforming finite element method has been
shown to be convergent. With Cartesian triangulations, these new methods
can be used as finite difference methods. Numerical examples are provided
to support the methods and the theoretical analysis.

Mathematics Subject Classification (2000): 65L10, 65L60, 65L70

1 Introduction

In this paper, we develop finite-element immersed interface methods using
Cartesian grids for differential equations with discontinuities in the coeffi-
cients across one or several arbitrary interfaces in the solution domain. These
problems are referred to as interface problems in this paper. A model problem
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is
−∇ · (β∇u) = f, (x, y) ∈ �,

u|∂� = 0,
(1.1)

defined in a domain � with an immersed interface �, see Fig. 1.1 for an
illustration. A vast collection of applications involve solving such an equa-
tion, for example, the projection method for solving Navier-Stokes equations
involving two phase flow [4,8,21,44], the Hele-Shaw flow [19,20] and many
others. If a problem of interest involving two different materials, such as wa-
ter and air, solid and liquid in solidification problems, the coefficient β will
typically have a jump across the interface between two materials. In some
cases, the jump can be very big, for example, the ratio of the density of the
air and water is about 1:1000 in the magnitude.

Our methods can also be applied to those models whose source term f in
(1.1) have a delta function singularity, for example

f (x) = fc(x)−
∫
�

Q(X(s)) δ(x − X(s)) ds(1.2)

where fc is a bounded function, δ is the two dimensional Dirac-delta function,
X(s) is the arc-length parameterization of the interface �, andQ(X(s)) is the
source strength on the interface. The expression above can also be written as

f = fc −Qδ�.(1.3)

Such a source function is one of the most important features of Peskin’s
immersed boundary method (IBM) [40,41], which has been used for many
problems in mathematical biology and computational fluid mechanics, see
for example, [5,13,14,16,43] and many others.

When β ∈ C2 in �− ∪ �+ excluding the interface �, see Fig.1.1, then
u(x, y) ∈ H 1, see [6]. From equation (1.1) and (1.2), it is easy to obtained
the jump conditions

[u]� = u(x, y)+ − u(x, y)− = 0, continuity condition,(1.4)

(1.5)[
β
∂u

∂n

]
�

= β+ ∂u
+

∂n
− β− ∂u

−

∂n
= Q(s), net flux across the interface,

where the jump is defined as the difference of the limiting values from the
outside of the interface to the inside, and ∂u+

∂n is the normal derivative of
the solution. Therefore, the model interface problem can be written in an
equivalent form:

−∇ · (β∇u) = fc, (x, y) ∈ �− �, fc ∈ L2(�),

[u]� = 0,

[
β
∂u

∂n

]
�

= Q(s), u|∂� = 0.
(1.6)
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Fig. 1.1. A rectangular domain� = �+ ∪�− with an immersed interface �. The coeffi-
cients β(x) may have a jump across the interface

In this paper, we will use the two known jump conditions (1.4)–(1.5) to
develop new finite element methods to solve the interface problem above.

A related problem is the parabolic equation

ut + c · ∇u = ∇ · (β∇u)+ f(x, t),(1.7)

in which the interface may be fixed or moving with time t , and the coefficient
c and β may have different values across the interface. An efficient discret-
ization for (1.1) is essential to the numerical solution of this parabolic type
equation.

Solving the Poisson equation (1.1) with discontinuous coefficients and/or
singular source terms, usually is not only the slowest part of the entire sim-
ulation for many applications, but also leads to the loss in accuracy. Solving
interface problems efficiently and accurately is still a challenge because of
many irregularities associated with them. Many numerical methods have been
developed, and below is a brief review on those closely related to this paper.

1.1 Body fitting grid methods based on finite element discretization

It is well known that a second order accurate approximation to the solution of
an interface problem can be generated by the Galerkin finite element method
with the standard linear basis functions if the triangulation is aligned with
the interface (body fitting grid), [2,6,7,18,47]. One advantage of the finite
element formulation is that the resulting linear system of equation is sym-
metric positive definite for a self-adjoint elliptic operator which ensures the
stability of the algorithm. Applications of such methods can be found in [38]
and many others.

However, it is difficult and time consuming to generate a body fitting grid
for an interface problem in which the interface separates the solution domain
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into pieces or problems with complicated geometries. Such a difficulty be-
comes even more severe for moving interface problems because a new grid
has to be generated at each time step. Few publications can be found on us-
ing body fitting grids to solve moving interface problems with topological
changes such as merging and splitting.

Domain decomposition methods can also be used for solving interface
problems, for example, [11]. On each sub-domain, one needs to solve the
differential equation defined on an irregular domain. The information then is
transfered between the different domains.

1.2 Cartesian grid methods based on finite difference discretization

Using Cartesian or adaptive Cartesian grids for interface problems has the
following merits:

• There is almost no cost in the grid generation. This is very significant for
moving boundary/interface problems.

• There are many efficient and popular packages/solvers and numerical
methods which are written for Cartesian grids, for examples, fast Pois-
son solvers such as fishpack, Navier-Stokes equation solvers in two and
three dimensions on a rectangular square or a box, Clawpack [24] for con-
servation laws, and FFT packages etc. It is relatively easier to incorporate
new methods using existing packages/solvers based on the same grid.

• Recently, the level set method, first proposed in [39], has been successfully
used to treat a number of moving interface/boundary problems, especially
for problems with topological changes, and for problems in three dimen-
sions. The level set method works best with Cartesian grids.

• It is easier to generate super convergent approximations to important phys-
ical quantities such as fluxes using Cartesian grids.

It is true that numerical methods based on Cartesian grids may have some
difficulties to adjust and may lose accuracy for curved interfaces/boundaries.
Due to non-smoothness of the solutions, many standard finite difference al-
gorithms and analysis do not apply for interface problems. A lot of efforts
have been made in this regard for various problems. Below we just review
some methods in the literature which are related to this paper.

The smoothing method for discontinuous coefficients. A simple ap-
proach is to smooth out the coefficient, see for example [44]. The level set
expression of interfaces makes the smoothing method much easier for two
and three dimensional problems. However, solutions are also smeared out by
the smoothing method. Another commonly used and sophisticated method is
the harmonic averaging technique [3,42]. While this method is second order
accurate for certain one dimensional problems, usually it is not for two and
three dimensional problems.
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Peskin’s immersed boundary method. If there is only a singular source
term and the coefficient is continuous, a very simple and first order method
is Peskin’s immersed boundary method (IBM) using a discrete delta function
[40,41].

Fast solvers based on boundary integral equations. Based on integral
equations, some fast solvers are available for Poisson equations with piece-
wise constant coefficients and other problems [17,35–37]. In these methods,
an integral equation is set up at some points on the interface and the bound-
ary for unknown source strength, and the solution then can be found using
a fast boundary integral technique. Non-homogeneous source terms can be
decomposed as two homogeneous problems.

Immersed interface methods. The original motivation of the immersed
interface method (IIM) [25,28] is to develop a second order finite difference
scheme for very general second order elliptic and parabolic linear PDEs in
which an integral equation may not be available, for example, (1.1) with
variable coefficient β. In this regard, the method is successful and has been
applied to problems ranging from one, two, and three dimensional prob-
lems [29]; elliptic, parabolic [46], hyperbolic [27], and mixed type equations
[34]; fixed and moving interfaces [30], and many applications [19,26,32,33].
However, with variable piecewise coefficients, the resulting linear system of
equation from IIM is not symmetric positive definite. While it is stable for
one dimensional problems and certain problems in two dimensions [22], the
stability of the algorithm may depend on the choice of one or more additional
grid points in addition to the standard finite difference scheme [15]. In this
regard, the method is not very robust. Various attempts, such as the multigrid
method by L. Adams [1] and the explicit jump immersed interface method
(EJIIM) [45], to mention just a few, have been made to improve the stability
and to speed up the method.

It is the purpose of this paper to combine the advantages of simple struc-
ture of Cartesian grids and the finite element formulation to develop accurate,
stable numerical methods for interface problems. More precisely, we want
to develop new methods that are accurate at all grid points including those
near or on the interface; stable with nice algebraic structure (the resulting lin-
ear system of equation is symmetric positive definite for self-adjoint elliptic
equations) even with discontinuous coefficients. We also hope the methods
developed here can be built into other Cartesian grids based methods such
as LeVeque’s Clawpack and Berger’s AMR (adaptive mesh refinement) and
other packages. The error analysis presented in this paper requires the in-
terface � to be smooth; the solution to be piecewisely twice differentiable1.
The algorithms proposed in this paper, however, do not have any particular
restrictions on the partitions compared with standard finite element methods.

1 Such a solution is usually in H 1 but not in H 2.
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We now take a look at the weak formulation of the interface problem.
Assuming f (x, y) in (1.1) has the form of (1.2), we multiply a test function
v(x, y) ∈ H 1

0 (�) to both sides of the first equation in (1.6) and integrate over
the domain �+ and �−, respectively. Since fc ∈ L2(�), we have∫ ∫

�

fc v dxdy =
∫ ∫

�+
fc v dxdy +

∫ ∫
�−
fc v dxdy.(1.8)

Applying the Green’s theorem in the domain �+, the outside of the closed
interface �, we get

−
∫
∂�

βv
∂u

∂n
ds −

∫
�

β+v+ ∂u
+

∂n+ ds

+
∫ ∫

�+
β∇u · ∇v dxdy =

∫ ∫
�+
fc v dxdy,(1.9)

where n+ and n− = n are the unit normal directions of the interface � point-
ing inward and outward respectively. Similarly there is the following relation
from the inside of the interface �−:

−
∫
�

β−v− ∂u
−

∂n− ds +
∫ ∫

�−
β∇u · ∇v dxdy =

∫ ∫
�−
fc v dxdy.(1.10)

Since

−
∫
�

β+v+ ∂u
+

∂n+ ds =
∫
�

β+v+ ∂u
+

∂n− ds =
∫
�

β+v+ ∂u
+

∂n
ds,

by applying the zero boundary condition v|∂� = 0 and adding (1.9) and
(1.10) together, we get:
∫
�

β+v+ ∂u
+

∂n
ds−

∫
�

β−v− ∂u
−

∂n
ds+

∫ ∫
�

β∇u · ∇v dxdy=
∫ ∫

�

fc v dxdy.

Using the flux jump condition (1.5), we obtain the weak form for the interface
problem∫ ∫

�

β(x, y)∇u · ∇v dxdy =
∫ ∫

�

fc v dxdy

−
∫
�

vQds, ∀v(x, y) ∈ H 1
0 (�).(1.11)

The weak form does allow discontinuities in the coefficient and the deriva-
tives of the solution. The existence of the weak solution is discussed in [6,7].
Theoretically, the weak form is the same as those discussed in many standard
finite element method text books, see [6,7,23] for example, and will be used
to derive related finite element methods later in this paper.

This paper is organized as follows. In Sec. 2, a non-conforming finite ele-
ment space is introduced. The related basis functions satisfy the homogeneous
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jump conditions (1.4)–(1.5) withQ(s) ≡ 0 either exactly or approximately.
The interpolation function in the new finite element space is constructed and
analyzed. A non-trivial numerical example using the Galerkin finite element
method is also given. Similar discussions are carried out for a conforming fi-
nite element space in Sec. 3. The key idea is to extend the support of the basis
function if necessary. The Galerkin finite element method has been shown to
be convergent in theH 1 norm for certain interface problems. Our discussion
leads to another finite element method that uses Cartesian triangulation away
from the interface, but introduces a few additional nodal points on the inter-
face according to certain rules. The standard linear basis functions then can
be defined on the new triangulation. The comparison of the two conforming
finite elements are discussed and supported by a numerical example.

It is worthwhile to point out that although the discussions in this paper are
based on Cartesian grids, the methods and the analysis can be easily extended
to other grids that are not necessarily aligned with the interfaces.

2 A non-conforming immersed finite element space and analysis

In this section, we introduce a finite element space whose basis are piecewise
linear functions satisfying the homogeneous jump conditions either exactly
or approximately. Without loss of generality, we assume that the domain �
is a rectangle which is separated by an interface � into two sub-domains�+

and �− such that � = �+ ∪ �− ∪ �, see Fig. 1.1. Also, without loss of
generality, we assume that Q = 0, and the coefficient β in the boundary
value problem (1.6) has two pieces separated by the interface �

β(x) =
{
β+, if x ∈ �+,
β−, if x ∈ �−,

with β(x) ≥ β0 > 0 for any x ∈ �.
A Cartesian grid is then used to form a uniform triangular partition Th

with step size h on� such that each element T ∈ Th is a triangle constructed
by the two legs and one of the diagonals in a sub-rectangle. The discussions
and results of this paper can obviously be extended to other grids that are not
necessarily aligned with the interface.

We call an element T ∈ Th an interface element if the interface � passes
through the interior of T , see Fig. 2.1 for a typical geometric configuration;
otherwise we call T a non-interface element. We assume that the interface
meets the edges of an interface element at no more than two intersections2.
Such an assumption is reasonable if h is small enough and guaranteed if the
interface is expressed in terms of the zero level set of the signed distance

2 If one of edges is part of the interface, then the element is a non-interface element.
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function (or approximately) of the interface. As in the common practice, we
approximate the interface in T by a line segment connecting the intersections
of the interface and the edges of the triangles, for example, the line segment
DE in Fig. 2.1. The line segment divides T into two parts T + and T − with
T = T + ∪ T − ∪DE. There is a small region in T

Tr = T −�+ ∩ T + −�− ∩ T −(2.1)

whose area is of orderO(h3). This indicates that the interface is perturbed in
a magnitude ofO(h2). From [7] and the discussions later in this section, such
a perturbation will only affect the solution, and the interpolation function to
an order of h2. In this paper, T , T +, T −, and Tr are all defined as closed sets.

As usual, we want to construct local basis functions on each element T of
the partition Th. For a non-interface element T ∈ Th, we simply use the stan-
dard linear shape functions on T , and use Sh(T ) to denote the linear spaces
spanned by the three nodal basis functions on T . Attention is needed only for
interface elements, and we will discuss it in the following sub-section.

2.1 Local basis functions on an interface element

We assume that β is piecewise constant. Without loss of generality, we con-
sider a reference interface element T whose geometric configuration is given
in Fig. 2.1 in which the curve between points D and E is a part of the inter-
face. The basis functions in a general interface element can then be defined
through the usual affine transformation. We assume that the coordinates at
A, B, C, D, and E are

(0, h), (0, 0), (h, 0), (0, y1), (h− y2, y2),(2.2)

with the restriction

0 ≤ y1 ≤ h, 0 ≤ y2 < h.(2.3)

Once the values at vertices A, B, and C of the element T are specified,
we construct the following piecewise linear function:

u(x) =
{
u+(x) = a0 + a1x + a2(y − h), if x = (x, y) ∈ T +,
u−(x) = b0 + b1x + b2y, if x = (x, y) ∈ T −,(2.4)

u+(D) = u−(D), u+(E) = u−(E), β+ ∂u
∂n

+
= β− ∂u

∂n

−
,(2.5)

where n is the unit normal direction of the line segmentDE. This is a piece-
wise linear function in T that satisfies the homogeneous jump conditions
along DE. Intuitively, there are six constraints and six parameters, so we
can expect the solution exists and is unique as confirmed in the following
theorem.
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Fig. 2.1. A typical triangle element with an interface cutting through. The curve between
D and E is part of the interface curve � which is approximated by the line segment DE.
In this picture, T is the triangle 	ABC, T + = 	ADE, T − = T − T +, and Tr is the
region enclosed by the DE and the arc DME

Theorem 2.1 Given a right triangleABC as indicated in Fig. 2.1. The piece-
wise linear function u(x, y) defined by (2.4) and (2.5) is uniquely determined
by u(A), u(B) and u(C).

Proof. Let x = (x, y)T . Because u+ and u− are linear functions, we have

u(x) =


u+(x, y) = u(A)+ a1x + a2(y − h), x ∈ T +,

u−(x, y) = u(B)+ u(C)− u(B)

h
x + b2y, x ∈ T −.

(2.6)

From the continuity condition at D and E, we have two equations

a2(y1 − h)− b2y1 = u(B)− u(A),(2.7)

a1(h− y2)+ a2(y2 − h)− b2y2 = u(B)− u(A)+ b1(h− y2),(2.8)

where

b1 = u(C)− u(B)

h
.(2.9)

The third equation is from the flux jump condition:

a1α − a2 + ρb2 = ραb1,(2.10)

where ρ = β−/β+, and we have used the fact that the normal direction of
the line segment is (α, −1) with α = (y2 − y1)/(h − y2). The coefficient
matrix of the linear system for the unknowns a1, a2, and b2 is

A =




0 y1 − h −y1

h− y2 y2 − h −y2

α −1 ρ


 .(2.11)
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Evaluating the determinant of the matrix above, using the relation of h−y1 =
(h− y2)(1 + α), we obtain the following after some manipulations

det (A) = −(y1 − h)y2α + (h− y2)y1 + α(y2 − h)y1 − ρ(h− y2)(y1 − h)

= (h− y2)y2α(1 + α)+ (h− y2)y1 − α(h− y2) (y2 − α(h− y2))

+ ρ(h− y2)
2(1 + α)

= (h− y2)
(
y1 + hα2 + ρ(h− y2)(1 + α)

)
> 0.(2.12)

Thus from the theory of linear algebra, there is a unique solution to the linear
system (2.7), (2.8) and (2.10). 
�

We now introduce a local finite element space on each element T of the
partition Th as follows:

Sh(T )

=
{ {u(x) | u(x) is linear on T } , if T is a non-interface element,

{u(x) | u(x) is defined by (2.4)–(2.5)} , if T is an interface element.

It is well known that the dimension of Sh(T ) is three if T is a non-interface
element. When T is an interface element, Sh(T ) contains three basis func-
tions whose value at one of the vertices of T is unity, and zero at the other
two vertices. Furthermore, Theorem 2.1 tells us that any function in Sh(T ) is
a linear combination of these three basis functions. Therefore the dimension
of Sh(T ) is also three even if T is an interface element.

2.2 The non-conforming finite element space

To describe the finite element space on the whole domain �, we let �′ be
the union of all the interface elements. Then we define the immersed finite
element space Sh(�) as a set of functions such that

Sh(�) = {
φ(x) | ∀ T ∈ Th, φ|T ∈ Sh(T ), φ|�\�′ ∈ H 1(�\�′)

}
.(2.13)

It is worthwhile to point out again that this finite element space is formed by
piecewise linear functions defined according to the partition Th and the inter-
face, but the partition does not have to align along with the interface. Part of
the interface can be immersed in some elements of Th, and this is the reason
we call Sh(�) an immersed finite element (IFE) space. On the other hand, the
IFE space is rather similar to the usual linear finite element (FE) space defined
by the partition Th. First, they are exactly the same on every non-interface
element. Secondly, they have the same dimension. Fig 2.2 shows a typical
basis function of Sh(�)with an interface cutting through its non-zero support
region. Finally, if β(x) has no discontinuity, then the IFE space becomes the
usual linear finite element space. However, for a discontinuous β(x), the IFE
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space is more sophisticated than the usual FE space since the jump conditions
across the interface are satisfied to certain extent. In this case, the IFE space
is similar to a non-conforming FE space in the way that the basis functions
may not be continuous across the edges of elements in Th. Hence the IFE
space introduced here is generally a non-conforming FE space.

The dimension of the non-conforming IFE space is the number of interior
points for the Dirichlet problem. The basis function centered at a node is
defined as:

φi(xj ) =
{

1 if i = j

0 otherwise,

[
β
∂φi

∂n

]∣∣∣∣
�̄

= 0, φi |∂� = 0,(2.14)

and φi is continuous in each element T except some edges if xi is a vertex of
one or several interface triangles, see Fig. 2.2. We use �̄ to denote the union
of the line segment that is used to approximate the interface.

2.3 Approximation capability of the non-conforming IFE space

Given a function u(x) which is continuous on the entire domain and satisfies
the flux jump condition, we define its interpolant in the IFE space Sh(�) as
the function uI (x) ∈ Sh(�) such that

uI (x) = u(x), if x is a node of Th.

We would like to know how well uI (x) can approximate u(x). Since uI (x)
is the usual linear function on each non-interface element, we have the fol-
lowing standard error estimate [9]

‖uI − u‖0,T + h ‖Ihu− u‖1,T ≤ C1h
2 ‖u‖2,T ,

(a)
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Fig. 2.2. (a): A standard domain of six triangles with an interface cutting through. (b): A
global basis function on its support in the non-conforming immersed finite element space.
The basis function has small jump across some edges
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where ‖·‖s,A is the norm of the Sobolev spaceHs(A) defined in a set A, and
C1 is a constant3. Similar error estimates can also be given in the norm of the
space Ws,p(A). When T is an interface element, each partial derivative of
uI on T is a piecewise constant function consisting of two values, ∂u+

I /∂x

and ∂u−
I /∂x, or ∂u+

I /∂y and ∂u−
I /∂y, where uiI are the restrictions of uI on

T i, i = +,−. The following theorem provides the error estimates on them.

Theorem 2.2 Let T ∈ Th be an interface element, and let u(x, y) be a
continuous function such that its restriction ui = u|T i on T i, i = +,− are
twice differentiable in each sub-domain �+ ∩ T and �− ∩ T , and satisfies
the homogeneous jump conditions (1.4)–(1.5). Then we have the following
error estimates∥∥∥∥∂uI∂x − ∂u

∂x

∥∥∥∥
∞,T \Tr

≤ (
22 ρ2

cond + 1
) ||D2u||∞,T h,(2.15)

∥∥∥∥∂uI∂y − ∂u

∂y

∥∥∥∥
∞,T \Tr

≤ (
22 ρ2

cond + 1
) ||D2u||∞,T h,(2.16)

where

ρcond = ρmax

ρmin
, ρmax = max

x∈�

{
ρ,

1

ρ

}
, ρmin = min

x∈�

{
ρ,

1

ρ

}
.(2.17)

and

||D2u||∞,T = max
i=+,−

{ ||uixx ||∞,T∩�i + 2 ||uixy ||∞,T∩�i

+||uiyy ||∞,T∩�i }.(2.18)

Proof. Again, we assume that the interface element T has the configuration
given in Fig. 2.1. Since u(x, y) is twice differentiable in�+ and�−, it is also
twice differentiable in T i\Tr . First we choose a pointM on the interface such
that the tangential line of the interface at M is parallel to the line segment
DE whose slope is:

α = y2 − y1

h− y2
, −1 < α < +∞.(2.19)

Notice that y2 = (y1+αh)/(1+α). Plugging this into (2.12) and re-arranging
terms we get

|det (A)| = (h− y2)

(
y1 + hα2 + ρ(h− y1 + αh

1 + α
)(1 + α)

)

= (h− y2)
(
y1 + hα2 + ρ(h− y1)

)
≥ ρmin(h− y2)

(
hα2 + h

)
,

where A is the matrix given in (2.11).
3 We use C1 instead of C because we have already used C in Fig. 2.1.
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Now consider the following Taylor expansions of u(x, y) at A and B

u+(x, y) = u(A)+ ∂u+(A)
∂x

x + ∂u+(A)
∂y

(y − h)+ . . . ,(2.20)

u−(x, y) = u(B)+ ∂u−(B)
∂x

x + ∂u−(B)
∂y

y + . . . .(2.21)

At point D, u+(D) = u−(D), so we can write

∂u+(A)
∂y

(y1 − h)− ∂u−(B)
∂y

y1 = u(B)− u(A)+ e1,(2.22)

where e1 is the error terms from the two Taylor expansions, therefore |e1| ≤
2

∥∥D2u
∥∥

∞,T
h2. Similarly at point E, we have the relation

∂u+(A)
∂x

(h− y2)+ ∂u+(A)
∂y

(y2 − h)− ∂u−(B)
∂y

y2

= u(B)− u(A)+ ∂u−(B)
∂x

(h− y2)+ ẽ2,

(2.23)

where ẽ2 is the error terms from the two Taylor expansions. Notice that

b1 = u(C)− u(B)

h
= ∂u−(B)

∂x
+ ∂2u−(R)

∂x2
h,(2.24)

where R is some point between B and C. Therefore we can write

∂u+(A)
∂x

(h− y2)+ ∂u+(A)
∂y

(y2 − h)− ∂u−(B)
∂y

y2

= u(B)− u(A)+ b1(h− y2)+ e2,

(2.25)

where e2 ≤ 2||D2u||∞,T h
2 after the term ∂2u−(R)/∂x2 is absorbed into

other second order derivative terms. Using (2.20) and (2.21), and from the
flux jump relation of u at M , we have the third equation

∂u+(A)
∂x

α − ∂u+(A)
∂y

+ ρ
∂u−(B)
∂y

= ρα
∂u−(B)
∂x

+ ẽ3

= ραb1 + e3,

(2.26)

where e3 is the accumulation of errors from the Taylor expansions. Hence,

|e3| ≤ (max { |α|, 1 } + ρmax(|α| + 1)) ||D2u||∞,T h.(2.27)

Equations (2.22), (2.25), and (2.26) are the same as those in (2.7), (2.8) and
(2.10) with perturbation to the right hand sides. By subtracting (2.7), (2.8),
and (2.10), from (2.22), (2.25), and (2.26) respectively, we get a linear system
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of equations for the errors of the first order of partial derivatives. The solution
of the error ∂u−(B)/∂y − ∂u−

I /∂y is

∂u−(B)
∂y

− ∂u−
I

∂y

=

∣∣∣∣∣∣∣∣

0 y1 − h e1

h− y2 y2 − h e2

α −1 e3

∣∣∣∣∣∣∣∣
/det (A)

= e2(y1 − h)α − e1(h− y2)− e1α(y2 − h)− e3(h− y2)(y1 − h)

det (A)

= −e2(h− y2)(1 + α)α−e1(h− y2)+ e1α(h− y2)− e3(h− y2)
2(1 + α)

det (A)

= (h− y2) [ −α(1 + α)e2 + (α − 1)e1 + (h− y2)(1 + α)e3 ]

det (A) ,

where we have used the relation y1 = y2 − α(h− y2) again. Now it is easy
to derive an upper bound of the error

∣∣∣∣∂u
−(B)
∂y

− ∂u−
I

∂y

∣∣∣∣

≤
α2 + 2|α| + 1+ (1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|)

2
ρmin(α2 + 1)

2||D2u||∞,T h.

If |α| ≤ 1, then

α2 + 2|α| + 1 + (1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|))/2
ρmin(α2 + 1)

≤ ρcond

3
2α

2 + 7
2 |α| + 2

α2 + 1

≤ ρcond
5α2 + 5 − 7

2α
2 + 7

2 |α| − 3

α2 + 1

≤ ρcond
5α2 + 5

α2 + 1
= 5ρcond .

Note that we have used the fact that f (x) = − 7
2x

2 + 7
2x − 3 < 0 when

0 ≤ x ≤ 1 in the proof above.
If |α| > 1, then
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α2 + 2|α| + 1 + (1 + |α|)(max{ |α|, 1} + ρmax(1 + |α|))/2
ρmin(α2 + 1)

≤ ρcond
2α2 + 7

2 |α| + 3
2

α2 + 1

≤ ρcond
5α2 + 5 − 3|α|2 + 7

2 |α| − 7
2

α2 + 1

≤ 5ρcond .

In the proof above, we have used the fact that f (x) = −3x2 + 7
2x − 7

2 ≤ 0
when x ≥ 1.

In either case, |α| ≤ 1 or |α| > 1, we have an upper bound, not optimal
though, which is

∣∣∣∣∂u
−(B)
∂y

− ∂u−
I

∂y

∣∣∣∣ ≤ 10 ρcond ||D2u||∞,T h.(2.28)

We continue to proceed with the following derivation

∣∣∣∣∂u
−
I

∂y
− ∂u−(M)

∂y

∣∣∣∣ ≤
∣∣∣∣∂u

−
I

∂y
− ∂u−(B)

∂y

∣∣∣∣ +
∣∣∣∣∂u

−(B)
∂y

− ∂u−(M)
∂y

∣∣∣∣
≤ 10 ρcond ||D2u||∞,T h+ ||D2u||∞,T h

≤ 11 ρcond ||D2u||∞,T h,(2.29)

where the derivative of ∂u−(M)/∂y is the following limit

∂u−(M)
∂y

= lim
x∈�−,x→M

∂u(x)
∂y

,

and
∣∣∣∣∂u

−
I

∂x
− ∂u−(M)

∂x

∣∣∣∣ =
∣∣∣∣u(C)− u(B)

h
− ∂u−(M)

∂x

∣∣∣∣ ≤ ||D2u||∞,T h.(2.30)

which give estimates in (2.15) and (2.16) for the case when i = −.

However, applying the same approach to ∂u+(A)
∂x

− ∂u+
I

∂x
and ∂u+(A)

∂y
− ∂u+

I

∂y

fails to generate the desired conclusion for the case when i = +. We now
use the interface relations to prove the error estimates. Since u is continuous,
the directional derivative along the tangential direction of the interface is
continuous at M

−∂u
+(M)
∂x

ny + ∂u+(M)
∂y

nx = −∂u
−(M)
∂x

ny + ∂u−(M)
∂y

nx,(2.31)
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where (nx, ny) = (α, −1)/
√
α2 + 1 is the unit normal direction of the in-

terface � at M . The flux jump condition at M produces another equation

∂u+(M)
∂x

nx + ∂u+(M)
∂y

ny = ρ

(
∂u−(M)
∂x

nx + ∂u−(M)
∂y

ny

)
.(2.32)

Solving ∂u+(M)/∂x and ∂u+(M)/∂y from (2.31) and (2.32) in terms of
∂u−(M)/∂x and ∂u−(M)/∂y, we get



∂u+(M)
∂x

∂u+(M)
∂y


=

[
n2
y + ρn2

x −nynx + ρnynx

−nynx + ρnynx n2
x + ρn2

y

]

∂u−(M)
∂x

∂u−(M)
∂y


 .(2.33)

Notice that the maximum norm of the matrix in the expression above is bound-
ed by 2ρmax , see (2.17). From the definition of uI (x, y), equations (2.31)
and (2.32) also hold when the function u is replaced by uI (x, y). Therefore
we have ∥∥∥∥∥∥∥∥∥



∂u+

I

∂x
− ∂u+(M)

∂x

∂u+
I

∂y
− ∂u+(M)

∂y




∥∥∥∥∥∥∥∥∥
∞

≤ 2 ρmax

∥∥∥∥∥∥∥∥∥



∂u−

I

∂x
− ∂u−(M)

∂x

∂u−
I

∂y
− ∂u−(M)

∂y




∥∥∥∥∥∥∥∥∥
∞

≤ 22 ρ2
cond ||D2u||∞,T h,

(2.34)

because of the error estimates established foru−
I . Finally we use the following

triangle inequality
∥∥∥∥∥∥∥∥∥



∂uiI

∂x
− ∂ui(x)

∂x

∂uiI

∂y
− ∂ui(x)

∂y




∥∥∥∥∥∥∥∥∥
∞,T i\Tr

≤

∥∥∥∥∥∥∥∥∥



∂uiI

∂x
− ∂ui(M)

∂x

∂uiI

∂y
− ∂ui(M)

∂y




∥∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥∥



∂ui(M)

∂x
− ∂ui(x)

∂x

∂ui(M)

∂y
− ∂ui(x)

∂y




∥∥∥∥∥∥∥∥∥
∞,T i\Tr

≤ (
22 ρ2

cond + 1
) ||D2u||∞,T h,

from (2.29) and (2.30) if i = −, or from (2.34) if i = +, and from a Tay-
lor expansion for the second term above. Thus the proof of the theorem is
completed. 
�
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Furthermore, we can easily use the estimates in Theorem 2.2 and the Tay-
lor expansion to generate an error estimate for uI itself given in the following
theorem.

Theorem 2.3 Let T ∈ Th be an interface element, and let u(x, y) be a
continuous function such that its restriction ui = u|T i on T i, i = +,− are
twice differentiable in each sub-domain �+ ∩ T and �− ∩ T , and satisfies
the homogeneous jump conditions (1.4)–(1.5). Then we have the following
inequality:

|u(x)− uI (x)| ≤
{
C1h̃ h, if x ∈ T \Tr ,
C2h

2, if x ∈ Tr,
(2.35)

where h̃ is the shortest distance between x and the vertices of T which are
on the same side of the interface as x, and

C1 ≤ (
1 + 44 ρ2

cond

) ||D2u||∞,T ,(2.36)

and C2 is some constant.

Proof. Without loss of generality, we still use Fig.2.1 to illustrate our proof
and assume that the point B is the vertex closest to x. If x ∈ T −\Tr , then we
have

u−
I (x) = uI (B)+ ∂uI

∂x

−
(x − xB)+ ∂uI

∂y

−
(y − yB)

= u(B)+ ∂u−

∂x
(M)(x − xB)+ ∂u−

∂y
(M)(y − yB)+ R1

= u(x)+ R1 + R2,

where xB , yB are the coordinates of point B,

|R1| ≤ 2 max

{∣∣∣∣∂u
−
I

∂x
− ∂u−(M)

∂x

∣∣∣∣ ,
∣∣∣∣∂u

−
I

∂y
− ∂u−(M)

∂y

∣∣∣∣
}
h

≤ 44 ρ2
cond ||D2u||∞,T h̃ h,

from (2.34), and

|R2| ≤ ||D2u||∞,T h̃ h,

from the Taylor expansion. Similar result holds for x ∈ T +\Tr .
If x ∈ Tr , say x ∈ T ∩ T −, but x ∈ �+, for example. We take the closest

point R ∈ T to x from the line segment. We know that ‖x −R‖ ≈ h2. Using
the triangle inequality we obtain

|uI (x)− u(x)| ≤ |u−
I (x)− u−

I (R)| + |u+
I (R)− u(x)|

≤ ||D2u||∞,T ‖x−R‖+|u+
I (R)−u+(R)|+|u+(R)−u+(x)|
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≤ ||D2u||∞,T ‖x − R‖ + C1h̃ h+ ||D2u||∞,T ‖x − R‖
≈ h2.

In the proof, we have used the facts that u+
I (R) = u−

I (R), the continuity con-
dition for uI and u(x), and the first error estimate of (2.35) of this theorem
which has been already proved. 
�

Notice that the intersections of the interface and the edges of the triangles
are not in Tr so they satisfy the first inequality in (2.35), a fact that we need
to use in the next section.

Remark 2.1 Although we have the error estimate for the interpolation func-
tions for the non-conforming finite element method. The convergence anal-
ysis for the finite element solution is not straightforward for the particular
non-conforming IFE space. Such error estimate is currently under investiga-
tion.

2.4 A non-conforming IFE method

It is obvious that the finite element space Sh(�) introduced in the last section
is not in the space to which the solution of the interface problem belongs. A
function φ of Sh(�) is continuous in the union of non-interface triangles but
may be discontinuous on edges of interface triangles. Therefore the finite el-
ement method based on Sh(�) is non-conforming. For the interface problem,
we now define its non-conforming IFE solution as a function uh ∈ Sh0(�)

satisfying

ah(uh, vh) =
∫
�

f vhdxdy, for all vh ∈ Sh0(�),(2.37)

where Sh0(�) = {φ ∈ Sh(�) | φ|∂� = 0}, and

ah(u, v) =
∑
T ∈Th

∫
T ∈Th

β∇u · ∇v dxdy.(2.38)

Remark 2.2 If the flux jump is not homogeneous in (1.6), the non-conform-
ing IFE solution uh ∈ Sh0(�) then satisfies

ah(uh, vh) =
∫
�

f vhdxdy −
∫
�

vhQds.(2.39)

2.5 A numerical example for the non-conforming IFE method

We present a non-trivial example here to show the performance of the stan-
dard Galerkin finite element method using the non-conforming IFE space. In
this example, we consider the boundary value problem defined by (1.1) with
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a Dirichlet boundary condition. The computational domain is the rectangle
−1 ≤ x, y ≤ 1, and the interface is a circle centered at the origin with radius
r0. The boundary condition and the source term fc are determined from the
exact solution

u(x, y) =




rα

β− , if r ≤ r0,

rα

β+ +
(

1

β− − 1

β+

)
rα0 , otherwise,

(2.40)

where r =
√
x2 + y2 and α = 3. Notice that the exact solution satisfies the

homogeneous jump conditions (1.4)–(1.5).
The error estimates for the interpolation functions obtained in sub-section

2.3 indicate that the finite element solution in the IFE space may have a second
order approximation capability. Hence we naturally expect the IFE solutions
are second order accurate in the L2 norm. Since the large errors occur near
or at the interface which is one-dimensional lower than the solution domain,
we only present the errors in the maximum norm in Fig. 2.3, in which the IFE
solutions uh are found with various grid size h. The involved linear algebraic
system has a structure similar to that in the Galerkin method with the usual
linear finite element space. The jump in the coefficient of these tests is taken
as ρ = 1 : 1000 or ρ = 1000 : 1, a quite large ratio. As discussed in [31],
the errors in the numerical solutions generally do not decrease monotonously
for interface problems. Therefore we need to use the linear regression or the
least squares fitting to find the asymptotic convergence rate. In this way, we
notice the second order convergence for one ratio, ‖u− uh‖∞ ∼ h2, and

(a)
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Fig. 2.3. The errors of the finite element solutions obtained in the non-conforming
IFE space in the maximum norm versus the mesh size h in log − log scale with
r0 = π/6.28, α = 3. (a): β− = 1, β+ = 1000. The linear regression analysis gives
||u − uh||∞ ≈ 0.64657h1.56459; (b): β− = 1000, β+ = 1. The linear regression analysis
gives ||u− uh||∞ ≈ 2.79434h1.94833
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super-linear convergence for the other, ‖u− uh‖∞ ∼ h1.565, where u is the
exact solution of the boundary value problem. Similar behavior are observed
for other ratios as well. The magnitude of the errors with 160 by 160 grid is
about 10−4 for both ratios.

The non-conforming IFE method presented here is simple, easy to im-
plement, and has an algebraic system similar to that of the Galerkin finite
element method based on the standard finite element space. In particular, the
partition of the IFE space does not have to be restricted by the geometry of the
interface. The basis functions of the IFE space satisfy the jump conditions,
which enables us to obtain sharp solutions near the interface. The same idea
can be applied to treat three dimensional problems.

3 A conforming immersed finite element space and analysis

In this section, we develop a conforming IFE space to further improve ac-
curacy of the finite element method based on the non-conforming IFE space
described in the previous section. While the non-conforming IFE method
performs better than the standard finite element method for interface prob-
lems, it does not seem to be second order in the infinite norm. Note that,
for regular boundary value problems, the standard conforming finite element
method using the piecewise linear has second order convergence in the in-
finite norm. We hope this is also true for the finite element method using a
conforming IFE space with second order approximation capability. However,
the requirements of the continuity and the jump relations (1.4)–(1.5) turn out
to be rather difficult to satisfy simultaneously even with high order elements.
One of the key ideas of our approach is to enlarge the support of some basis
functions in the non-conforming finite element space so that the continuity
condition can be maintained.

Let us examine the IFE space again to see why we need to enlarge the
support of some basis functions. The non-conforming basis functions have
the same compact support as the standard linear basis function. However, if
we want the basis functions to have the same compactness, to be linear, and
to satisfy

φi(xj ) =
{

1, if i = j ,

0, otherwise,
(3.1)

in a conforming IFE space, then for a given function u(x, y) that satisfies the
jump conditions (1.4)–(1.5), we may not be able to construct a linear inter-
polation function that approximates u(x, y) to second order in the maximum
norm. To see this, let us consider an interface element 
ABC as sketched
in Fig. 3.1 (b) in which the line DE is part of the interface. Let u(x, y) be a
function satisfying the jump conditions



Finite element IIM 81

Fig. 3.1. (a):An extended region of support of the conforming basis function. (b): Diagram
for constructing the basis function on 	ABC

[u] = 0,

[
β
∂u

∂n

]
= 0,

on the interface, and have the following values

u(C) = h, u(A) = u(B) = 0.

It is very likely that u(D) ∼ h for an interface problem. The interpolation
function has the form of

uI (x, y) =
∑

ujφj (x),

where φj are conforming basis functions. Then we must have uI (D) =
φC(D) = 0 since u(A) = u(B) = 0 and all the basis functions that are
not centered at A and B are zero on the entire line segment AB. Hence
|uI (D)− u(D)| = O(h) and the approximation is only first order accurate.
Therefore, to achieve second order accuracy for the interpolation function,
we need to either develop new non-conforming finite element functions, or
extend the support of the basis functions. We will focus on the second ap-
proach and still use piecewise linear functions. High order elements shall be
considered in the future.

Intuitively, it is not very difficulty to approximate any piecewise twice
differentiable function to second order by piecewise polynomials. The chal-
lenge is how to maintain continuity along the edges and the jump conditions
along the interface simultaneously. Our idea is to average the values of non-
conforming basis functions with the same values at nodal points to keep the
continuity. The details are described in the following subsections.

3.1 Conforming local basis functions on an interface element

The basis functions in the non-conforming IFE space introduced in Section 2
can maintain the jump conditions well, but they may have a small jump along
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the common edge of two adjacent interface elements within their supports.
For example, see Fig. 3.1 (b), the basis function in the non-conforming IFE
centered at point B usually is discontinuous at point D where the interface
meets with the common edge AB. Therefore, we would like to find a way to
modify the non-conforming local basis functions in interface elements so that
the new local basis functions can be pieced together continuously along the
common edge of any two interface elements. In addition, the basis functions
should still satisfy the jump conditions up to certain accuracy to get sharp
solutions for interface problems.

Following the considerations above, we now describe a procedure to
construct basis functions in a typical interface element 
ABC sketched in
Fig. 3.1 (b) such that they can be used to form a conforming IFE space. We
assume that the interface meets edges of this element at D and E. The key
idea is to make sure that some of the local basis functions in two adjacent
interface elements, such as 
ABC and 
AFB, can take the same value at
the interface point on their common edge, such as pointD. On the other hand,
for a Lagrange type element, the values of a basis function in this element
has already had three freedoms at the vertices A, B, and C. Since we need
to form the basis functions together with those in the adjacent interface ele-
ments 
AFB and 
ACI to guarantee the continuity, a basis function in a
typical interface element 
ABC should have two more freedoms due to the
vertices F and I .

We use the standard five dimensional Euclidean vector ei (whose i-th en-
try is unity while the other entries are zero) to assign values of a local basis
function ψi(x, y) at the vertices A,B,C, F and I , and this basis function is
piecewisely constructed as follows:

P1. Use the values at the vertices A, B, C, F and I to form the three non-
conforming IFE functions defined on the elements
ABC,
AFB and

ACI respectively.

P2. Assign a value to the point D as the average (or a certain weighted av-
erage) of the values at this point of the non-conforming IFE functions
defined on the elements 
ABC and 
AFB formed in P1.

P3. Similarly, assign a value to the point E as the average (or a certain
weighted average) of values at this point of the non-conforming IFE
functions defined on the elements 
ABC and 
ACI formed in P1.

P4. Partition the element 
ABC into three sub-triangles by an auxiliary
line, say line segment BE, orDC such that at least one of acute angles,
or the supplementary angle if an angle is bigger than π/2, of the triangle
formed by the auxiliary line is bigger than or equal to π/4.

P5. Define the basis function ψi to be the piecewise linear function in the
three sub-triangles determined by the values at the points A,B,C,D
and E.
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As in Sec. 2, we define a local finite element space on each element T of
the partition Th as follows:

Sh(T )

=
{ {u(x) | u(x) is linear on T } , if T is a non-interface element,

span {ψi(x), 1 ≤ i ≤ 5 | ψi(x) is defined by P1-P5} , otherwise.

As usual, when T is not an interface element, the dimension of Sh(T ) is three.
However, the dimension of Sh(T ) is five if T is an interface element, two
more freedom are added at the interface points on its edges. We would like
to point out that if T is an interface element adjacent to the boundary of �,
then the dimension of Sh(T ) becomes four.

Remark 3.1 Actually Sh(T ), the local space of shape functions for an inter-
face element is just the five dimensional space of continuous piecewise linear
functions on the three subtriangles. The procedure P1-P5 described above
defines an interpolation operator from C0(�) to the space spanned by the
local shape functions and Sh(�) is the image of this interpolation operator.

3.2 A conforming IFE space

For the i-th vertex in the partition Th, we letφi(x) be the continuous piecewise
linear function that satisfies (3.1) and φi |T ∈ Sh(T ) for any element T ∈ Th.
Then we let our new IFE space Sh(�) be a set of functions such that

Sh(�) = span
{
φi(x)

}
.(3.2)

Because of the continuity of its basis functions, this IFE space Sh(�) is
conforming. Also, this conforming IFE space has the same dimension as
the non-conforming IFE space and the standard linear finite element space
defined on the partition Th.

The basis function φi of Sh(�) centered at the i-th node has a non-zero
support on the six surrounding triangles if the interface does not cut through
any of these triangles. This leads to a standard five point stencil4. If the coef-
ficient is continuous, i.e. ρ ≡ 1, these basis functions become the standard
linear basis functions. If the interface cuts through any of the surrounding
triangles, then, by the definition of Sh(�), the support of this basis function
is extended to two more triangles along the direction of the interface, see
Fig 3.1 (a), where the support of the basis function includes the triangles
marked by dashed lines. As a consequence, the corresponding finite differ-
ence scheme will generally have a non-standard nine point stencil. It is worth

4 Actually the computation involves a seven point stencil, two of the coefficients are
zero due to cancellations.
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to point out that the total degree of the freedom of the conforming finite el-
ement space is the same as the non-conforming finite element space, and is
the same as the standard finite element space using the hat functions.

3.3 Approximation capability of the conforming IFE space

Given a piecewise smooth function u(x, y) that satisfies the jump condi-
tions (1.4)–(1.5) along a smooth interface, we will show that its interpolation
function uI (x, y) in the conforming IFE space using the values of u(x, y)
at vertices can approximate u(x, y) to second order, and its first derivatives
can approximate those of u(x, y) to first order in the maximum norm almost
everywhere. We assume that the values of the basis functions at intersec-
tions, for example, pointsD and E in Fig 3.1 (b), are simple averages of the
non-conforming interpolation functions in the two neighborhood triangles.
From this point of view, the conforming interpolation function is obtained
by perturbing the values of the non-conforming interpolation functions at
intersections. From Theorem 2.3, such perturbations are bounded by C1h̃h,
where h̃ is the shortest distance from the intersection points, such as D and
E, to the vertices in interface element, such as B and A, in Fig. 3.1 (b). The
following lemma shows that the perturbations in the first derivatives between
two interpolation functions are of order h.

Lemma 3.1 Assume: (i) T ∈ Th is an interface element; (ii) u(x, y) is
a continuous function that its restriction ui = u|T i on T i, i = +,−, is
twice differentiable in each sub-domain �+ ∩ T and �− ∩ T , and satisfies
the homogeneous jump conditions (1.4)–(1.5); (iii) ūI and uI are the inter-
polation functions of u in the non-conforming and conforming IFE spaces,
respectively, then ∥∥∥∥∂uI∂x − ∂ūI

∂x

∥∥∥∥
∞,T

≤ (4 +
√

2)C1h,(3.3)

∥∥∥∥∂uI∂y − ∂ūI

∂y

∥∥∥∥
∞,T

≤ (4 +
√

2)C1h,(3.4)

where C1 is given in Theorem 2.2.

Proof. The results are trivial in every non-interface element. In each inter-
face element, the difference between the two linear interpolation functions
are caused by the perturbations of the values at intersections, e.g., points D
and E in Fig. 3.1 (b). Since both interpolation functions are linear, we can
consider the rate of changes of the first derivatives with respect to the changes
in the function values at intersections. We just need to consider one of the
sub-triangles within the interface element 	 ABC, see Fig. 3.1 (b), and we
distinguish the following cases:
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Fig. 3.2. A sub-triangle contains one of angles of the master triangle

Case 1: The triangle contains one of the angles from the master triangle In
this case, the angle can be π/4, as in 	ADE and 	BCE, or π/2, as in
	DBC if the auxiliary line segment is DC instead of EB. We will only
consider the case where the angle is π/4 and will use the local coordinates
to simplify the proof.

Consider a typical geometry in Fig 3.2, where point A is a vertex, and
pointsD and E are intersections of the interface and the edges of a interface
element. The linear function defined in 
ADE is

uI (x, y) = u1 + (u2 − u1)
x

x1
+

(
u3 − u1

x2
− u2 − u1

x1

)
y.(3.5)

Note that x2 = y2. The partial derivatives with respect to x and y are

∂uI

∂x
= u2 − u1

x1
,

∂uI

∂y
= u3 − u1

x2
− u2 − u1

x1
,(3.6)

where u1, u2, and u3 are the interpolation values at points A, D, and E
respectively. The partial derivatives with respect to u2 and u3 above are

∂

∂u2

(
∂uI

∂x

)
= 1

x1
; ∂

∂u3

(
∂uI

∂x

)
= 0,(3.7)

∂

∂u2

(
∂uI

∂y

)
= − 1

x1
; ∂

∂u3

(
∂uI

∂y

)
= 1

x2
.(3.8)

Thus∣∣∣∣∂uI∂x − ∂ūI

∂x

∣∣∣∣
=

∣∣∣∣ ∂∂u2

(
∂uI

∂x

)
(uI (D)− ūI (D))+ ∂

∂u3

(
∂uI

∂x

)
(uI (E)− ūI (E))

∣∣∣∣
≤ 1

|x1| |uI (D)− ūI (D)|

≤ C1h.
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The inequality is true within the triangle without second order derivative
terms because both uI and ūI are linear. Similarly

∣∣∣∣∂uI∂y − ∂ūI

∂y

∣∣∣∣ ≤ 1

|x1| |uI (D)− ūI (D)| + 1

|x2| |uI (E)− ūI (E)|

≤ C1

(
1 +

√
2
)
h < 3C1h.

Note that in the proof above we have used the fact that

|uI (D)− ūI (D)| ≤ C1hh̃ ≤ h|x1|,
|uI (E)− ūI (E)| ≤ C1hh̃ ≤ h

√
2 |x2|.

Therefore the lemma is true for this case.
If a sub-triangle contains a right angle π/2 from the master interface

triangle, the proof is similar and we omit the proof to save some space.

Case 2: The interface cuts two right legs of the master triangle Now we con-
sider a sub-triangle in which none of its three angles is from the interface
element, for example, 	ADE in Fig. 3.3 when α ≥ π/4. We always choose
the triangle that at least one of three acute angles, or the supplementary angle
if one is an obtuse, is greater than or equal to π/4. If α < π/4, then α′ ≥ π/4
and we would choose the triangle 	BED, which is covered in Case 1. We
proceed with the perturbation analysis on the 	ADE for the interpolation
function

uI (x, y) = u1 + (u2 − u1)
y

y2
+

(
u3 − u1

x3
− (u2 − u1)h

y2 x3

)
x.(3.9)

Fig. 3.3. A sub-triangle contains none of the angles of the master triangle, and the interface
intersects the two right legs of the master triangle



Finite element IIM 87

Again u1, u2, and u3 are the interpolation values at A, D, and E. The partial
derivatives with respect to x and y are

∂uI

∂x
= u3 − u1

x3
− (u2 − u1)h

y2 x3
; ∂uI

∂y
= u2 − u1

y2
.(3.10)

The partial derivatives with respect to u2 and u3 above are

∂

∂u2

(
∂uI

∂x

)
= − h

y2 x3
; ∂

∂u3

(
∂uI

∂x

)
= 1

x3
,(3.11)

∂

∂u2

(
∂uI

∂y

)
= 1

y2
; ∂

∂u3

(
∂uI

∂y

)
= 0.(3.12)

Since α ≥ π/4, we have x3 ≥ h− y2 and

h

y2 x3
≤ h

y2(h− y2)
.

Therefore
∣∣∣∣∂uI∂x − ∂ūI

∂x

∣∣∣∣ ≤ h

y2(h− y2)
|uI (D)− ūI (D)| + 1

x3
|uI (E)− ūI (E)|

≤ C1h
2

y2(h− y2)
min{y2, h− y2} + C1h

≤ 2C1h+ C1h

≤ 3C1h.

And
∣∣∣∣∂uI∂y − ∂ū

∂y

∣∣∣∣ ≤ 1

y2
|uI (D)− ūI (D)|

≤ C1h.

Once again we have proved the lemma.

Case 3: The interface cuts one of the right legs and the hypotenuse of a master
interface element A typical picture is shown in Fig. 3.4. One of the angles,
� ADE, � EDC, and � DBC, has to be greater than or equal to π/4. Without
loss of generality, we assume that α = � ADE ≥ π/4 and the auxiliary line
segment is DE. For other cases, the discussion is similar and is not going to
be repeated. We perform the perturbation analysis on the sub-triangle EDB.
Given the values (u1, u2, u3) at B, D, and E, the interpolation function is:
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Fig. 3.4. A sub-triangle contains none of the angles of the master triangle, and the interface
intersects one of the right legs and the hypotenuse of the master triangle

(3.13)

uI (x, y)

= u1 + (u2 − u1)
y

y2
+

(
u3 − u1

x3
− (u2 − u1)(h− x3)/y2

x3

)
x.

The partial derivatives with respect to x and y are

∂uI

∂x
= u3 − u1

x3
− (u2 − u1)(h− x3)/y2

x3
; ∂uI

∂y
= u2 − u1

y2
.(3.14)

The partial derivatives with respect to u2 and u3 above are

∂

∂u2

(
∂uI

∂x

)
= −h− x3

y2 x3
; ∂

∂u3

(
∂uI

∂x

)
= 1

x3
,(3.15)

∂

∂u2

(
∂uI

∂y

)
= 1

y2
; ∂

∂u3

(
∂uI

∂y

)
= 0.(3.16)

Since α ≥ π/4, it is easy to see that (h− y2)/2 ≤ x3 and therefore∣∣∣∣ ∂∂u2

(
∂uI

∂x

)∣∣∣∣ ≤ h− x3

y2 x3
≤ 2h

y2 (h− y2)
.

We can see that

x3 = |AE |√
2

and ∣∣∣∣ ∂∂u3

(
∂uI

∂x

)∣∣∣∣ ≤ 1

x3
=

√
2

|AE | .
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From the inequalities above, we conclude∣∣∣∣∂uI∂x − ∂ūI

∂x

∣∣∣∣ ≤ 2h

y2 (h− y2)
|uI (D)− ūI (D)| + 1

x3
|uI (E)− ūI (E)|

≤ 4C1h+
√

2

|AE | |uI (E)− ūI (E)|

≤ C1

(
4 +

√
2
)
h.

Finally ∣∣∣∣∂uI∂y − ∂ūI

∂y

∣∣∣∣ ≤ 1

y2
|uI (D)− ūI (D)|

≤ C1h.

Therefore we have proved the inequalities (3.3)–(3.4) are always true. 
�
From the Lemma above, we get the following error estimates for the

interpolation function in the conforming IFE space.

Theorem 3.1 Let T ∈ Th be an interface element, and let u(x, y) be a
continuous function whose restriction ui = u|T i on T i, i = +,−, is twice
differentiable in each sub-domain �+ ∩ T and �− ∩ T , and satisfies the
homogeneous jump conditions (1.4)–(1.5). Then we have the following error
estimates ∥∥∥∥∂uI∂x − ∂u

∂x

∥∥∥∥
∞,T \Tr

≤ C2h,(3.17)

∥∥∥∥∂uI∂y − ∂u

∂y

∥∥∥∥
∞,T \Tr

≤ C2h,(3.18)

where

C2 ≤ C1(4 +
√

2)+ (
22 ρ2

cond + 1
) ||D2u||∞,T

≤ 7C1.

Proof. Denote again the interpolation function using the non-conforming
IFE space as ūI , then∥∥∥∥∂uI∂x − ∂u

∂x

∥∥∥∥
∞,T \Tr

≤
∥∥∥∥∂uI∂x − ∂ūI

∂x

∥∥∥∥
∞,T \Tr

+
∥∥∥∥∂ūI∂x − ∂u

∂x

∥∥∥∥
∞,T \Tr

≤ C1(4 +
√

2)h+ (
22 ρ2

cond + 1
) ||D2u||∞,T h,

from Lemma 3.1 and Theorem 2.2, respectively. Similar proof can be carry
out for ∂uI /∂y. 
�

From this theorem and the proof of Theorem 2.3, we have the following
theorem for the error estimate of the interpolation function.
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Theorem 3.2 Assume: (i) T ∈ Th is an interface element; (ii) u(x, y) is
a continuous function that its restriction ui = u|T i on T i, i = +,−, is
twice differentiable in each sub-domain �+ ∩ T and �− ∩ T , and satisfies
the homogeneous jump conditions (1.4)–(1.5); (iii) uI is the interpolation
function of u in the conforming IFE spaces. Then the following inequality
holds

|u(x)− uI (x)| ≤
{
C3h̃ h, if x ∈ T \Tr
C4h

2, if x ∈ Tr,
(3.19)

where C4 is a constant, h̃ is the shortest distance between x and the vertices
of T that are on the same side of the interface as x, and

C3 ≤ C2 + ||D2u||∞,T .(3.20)

Remark 3.2
• The interpolation errors actually depend on the jump in the coefficient, the

spatial step size h, and the geometry. The error generally is not a monot-
onous function of h because the error depends on the relative position of
the interface and the underlying grid, see [31].

• One may try to set the intersections between the interface and edges as new
nodal points and then to use the standard piecewise linear finite element
space. The problem is that there may be skinny triangles that will dete-
riorate the convergence rate. However, we know that the solution to the
interface problem is not independent across the interface. In our approach,
we can use one of the nice triangles to approximate the partial derivatives,
and then pass the information to the skinny ones, if there are any, using
the jump conditions as in the proof process for Lemma 3.1.

We now define the conforming IFE solution to the interface problem as a
function uh ∈ Sh0(�) such that∫ ∫

�

β(x, y)∇uh∇vh dxdy =
∫ ∫

�

f vh dxdy, for all vh ∈ Sh0(�),

and again, we let Sh0(�) = {φ ∈ Sh(�) |φ|∂� = 0}. For a non-homogeneous
flux condition, the contribution again is a line integral in the weak form.

For this conforming IFE solution, we can obtain an error estimate in the
energy norm given in the following theorem.

Theorem 3.3 Let u be the solution of (1.6) with Q ≡ 0, and uh be the con-
forming IFE solution. If u is in H 1

0 (�) and is piecewise twice differentiable
on each sub-domain �i , i = + and i = −, then we have the following error
estimate:

‖u− uh‖1,� ≤ C5h.(3.21)

where C5 is a constant independent of h.
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Proof. Sinceu,uh, and the IFE finite dimensional space, all belong toH 1
0 (�).

From the standard FEM theory, uh is the best solution in the IFE space in the
H 1 norm. Therefore we have

‖u− uh‖1,� ≤ C̃ ‖u− uI‖1,�

≤ C̃(‖u− uI‖1,
∑
T \Tr + ‖u− uI‖1,

∑
Tr
),

where uI ∈ H 1 is the interpolation function of u in the conforming IFE space.∑
T \Tr is the union of the mis-matched region of the line segments and the

interface as shown in Fig. 2.1. From Theorem 3.1, we know that u− uI and
its first derivatives are of O(h2) and O(h), respectively, in the maximum
norm on T \Tr of an element T , therefore, u − uI should be of O(h) in the
H 1 norm on the unions of these regions as well. On each Tr , u− uI and its
first derivatives are of order O(h2) and O(1). However, with the interface
being approximated by the line segment on each element, the area of each
Tr is order of O(h3). Since the interface is one dimensional lower than the
solution domain, we also conclude that

‖u− uI‖1,
∑
Tr

≈ h,

which leads to the result of this theorem. 
�

Remark 3.3
• The finite element solution u(x) in the conforming IFE space belongs to
H 1(�) but generally is not inH 2(�) if β(x, y) has a discontinuity across
the interface, see Fig. 3.5. This is the main reason that the standard finite
element does not work well.

• For many practical interface problems, the solutions are indeed piecewise
smooth. Generally, if the source term f (x, y) ∈ L2(�) is also γ th-Hölder
piecewise continuous for γ > 0, then the solution u(x, y) is piecewise
twice differentiable, see [12].

• We believe that piecewise smooth requirement of the solution in the the-
orem can be relaxed to piecewise H 2(�i) by developing corresponding
interpolation theory in the Sobolev space. Such investigation is not straight-
forward and is under way. Once such theory is established, we believe that
the second order or nearly second order accuracy in the maximum norm
can also be proved.

3.4 A numerical example for the conforming IFE method

We present some numerical results for the same boundary value problem as
in Sec. 2.5. We also report the error of the interpolation function that is very
important for the finite element theory, and is useful in deriving the error
estimate for the maximum norm.
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Fig. 3.5. Plot of the computed solution with M = 64, α = 3, β+ = 50, β− = 1. The
parameters are chosen to illustrate the fact that the solution u(x, y) belongs to H 1

0 (�) but
is not in H 2

0 (�). However, the solution is piecewise smooth
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Fig. 3.6. The interpolation errors in the maximum norm versus the mesh size h for con-
forming basis functions in log − log scale with r0 = π/6.28, β− = 1, and β+ = 1000.
(a): The linear regression analysis gives ||u − uI ||∞ ≈ 3.22816h2.06743; (b): The error
in the partial derivative ∂u/∂x excluding the region

∑
Tr . The linear regression analysis

gives || ∂u
∂x

− ∂uI
∂x

||∞,
∑
T \Tr ≈ 2.89806h0.96056

Fig. 3.6 (a) plots the errors between the exact solution and its interpo-
lation functions in the conforming IFE space Sh(�) with the jump ratio
ρ = β−/β+ = 1 : 1000 and various partition size h. Fig. 3.6 (b) is the
plot of the error in the x partial derivative of the interpolation function. We
obtained similar result with other ratios and partial derivatives. Thus, this ex-
ample confirmed our error analysis for the interpolation function. Note that
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Fig. 3.7. Errors of finite element solutions obtained from the conforming basis function in
the maximum norm versus the mesh size h in log − log scale with r0 = π/6.28. (a): β− =
1, β+ = 1000. The linear regression analysis gives ||u − uh||∞ ≈ 6.85126h2.01002; (b):
β− = 1000, β− = 1. The linear regression analysis gives ||u− uh||∞ ≈ 5.65703h2.01542

the magnitude of the interpolation error is about 10−4 for the solution and
10−2 for the x partial derivate in a typical 160 by 160 grid.

Fig. 3.7 plots the errors in the maximum norm of the conforming IFE
solutions uh from Sh(�) with various h for two different ratios. The linear
regression analysis shows that data in Fig. 3.7 obey

||u− uh||∞ ≈ 6.85126h2.01002, ρ = 1 : 1000,

||u− uh||∞ ≈ 5.65703h2.01542, ρ = 1000 : 1,

which suggest that the conforming IFE finite element solution has a second
order convergence rate in the maximum norm.

3.4.1 A comparison with the FEM method with added nodes. As suggested
by several colleagues and other investigators (including one of the referee
of this paper), we have tested a slightly different method. We consider the
finite element method based on a triangulation in which most of the trian-
gles are uniform right triangles from a Cartesian grid. In the neighborhood
of the interface, we add some new nodal points at the intersections of the
interface and the edges of the uniform Cartesian right triangles. Specifically,
this triangulation is generated as follows:

1. We first generate a Cartesian triangulation composed of the right triangles
over �.

2. We keep all the elements over the non-interface triangles unchanged.
3. For each interface triangle, we break it into three small triangles in the

same way as we did in step P4 in Section 3.1, see also Fig.3.1. Therefore
the break-up satisfies the same maximum angle condition as we did earlier
for our conforming IFE method.



94 Z. Li et al.

The standard Galerkin finite element method with the usual linear basis func-
tions is then applied to this triangulation. We will call this method the finite
element method using a Cartesian grid with added nodes, or FEMCGAN, for
short. The computational complexity of this approach is about the same as
our conforming finite element method. Both methods are new, some futures
of them are summarized below:

• The convergence result of Theorem 3.3 is also valid for the FEMCGAN
method. However, this is guaranteed only with the choice of the maximum
angles proposed in this paper.

• In the FEMCGAN approach, all the intersections between the interface
and the edges of Cartesian triangles are the added nodal points. However,
in our IFE methods, either non-conforming or conforming, those inter-
sections are not part of the nodal points. Therefore, the linear system of
equation from our approach will be orderO(1/h) smaller compared with
that from the FEMCGAN approach. More importantly, many linear solv-
ers based on Cartesian grids such as MGD9V [10] can be applied to our
non-conforming or conforming IFE methods but not to the FEMCGAN
approach. In many applications, we are only interested in the solution at
the grid points, there is no need to recover the solution at the points of the
intersections. The Cartesian grid methods of this paper are developed for
this purpose.

• The FEMCGAN space contains the IFE space, so we can expect the en-
ergy norm of the error is smaller than that obtained from the IFE method,
see Table 3.1.

• The FEMCGAN method is a little bit easier to implement compared with
the conforming IFE method.

In Table 3.1, we show the results of the errors inL2(�) and energy norms
of the FEMCGAN approach and the IFE method. The problem set-up is the
same as the example in Section 2.5 and in Section 3.4. The ratio in the table
is the ratio of two consecutive errors. If the error is proportional to h, then the
ratio should approach number two. If the error is proportional to h2, then the
ratio should approach number four. We can see clearly from the table that the
two new methods are comparable. Both methods give second order accurate
results in the L2(�) norm, first order accuracy in the energy norm.

The grid refinement analysis from a few selected grids does not provide
a good indication for the convergence in the L∞ norm because the errors in
the L∞ norm computed from both methods oscillate as explained in [31].
Therefore, we use the linear regression analysis to present the convergence
in L∞ norm for both methods with 10 grid increment. For the FEMCGAN
method, we have following results:
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Table 3.1. Comparisons of errors of the FEMCGAN and the IFE methods, where e0(h)

and ea(h) are errors of a numerical solution in the L2(�) and energy norms respective-
ly. The example is the same as the example in Section 2.5 for the case when β− = 1,
β+ = 1000.

The FEMCGAN method

h e0(h) ratio ea(h) ratio

1/20 5.5479 × 10−4 3.0085 × 10−2

1/40 1.4040 × 10−4 3.9516 1.5376 × 10−2 1.9566
1/80 3.5525 × 10−5 3.9520 7.7803 × 10−3 1.9762
1/160 9.1518 × 10−6 3.8817 3.9160 × 10−3 1.9868

The conforming IFE method

1/20 7.7184 × 10−4 3.4742 × 10−2

1/40 1.9050 × 10−4 4.0516 1.7136 × 10−2 2.0275
1/80 4.5729 × 10−5 4.1659 8.4975 × 10−3 2.0165
1/160 1.0596 × 10−5 4.3158 4.1195 × 10−3 2.0627

error in L2 norm ≈ 0.20822 h1.98032,

error in H 1 norm ≈ 0.58835 h0.99016,

error in energy norm ≈ 0.60372 h0.99231,

error in L∞ norm ≈ 0.14247 h1.85615,

and for the conforming IFE method, the results are

error in L2 norm ≈ 0.77413 h2.21055,

error in H 1 norm ≈ 0.66915 h1.01420,

error in energy norm ≈ 0.92382 h1.06659,

error in L∞ norm ≈ 1.70096 h2.01002.

Again, these numerical results indicate that these two methods perform com-
parably.

4 Conclusions

In this paper, we have developed two immersed finite element (IFE) spaces
for interface problems using Cartesian grids. Error estimates are obtained
for the interpolation functions in both conforming and non-conforming new
finite element spaces. The non-conforming IFE method behaves better than
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that of the standard linear finite element solutions because the method pro-
duces sharp solutions near or on the interfaces. In addition, this method is
very simple, and can be extended to three dimensions easily. By extending
the support of some basis functions, we are able to construct a conforming
IFE space. The Galerkin finite element method based on the conforming IFE
space has been proved to be convergent for piecewise solutions that may not
be in H 2(�). A modification to the conforming finite elements with added
nodes on the interface is also discussed and tested.

The ideas of this paper can be modified for almost any arbitrary grids
that are not necessarily aligned with interfaces. The methods based on the
Cartesian grids can be easily used as finite difference methods. Thus they
can be incorporated into other Cartesian grids based methods and packag-
es, for examples, LeVeque’s Clawpack and Berger’s AMR package, to solve
interface problems.
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