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1. INTRODUCTION

In this article, we discuss the approximation capability of an immersed finite element (IFE)
space formed by first degree polynomials for the following interface problem:

-V - (BVu) =f, (x,y) € Q, (1.1)
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FIG. 1. A sketch of the domain for the interface problem.

ulyo = g. (1.2)

together with the jump conditions on the interface I':
[ullr=0, (1.3)

[Bu,]|r = 0. (1.4)

Here, see the sketch in Fig. 1, ) C R? is a convex polygonal domain, the interface I' is a curve
separating () into two subdomains ()™, Q" such that Q@ = Q= U Q% U T, and the coefficient
B(x, y) is a piecewise constant function defined by

B, (yeQ,
Blx, y) = {B+’ (x,y) € Ot

This IFE space was introduced in [1], which reported some preliminary analysis and numerical
results. The interface problem considered here appears in many engineering and science
applications; see the related references in [1] and [2, 3]. This IFE space can also be used to
handle interface problems with nonhomogeneous interface jump conditions [with a nonzero
constant value on the right hand of (1.3) and/or (1.4)] by either simply modifying the IFE space
[see the Remark after (2.5)], or reducing the interface problem to that with homogeneous
interface jump conditions via the usual homogenization technique based on a change of variable.
How to extend this IFE space for handling other cases, such as more general nonhomogeneous
interface jump conditions and piecewise smooth instead of piecewise constant coefficient
function 3, leads to interesting future research projects.

It is well known [see [4, 5] and the references therein] that the standard Galerkin method with
linear finite elements can be used to solve such elliptic interface problems. However, to achieve
the optimal O(h?) accuracy in the numerical solutions, triangles are required to be aligned with
the interface, i.e., the interface is allowed to pass a triangle only through its vertices. This
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restriction will obviously prevent the Galerkin method with linear finite elements from working
efficiently for those applications in which an interface problem similar to the one defined by
(1.1)=(1.4) has to be solved repeatedly, each time with a different interface I', because the
partition has to be formed over and over again because of the variation (either the shape or the
position) of I'. In addition, many applications in which structured (such as Cartesian) partitions
are preferred may also prevent the use of the standard finite element method if the involved
problems have nontrivial interfaces.

The basic idea of the immersed finite elements is to form the partition 7, independent of
interface I" so that partitions with simple and efficient structures, such as a Cartesian partition,
can be used to solve an interface problem with a rather complicated or varying interface. We
only consider partitions formed by triangles here, partitions formed by quadrilateral elements
were discussed in [6]. Without loss of generality, we assume that the triangles in the partition
have the following features:

(H,): If T meets one edge of a triangle at more than two points, then this edge is part of I.

(H,): If T meets a triangle at two points, then these two points must be on different edges of
this triangle.

Obviously, triangles in a partition can be separated into two classes:

e Noninterface triangle: The interface I' either does not intersect with this triangle, or it
intersects with this triangle but does not separate its interior into two nontrivial subsets.
e Interface triangle: The interface I" cuts through its interior.

In a noninterface triangle, we use the standard linear polynomials as local nodal basis functions.
However, in an interface triangle, we use piecewise linear polynomials defined in the two
subsets formed by the interface in such a way that the functions satisfy the jump conditions
(either exactly or approximately) on the interface and retain specified values at the vertices of
the interface triangle. The idea here is similar to that used for the Hsieh-Clough-Tocher macro
C' element [7] where each basis function consists of three cubic polynomials on the sub-
triangles formed by connecting the vertices and the center of gravity so that the required
continuity can be satisfied. The immersed finite element space defined over the whole domain
Q) with a partition chosen can then be constructed through the standard procedure. We refer the
readers to [1, 8—17] for more background materials about immersed interface and immersed
finite element methods as well as their applications. The main effort of this article is to
investigate the approximation capability of the IFE space introduced in [1] to treat the interface
problems, which is a critical step towards analyzing errors of a finite element (volume) solution
to an interface problem based on this IFE space. Numerical examples generated by the finite
element method based on this IFE space are also provided, but the related error estimation will
be given in a forthcoming article.

This article is organized as follows. In Section 2, we introduce the IFE space and describe
basic properties of its local nodal basis functions. In Section 3, we use the technique based on
the multi-point Taylor expansion, see [18, 19], to derive error estimates for the interpolation in
the IFE space of the functions in Sobolev spaces. Several arguments used in the error estimation
here are inspired by [5]. In Section 4, we present several numerical examples generated by the
related IFE method.

Here are some conventions used in this article. For any subset T of (), we let

Tr=TNQ, s=-—, +.
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FIG. 2. A typical interface triangle AABC. The curve between D and E is part of the interface I'.

For any function f(x, y) defined in T C (), we can restrict it to 7%, s = —, + to obtain two
functions as

Fxy) =fxy), if(,y ET,s=—, +.

We use DE to denote the line segment between two points D, E € (). For any curve I', we use
nr to denote its unit normal vector pointing to a particular side of I'. For any measurable subset
A of Q, we use |A| to denote its measure. In deriving estimates, we often use C to represent a
generic constant whose value might be different from line to line. Also, in the discussion below
we add assumptions as we progress, and all the assumptions made before any theorem or lemma
are assumed to hold for that statement.

2. THE IMMERSED FINITE ELEMENT SPACE

In this section, we first introduce the local nodal IFE basis functions and then use them to define
the IFE space over the whole domain with a partition chosen. We will also describe basic
features of these basis functions.

For a typical triangle T € 7, where 7, is a typical family of partitions of domain (), we use
A= (x,y)", B = (x5, y,)", C = (x3, y;)" to denote its vertices, and uses D = (xp, yp)" and
E = (xz yp)" to denote its interface points on the edges if T is an interface triangle (see the
sketch in Fig. 2.)

Our main concern is the finite element functions in an interface triangle T € J,,. We follow
an idea similar to that for the Hsieh-Clough-Tocher macro C' element [7] in which piecewise
polynomials are used in a triangle to maintain certain desirable features. For our interface
problem, we obviously would like the finite element functions to satisfy the jump conditions
across the interface. Because the interface I" separates an interface triangle 7 into two subsets
T~ and T™, we naturally can try to form a finite element function piecewise by two first-degree
polynomials defined in 7~ and T, respectively. Note that each polynomial of degree one has
three freedoms (coefficients). The values of the finite element function at the vertices of T
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provide three restrictions. The normal derivative jump condition on DE provides another. Then
we can have two more restrictions by requiring the continuity of the finite element function at
interface points D and E. Intuitively, these six conditions can yield the desired piecewise linear
polynomial in an interface triangle. This idea leads us to consider functions defined as follows:

¢7(x’ }’) = ax + bly + Crs (X, )’) € Tﬁa
¢ (x, y) = axx + by + ¢, (x,y) ET",
¢ ¥ =147 (D) = &7 (D), & (E) = ¢"(E), (2.5)

(B"Vé™ — B"Vd™) -n(DE) = 0,
where n(DE) is the unit vector perpendicular to the line DE.
Remark 2.1. The last three equations can be modified accordingly to generate the IFE space
that can be used to handle an interface problem with (nonzero) constant interface jump

conditions.
Now, we let ¢,(X) be the piecewise linear function described by (2.5) such that

L ifi=]
il y) = {0, ifi# ),

for 1 =i, j = 3. Then, we let S,(T) be the linear space of all the functions defined by (2.5), and
call it the immersed finite element (IFE) space on an interface triangle 7.
As usual, we need only define the nodal IFE basis functions in the reference triangle 7" with

vertices A, B, and C:
- (0 . (0 . (1
A= 1) B = 0/ C = 0/

The interface triangle T is related to the reference triangle by the usual affine mapping:

A A X A X
F(X) =B+ MX, Xz(), X=<A>.
y y

Under this mapping, D becomes D = (0, $,)7, E becomes £ = (1 — §,, $,)7 with 0 < 9, §, <
1, and

d(X) = $(F7'(X)) = $(X). (2.6)

In the reference triangle T, the basis function ¢ has the following format:

o [PTX) = dT(A) +ak+ a)($ - 1), X e i,
o) = {Mo = $B) + ($(C) — d(B): + by, KeT 2.7)

The continuity of ¢ at D and £ leads to

a($, — 1) = by, = $(B) — d(A), (2.8)
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a\(1 = $5) + ax(F = 1) = bor = $(B) — $(A) + ($(C) — $(B)(1 —5). (2.9)
The flux jump condition (B"V¢ ~ — B*V¢ ) - n(DE) = 0 becomes
(B7Vd™ — BV4") - H(DE) = 0. with A(DE) = M~'n(DE) ~ B) = ;.
2
which leads to
a\fiy + ait, — piyb, = p(<f>,(é) - (f)i(é))ﬁl’ (2.10)
with
p=B/B"

Note that vector (a, —1)7 is parallel to the normal vector of the line segment DE with

We then let (&, —1) be the vector parallel to n(DE) and assume that

(H3): @@ = 0 and @ = O(a) when |a| — .
It is important to notice that assumption (H5) above does cover many typical situations including
perhaps the most significant application of the IFE space in which a Cartesian partition 7, is
used. In this case, the affine transformation can be chosen such that @ = & and the assumption
(H5) can then be satisfied naturally.

Theorem 2.1. The function ¢(x, y) defined by (2.5) in an interface triangle T is uniquely
decided by its values at the three vertices of T.

Proof. We carry out the proof only for ¢. Equations (2.8), (2.9), and (2.10) form a linear
system about a,, a,, and b, whose matrix is

A= 1_)72 )72_1 _)72

A

& -1 p

(2.11)

0  yi—1 —yﬁ>

and the right hand side of this system is

o o (Igz(é)A _A(/{)I-(A)A .
r= d)i(B) - d’i(A)A"' A(d)l(cz _A d’i(B))(l - )A’z) .
P(d’i(c) - d’i(B))d
Then

det(sd) = (1 — )@, + da + p(1 — $,)(1 + @)
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_ R R R v+«
=1 —=P)| P +aa+p 1_1+a 1+«

=(1- )72)(}71 + aa + P(l - )A’l))

= (1 — $,)(&a + min{l, p}) >0

because 0 = ¥, = 1 and 0 = §, < 1. This implies that this linear system has a unique solution,

and the function ¢ or ¢ is uniquely determined by the jump conditions and its values at vertices

of the triangle. L]
We would like to make the following remarks about the IFE space S,(7).

e The proof of Theorem 2.1 describes a way to construct the nodal basis functions in an
interface triangle, and ¢(X), i = 1, 2, 3 form a basis for S,(T).

e From the proof we can see that ¢ ~(x,y) = ¢ " (x, y) when p = 1, i.e., when the coefficient
does not have a jump, the functions in S,(7") become the usual linear polynomials. In this
case, S,(T) reduces to the standard linear finite element space.

e When I' N T'is a straight line, the function ¢ (x, y) defined by (2.5) is continuous in 7 and
therefore is in H (7).

We now turn to the discussion on the properties of the IFE functions.

Theorem 2.2. For an interface triangle T, every function ¢ € S,(T) satisfies the flux jump
condition on I' N T exactly in the following weak sense:

J (BV¢™ —B'Véd") nrds =0.
rnr

Proof. For any ¢ € S,(T), it is obvious that ¢* € H AT%), s = —, +. Also, because ¢ is
a piecewise linear polynomial satisfying (2.5), Green’s formula leads to

J (B"Ve = B'Ve") nrds = —J BV —B'V") npds = 0.
rnr

DE

Theorem 2.3. For the three functions ¢(X), i = 1, 2, 3 defined above, we have

d1(X) + $o(X) + d3(X) = 1.

Proof. Again, we need only show that this is true for ¢, whose parameters in (2.7) are a,,,
ay;, by, 1 =1, 2, 3. Using the linear system determining the parameters a,, a,, b, in the proof
of the Theorem 2.1, we have
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a(l —p) i1
P+ aa+p(l =y’ ’
—(1 +aa)p+ (1 +a)p— 1y, )
a i = N ~ A s -4
: $i+ G+ p(1 = §)
pta(=1+p+ap)—(1+a)p— 1) =3
\ i+ éa+p(l —3) ' ’
( aa + p
- - — i=1,
¥i+aa+p(l =)
—(I + aa)p + &(1 + &)(p — Dy, )
a i = A A A > &
’ i+ do+ p(1 = ¥)
a1+ p)(at(1+a),) .
\ P+ o+ p(l = 9) ’
' da + 1
- - — i=1,
P+ da+p(l =)
) —1—=a&(=1+p+ap) +al+ a)(p— 1) )
e i+ éa+p(l = 3) ' '
AUt Q-1+ (-1 +5) s
\ Y1+ da+ p(1 —9)) ’ .
A simple calculation can show that
aj +ap+a;=0, j=1,2,
by + by + by3 =0,
which together with (2.7) leads to the result of this lemma. m

In the discussion below, we need another assumption on the partition J .
(H,): The family of partitions 7, with 4 > 0 is regular. (See Definition 3.4.1 of [20].)

Theorem 2.4. There exists a constant C such that for any interface triangle T € T, and X €
T we have

lp(X)| = C, (2.12)

IVe:(X)l| = Ch™". (2.13)

Proof. Obviously, (2.12) follows from the boundedness of the parameters a,, a,, b, in (2.7).
From the proof of the previous lemma, we can see that these coefficients are linear combinations

of the following functions:

1 o aa
)71‘*'6‘0“"[3(1_)71), yi+aa+p(l —y)’ }A’l"'da"'P(l_)A’l).

Under our assumptions, it is easy to see that these functions of « and & are bounded. This
implies the boundedness of ¢;; hence the boundedness of ¢, i = 1, 2, 3. As for the second
inequality, note that
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v = (¢ (é PP xer

and Vp; = M~ "V ,. Because the partition is regular, we have [M 7| = Ch™'. Because ||V,
is bounded, we finally have

IVl = cn™. -

Now we use the partition J,, to define an immersed finite element (IFE) space S,({2). We first
define a piecewise linear nodal basis function ¢ (x, y) for each node (x,, yN) of J,, such that
¢ (xy, yy) = 1 but zero at other nodes, and ¢|, € S,(T) for any triangle T € 7. Here S,(T) is
the usual space of linear polynomials when T is a noninterface triangle, or the 1mmersed finite
element space on 7 introduced above when T is an interface triangle. Then we define S,(Q)) as
the span of these nodal basis functions, and it is easy to see that S,({2) has the following
properties:

e For a partition 7, the IFE space S,({2) has the same number of nodal basis functions as
that formed by the usual linear polynomials.

e For a partition 7, fine enough, most of its triangles are noninterface triangles, and most of
the nodal basis functions of the IFE space S,({)) are just the usual linear nodal basis
functions except for few nodes in the vicinity of the interface I

e For any ¢ € S,({)), we have

dloe € H'(\Y), (2.14)

where () is the union of interface triangles.

3. ERROR ESTIMATES FOR INTERPOLATION APPROXIMATIONS

For any T C (), we let

PW)(T) = {u|u

rEWNT), s = —, +}, p=1,m=0,1,2,

du
PH?(T) = {u e C(T), ulr € HA(T), s = —, +, [B 611] =0 onI'N T},

r

ou
PC(T) = {u € C(T), ulp € C"(T), s = —, +, [B an] =0 on F}-
r

As usual, we define PH"(T) = PW5(T). Obviously, we have PCm,(T) C PHfm(T). Also, for any
function u € PW;X(T), we let

||u||mpT ||u||mpT + ||u||mp T+ (315)

where ||, , 7 is the norm of W)(T®), s = —, +. Seminorms of PW,(T) can be defined
accordingly by
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lulpr =l + luls e (3.16)
When p = 2, we will drop p from the notation of the norms, e.g., we will use

lellr = lltll .-

Similar definitions can be introduced for PH"(Q)), PHz ().

In this section, we assume that the interface curve I" and the partition J, chosen satisfy the
following assumptions:

(Hs): The interface curve I is defined by a piecewise C? function, and the partition 7, is
formed such that the subset of I' in any interface triangle is C2.

(Hy): The interface I is smooth enough so that PC;,(T) is dense in PH;,(T) for any interface
triangle T of 7.
The results of [21, 22] on the transmission problems show that (Hg) will hold if I is sufficiently
smooth.

For a function u € PH;,(T), T € J,, we let I, 7u € S,(T) be its interpolant such that
I, 7u(X) = u(X) when X is a vertex of T. For an interface triangle T with vertices A, B, C, we
have

L u(X) = u(A)$(X) + u(B)dy(X) + u(C)ds(X).

Accordingly, for a function u € PH:

=), we let Lu € S,(Q) be its interpolation such that
Luly = I, {(u]) for any T € J,. The purpose of this section is to derive error estimates for the
interpolation of u € PH? ().

Recall that the error estimate of [,u in any noninterface triangle 7" is well known; see for

example [20]:
|12t = wllo.r + AllTw = wlly 7 = Ch?ully.r.

Therefore, we focus the following discussion on interface triangles. For an arbitrary interface
triangle (see Fig. 3) we let T* be the subset in 7 enclosed by the interface I" and the line segment
DE, and let

T# = T\T*, s=—, +.

For any point A € T, we let A | be the orthogonal projection of A onto DE (see Fig. 3). We will
use the following four matrices:

A+ oA (p = Dn(A)n,(A)
N@) = (<p — D (A)nyA)  n(A) + pn,(A)? )

o [ AP+ pn(A)? (p — Dn(A)n,(A)
N = ((ﬁ - Dn(A)n(A)  n(A)* + pn,(A)? )
_ n, +pn; (p— Dnn,
Npe = ((p — D, n;+ pis )

=}
I
|
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B C

FIG. 3. An interface triangle with no obscure point. A point X € 7% is connected to the three vertices
by line segments.

DE (p— Dnn, n;+ pny )

where n(A) = (n,(A), n(A))" is the unit normal vector of I at A, and n(DE) = (i,, i,)" is the
unit normal vector of DE. These matrices relate the left and right limit values of the gradient of
a function at the point A of interface I" or a point on the line segment DE. For example, we can
easily verify that, for any function u(x, y) satisfying the interface jump conditions (1.3) and
(1.4), we have

Vu*(A) = N (A)Vu (A).
Because I' N Tis a C? curve, when the partition J, is fine enough, we can introduce a local

coordinate system centered at point D with one axis in the direction of DE. For any point (x, y)”,
let (¢, m) be its coordinates in this local coordinate system. Then we have

X Xp cos(6pp) —sin((-)DE))<§>
= + . .
(y) (yD> ( sin(0pr)  cos(Opg) /\m)° (.17)
where (x5, y,)" is the coordinates of point D and 6, is the angle between DE and the x axis.
As in [23], we can assume that I has the following equation in this local system:

DE

n= (&), ¢elo, 1. (3.18)
with
b (&)| = Ch?, (3.19)

[$' (&) = Ch. (3.20)
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From now on, if necessary, for any point P, we will use

) ana (5]

to denote its coordinates in the x — y and § — 7 systems, respectively.

Lemma 3.1. There exist constants C > 0 and hy > 0 such that for all 0 = h = hy and any
point A € ' N T, we have

1A —A,| = ch. (3.21)
No— N(A)|=Ch, s=-—,+, (3.22)
DE

where T € I, is an arbitrary interface element.
Proof. We can prove these only in the local coordinate system because the transformation
(3.17) preserves the vector length. In the local system, we have

) a9

Hence (3.21) is just the consequence of (3.19). Also, we have

— (0 . 1 —¢'(9)
DE) = s A)=————— .
Il( ) <1> ll( ) \1 +(¢,(§))2< 1 )
Then, by (3.20), we have
In(DE) — n(A)| = Ch,

which together with definition of N5z and N S(A), s = —, +, lead to (3.22). u

We call a point X = (x, y)” in an interface triangle T € J, an obscure point if one of the three
line segments passing through X and the vertices of 7 intersects the interface more than once.
Without loss of generality, we discuss an interface triangle that does not contain any obscure
point because the arguments used below can be readily extended to handle interface triangles
with obscure points.

For any function u € PH,(T), the error estimates for I, 7u is obtained by estimates over the
three subsets 7%, T#*, and T* of T. The key issue is to establish suitable multipoint Taylor
expansions for functions in S,(7) and PC(T).

We start with the estimation on 7% . Let X = (x, y)" be a point in 7%~ Without loss of
generality, we can assume that line segments XB and XC do not intersect with the interface and
DE, whereas line segment XA meets I' and DE at A and A, respectively (see Fig. 3). Also, we
assume that

A=A+ -DX=(x 9"
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A=A+ (1 -0X=(x,y"

Lemma 3.2.  Given a real number r, a two-dimensional vector q, a point X € T* ", and a point
XpE € DE, there exits a function v € S,(T) such that v(X) = r, Vo(X) = q, and

0=q-((4-X)h(X) + (B~ X)(X) + (C — X)b5(X))
+ (N = D= (A = X)(1 = D(X) + N5z — Dg - (A — Xpp)di(X).  (3.23)

Proof. Let

v (Y), YET,
v(¥) = {v*(y), yerTt

be a function in S,(T). Because v(Y) is piecewise linear, v(X) = r, Vu(X) = q uniquely
determine v (Y). Then the interface conditions v (D) = »*(D), v (E) = v'(E), and
B-(0v /ongg) = BT (0v /Ingz) uniquely determine v (Y).

Because v (Y) is a linear polynomial, we have

v(B) =v (B)=r+q-(B—-X),
v(C)=v (C)=r+gq-(C—X).

Similarly, because v*(Y) is a linear polynomial and the jump conditions satisfied by v(Y) give
Vo' (Y) = N5zVv (Y), we have

v(A)

v (A) = v" (Xpp) + Vo' (Xpza) * (A — X5p)

= v (Xpp) + NpgVv (Xpp) * (A — Xpp)

v (X) + q - (Xpz — X) + Nyq* (A — Xpp)

r+q-(A=X)+ Ny — D (A= A) + Nz — g~ (A — Xpp)

=r+q-A=X)+(Ngz —Dq-(A—=X)1 — 1)+ (Noz — q* (A — Xpp).
Then, from these expansions of v(Y) at the vertices of 7, we have

v(X) =1, 70(X) = v(A)d(X) + v(B)ho(X) + v(C)Ps(X)

r 2 60 + q (A= X)$(X) + (B = X)s(X) + (C = X)bs(X))

i=1
+(Npz = D~ (A = X)(1 = Dy (X) + Nz = D - (A = Xp) i (X),
and the proof is finished because v(X) = r and Z;_; ¢;(X) = 1. "

Lemma 3.3. For any u € PC (T), X € T*", and X5 € DE we have
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L u(X) = u(X) = (N"(A) = Npp) Vu(X) - (A = X) b, (X)(1 — 1) = (N = DVu(X)

~ _ YdVu~
(A~ Xpp) i (X) + (1= DV (D)~ 1) f LA (- DX) - (4~ X)di 6,(X)

2

4 d*u ! d*u
+J (1 - I)W(tA + (1 = nX)dt ¢,(X) +J (1 - t)W(IA + (1 = 0)X)dt ¢,(X)

2

! d*u ! d*u
+ J (1 -1 i (tB+ (1 — 1)X)dt ¢,(X) + J (1 -1 W(IC + (1 — )X)dr d+(X).
(3.24)

Proof. Since > u(tB + (1 — £)X) is a C? function, we have

Vdu
u(B) = u(X) + j E(IB + (1 — )X)drt

2

1
d
=u(X)+ VulX)-(B—X) + J (1 =1 dTL; (tB+ (1 —1)X)dt. (3.25)
0
Similarly, we have

"du
u(C) =u(X) + J ar (tC + (1 — ) X)dt

2

=u(X) + Vu(X) - (C — X) + f (1-1 %’: (tC + (1 — 1)X)dt. (3.26)

Using the jump condition across the interface, we have

(A + pn (A (p— Dn(A)ny(A)

W@ = (G Bty T =V BT

Then, we have

Vdu
u(A) = u(X) + J E(IA + (1 — 0)X)dt

du "du
=u(X) + ar (tA + (1 — nX)dt + . ar (tA + (1 — n)X)dt
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=ulX) —Vu (A)-(A—=X)(1 — 1)+ Vu(X) - (A — X)

! du N
+f(1 — t)?(tA + (1 —0X)dt + Vu"(A) - (A — X)(1 — 1)

! d*u
+J (1- I)E(IA + (1 — NX)dt
=uX)+VuX)-A—-X)+ (N (A) —DVu (A)- (4 —X)(1 — 1)
! d*u ! du
+f(1 — I)W(IA + (1 —0)X)dt + f 1-1 a7 A+ (1 — HX)dt = u(X)
+VuX)-(A—X)+ N (A) —DVuX)- (A —X)(1 — 1)

+(1 =N (A) — I)J % (tA+ (1 —0X) (A —x)dt

! d*u ! d*u
+ | (1 - t)?(tA + (1 = 0)X)dr + ~ 1 - I)E(IA + (1 — HX)dr. (3.27)
Then
L u(X) = u(A)d(X) + u(B)dr(X) + u(C) ds(X)

= u(X) X, ddX) + Vu(X) - (A — X)b,(X) + (B — X)d5(X)

i=1

+(C = X) (X)) + (N (A) = DVu (X) - (A = X)(1 — Ny (X)

_ YdVum
+(1 - DN (A) - I)j g AT =0X) - (A = X)dt di(X)
t d2M
+f(1 - t)W(IA + (1 — HX)dr $,(X)
! du
+f (1 - I)W(IA + (1 — HX)dt $(X)

! du
+f (1— t)W(tB + (1 = X)dt $»(X)
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! du
+J (1 - I)W(IC + (1 — HX)dt Pp(X). (3.28)

Now let v € S,(T) be such that

JHY),  YET,
v(¥) = {v’(Y), YET

with first degree polynomials v~ (Y), v*(Y) determined by

v (X)=u (X), Vo (X) = Vu (X),
. dv(A) o v (A)
on(DE) " on(DE)

v'(D)=v (D), v'(E)=v(E), B

Then by Lemma 3.2, we have

u(X) = u(X) 2 ddX) + Vu(X) - (A = X)d(X) + (B — X)s(X) + (C — X)b5(X))

i=1

+ (Npg = DVu(X) - (A = X)(1 = 1)y(X) + (N — DVu(X) - (A = Xpp)$1(X).  (3.30)
Finally, (3.24) follows from (3.28) and (3.30). u

Theorem 3.1. There exists a constant C such that
||Ih,7"u - u”O,T*— = Ch2||u||2‘7- (331)

for any u € PH:,(T), where T is an arbitrary interface triangle.

Proof. Because of (H), we need only show that (3.31) is true for any u € PCf,,,( T).

We proceed by estimating the L? norms for each term Q,, i = 1,2, ..., 7 on the righthand
side of (3.24). By Lemma 3.1 and Theorem 2.4, we have the following estimate for the L? norms
of the first two terms by letting X5z = A |

[1Qillo.r + 1Qallo.r+ = [(N"(A) = Npp) Vu(X) - (A — X) 1 (X)(1 — D)lo, 7+
+ | (Nyz = DV (X) - (A — A )Xo = Ch|ul)y - = Chfue] 7o

For the third term, we first note that

dVu
dt

A+ (1 —-0X) (A—X)=u, & n)E—x)?
+ 2uy (& ME —)(F — y) + u, (&, MG — y)°,

withé§ =t + (1 — Hx, n =1ty + (1 — £)y. Then,
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2

0i=C(1 - i)2< J [, (& M(E = x)* + 2u, (& )& —x)F —y) + u, (& n)(F — y)lde

2

= Ch'(1 - i)ZU [un (& m) + 2u,(E m) + u, (& m)lde

1
= Ch*(1 - ;)zj [z (& ) + uiy (& m) + uiy (&, )] dt,
0
where C stands for a generic constant whose value changes from line to line. Therefore,

||Q3||(2)T" = j Q%dX
T

= Ch*(1 —1)° J f [ur (& m) + up (€, m) + ujy (& m)] didX

= Yo

= ch* f [up (&, m) + ul (6, m) + ul (€ m)]dX

= Ch'llull; 1.
or

Q307+~ = Ch?||ul], 7.

For the fourth term, we have

o CU (1= DLl & m)(xa = 2)” + 2u,(& m) (x4 = X) 04 = ¥)
+ uyy(g’ n)(yA - y)z] dr’

2

= Ch“(J (I = Dlue(& m) + 2u,(& m) + u, (& m)ldt

0

= Ch* fj (1 = 0)[ur (& m) + ui (& m) + us (€ m)] dt,

withé=m, + (1 —Dx,m=1ty, + (1 — Hy, A = (x4, yA)T. Therefore,
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10417 = Ch“J' J (1 = 0[ui (& m) + wi (& m) + w3\ (€ m)] drdX

- Yo
= Ch“f [z (&, m) + ub (& m) + ul (& m)] dX = Ch*|ul,,-
.

or

1Qull7-- = Ch*|ullo.r-

Similarly, we can show that

”Qs - = Ch2||u||2,r+,
[Q6llr+- = Ch*lulo.r-,

||Q7 e = Chz”””z,rf-

Finally, (3.31) follows from the estimates for Q;, i = 1, 2,..., 7 above. u
We now turn to the estimate of the H' norm on 7# . In the following two lemmas, we let
I,, I,, and I5 be the integral terms in the expansions (3.27), (3.25), and (3.26), respectively.

Lemma 3.4. For any u € PC3(T), X € T*", and Xpp € DE, we have

int!

00 =) (- a0
) 9, (X ob, 0y, 0ds
- W = VUG = ) "o (150 1, 5 00

(3.32)

Proof. We give a proof only for the case in which s = x. The case in which s = y can be
carried out similarly. From (3.24) in Lemma 3.3, we have

(L, u(X) — u(X 9 X - A
(L. ru(X) — u( )):a[(Nf(A)_Nﬁ)Vu(X)(A—A)]dh(x)

ax
. - _ 0d(X) 0 _ _
+ (V) = N Vu(X)(A = &) = =5 = = [(Ngz = DVu(X)(A ~ X52) 11(X)
ddi(X)

B N al, al, al,
— (N = DVu(X) (4 = Xpp) + (ax $iX) + 52 o) + 5 4>3<X>)

ax

+(119j;‘+12(w2 a¢>3>.

By + I3¥ (3.33)

From the expansions (3.27), (3.25), and (3.26), we have



356 LI ET AL.

9*u(X) % u(X) 9 o _ o,

OZT(XA—X)JF axdy (yA_y)—’_a[(N (A)—I)VM(X)(A—A)]JFE,
0%u(X) 0*u(X) 612

0= % (xp — x) 8u8y (yg—y) +
*u(X 9 al,

0="00 oy az(ay) (o= + 50

Then
1,

dJ
o &1+ ¢>2(X)+ qbs(X) =[p- (A= X)(X) + p- (B~ X)h(X)

0 - ~
+p(C=X)$(X)] = [V (A) = HVuX)(A = A)]$:(X),

where

9*u(X)
x>

P =1 0ux) |
dxdy

Let v(Y) € S,(T) be such that Vu(X) = p. Then by Lemma 3.2, we have

0=p-A-X)x) +p-(B—X)h(x) +p-(C—X)s(x)
+ (Npz = Dp - (A = A)py(X) + (N — Dp - (A — Xpp) 1 (X).

Hence
<;l>(X)+ ¢2(X)+ ¢3(X) (Npg = Dp * (A — A)(X)
+ (Npz — Dp - (A — Xpp) i (X) — a% [(N"(A) = DVuX)(A — X)]y(X),

and

AL, u(X) — u(X d _ . _
Bt =0 _ 2 (v (8) = N VulX) (A = )10 ()

<1>()

~ d -
+ (N"(A) = Npp) Vu(X)(A — A) ~ oy [Wop = DVu(X)(A = X5z) ], (X)

- . (X))
— (Npg = DVu(X)(A = Xpg) —5 —+ (Npz = 1)p
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B e,

FIG. 4. A point X € T*™ is connected to the three vertices by line segments.

S(A = D), (X) + (N —

i b,
(" ix

— (N = DVa(X)(A = Xpp) =3 =+ (N =

d
+ 1L, — ox + 13 ad)

Dp - (A = Xp)i(X)

Npp) Vu(X)(A — A) d)( )

) (N"(A) -

9, (X) Dp - (A —A)d,(X) + (N5 — Dp

R [ e A B U A
. 6.0
X (A~ Xpp)ld () = V() ~ N Va(0) 4 — A) 20
~ d 1X d 1 d 2 0 3
— (Npg — DVU(X)(A — X5p) il )+<1 a‘i+lz%+ *a(i)

Theorem 3.2. There exits a constant C such that

H a(Ih,Tu —u)

for any u € PH

= Chllull..r.

S=X,Y,
0,7%~

2 (T), where T is an arbitrary interface triangle.

357

d - ~
— o [V (A) = DVu(X)(A — A) ]y (X)

(3.34)

Proof. Because of (H,), we need only show that (3.34) is true for any u € PClm( T). The

result follows by letting X5z = A | in (3.32) and applying arguments similar to those used in the
proof of Theorem 3.1. Note that (2.13) in Theorem 2.4 has to be used here.

The estimation on 7™

Please see Fig. 4 for the notations involved. In particular, we let

B=1B+ (1 —1)X =

(X:B’ yB)T’

is rather similar. We state the results in the following four lemmas.
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B=1B+ (1 —15)X = (Xp ¥s)",

C= ~CC + (1 — ;C)X = (%, )7C)T,
C

;CC + (1 - ;C)X = (J_Cc, )_’C)T-

Lemma 3.5. Given a real number r, a two-dimensional vector q, a point X € T+*, and two
points Xpp.8 € DE, Xpp.c € DE, there exits a function v € S,(T) such that v(X) = r, Vo(X) =
q, and

0=q"(A—X)d(x) + (B = X)dy(x) + (C — X)s(x)) + Nz — )q * (B — Xpp.p) bs(X)
+ (Npz — DB — X)(1 = 75)d(X) + (Npz — Dq* (C — Xpp.0)bs(X)
+ (Npz — Dq(C = X)(1 — i) s(X). (3.35)

Lemma 3.6. For any u € PCXT), X € T*", we have

Lu(X) = UX) = (N*(B) = Npp) Vu" (X) - (B = X)(1 = 1) $,(X) + (N*(C)
= NppVu' (X) - (€ = X)(1 = i) d3(X) = (Ngp = DVu(X) - (B = B,) h,(X)

~ Ny = DVu(X) - (C = C),(X) + f (1= 8 A+ (1= 0X)d1 6,0)

0

+ Jm (1 —1) Z—t’: (tB + (1 — 1)X)dt ¢p,(X) + J (1 -1 fin; (tB+ (1 — 1)X)dt ¢,(X)

B

ic dzu 1 d2u
+ J (1 =1 el (rC + (1 — )X)dr ¢p5(X) + f (1 =1 WUC + (1 — )X)dr ¢p5(X)

(o}

_ "dVut(tB + (1 — 1)X) . .
+(N+(B)—1)<J‘ ar dt)'(B—X)(l — 1) $(X) + (N°(C) = 1)

dt|-(C = X)(1 = i) bs(X). (3.36)

(fl dVu*(tC + (1 — H)X)
X
dt

Theorem 3.3. There exits a constant C such that
e = ullo rer = Ch?||ull.1, (3.37)

for any u € PH:,(T), where T is an arbitrary interface triangle.

Theorem 3.4. There exits a constant C such that
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A
r
T
A
XNE E
D T B
B C

FIG. 5. A point X € T* is connected to the three vertices by line segments.

alh’]‘u —u
as

= Ch”M”ZT’ §=X,
0,T*+

for any u € PH: (T), where T is an arbitrary interface triangle.
Similar multipoint expansions can be established on 7*. Please see Fig. 5 for the notations
involved. In particular, we let

A=t A+ (1 —1)X = (%4, V)
B=1B+ (1 —t5)X = (Xp, y5),
C= ;CC + (1 - ;C)X = ()_Cc, }_’C)T‘

Lemma 3.7. Given a real number r, a two-dimensional vector q, a point X € T*, and a point
XpE € DE, there exits a function v € S,(T) such that v(X) = r, Vo(X) = q, and

0=q- (4= X)by(X) + (B = X)bo(X)(+(C = X)b5(X)) + (N = DNa(& — Xpp) b1 (X)
+(I = Nypa - (A = X)(1 = )d(X) + (Npz — g - (B = X)(1 — 15)hs(X)
+(Npz = D - (C = X)(1 = 1) by(X). (3.38)
Lemma 3.8. For any u € PC; (T) and X € T* we have
Lu(X) — u(X) = (N"(A) = DVu(X) - (A = X)(1 = 1) $;(X) — (I = Npp) Vu(X)

(A= X)1 = 1)(X) = (Ngz = DVu(X) + (B = X)(1 = 15)(X)

= (Npz = DVu(X) - (€ = X)(1 = 10)$3(X) — (Njz = DVu(X)(A — A )¢ (X)
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- ~ YaVu-
+(1 —1)(N"(A) = 1) J “a A+ (1 —0X) (A — X)dt $,(X)

i du ! du
+f (1—- t)W(tA + (1 — X)dt $,(X) +f 1 - t)W(IA + (1 — nX)dr ¢,(X)

A

2

+f (I -1 % (tB + (1 — NX)dr $,(X) + J (I—1p % (tC + (1 — nX)dt bx(X). (3.39)

We now come to the error estimates on 7%, which are quite different from those obtained on
T+, s = —, +.

Theorem 3.5. For any p > 1, there exists a constant C such that
[ = ullo.re = ChYull,r + CAEP =P ul|,, 1o, (3.40)

for any u € PH2,(T), where T is an arbitrary interface triangle.
Proof. The proof is similar to that for Theorem 3.1. We need only derive estimates for the
first five terms in (3.39). For the first term, we have

1/2
Hdej*s:Ch<J HVu(XHPdX)

[ ax
T*

12p")
= Ch mes(T*)mq(j [Vu(X)|* dX)
-

1/q

JIWM@WJX

T*

Up'\ 172 . .
=Ch -+ —=1,1<p',g<»

1/p
= Ch<5/2)(3/”)(j [[Vu(X)]|] dX) (p =2p', mes(T*) = Ch?)
-

= CHOP O, .

Again, C above is a generic constant, and we have used the relationship 1/g = 1 — (2/p).
Similarly, we can show that

1007 = CHED=CP|ull e i=2,3,....5.

Putting these together we have (3.40).
Similarly, we have
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Theorem 3.6. There exits a constant C such that

< Chlul,.r + CA®P =P ul|, , 1, s=X,,
0.7+

ad (Ih,Tu - u)
H as

for any u € PH2,(T), where T is an arbitrary interface triangle.

We now derive the error estimates for the interpolation I in S,(€)). Let T, ;,,, denote the set
of all the interface triangles, and let )" be the subset of () formed by the union of all the
interface triangles.

Theorem 3.7. There exists a constant C such that
1 = ullo.o = CR?|lull,.0. (3.41)

o(Lu — u)
as

< Chllullo, s=x,y, (3.42)
0,Q

for any u € PH;,(Q) and h > 0 small enough.
Proof. From Theorems 3.1, 3.3, and 3.5, we have

||1h” - ””%.n' = E ”Ih,TM - M”(Z)T
TET hint
=cht Y |uB,+C X B,
TET hint TET hjm
= Chlul5o + CR*P 3 [ull,

TET nim

= Ch\fulzo + 2 lulier|  (ettingp=6)

TET him
= Ch*(lullz.a + llullis.0)
= Ch*(|lulz.0r + [lullz.0)
= Chllull5.a-

where, following the same argument used in [5], we also have used the following estimate from
[24]:

”””%,p,u' = CP”””%,Q',

in which C is a constant independent of p € [2, ). The estimate (3.41) of this theorem then
follows by combining the above estimate and the estimate from the standard finite element
interpolation theory:
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[T = ull§ 00 = Ch¥|ul)5-

Similar derivations can be carried out to obtain (3.42). u

4. NUMERICAL EXAMPLES

We now present some numerical results to illustrate features of the IFE space in this article.
Errors in both the IFE interpolant and the IFE solution to an interface problem will be given. The
error estimation for this finite element method will be provided in a forthcoming article. See [8]
for the numerical examples generated from the finite volume element method based on this IFE
space. See [6] for numerical results generated by the finite element method based on a
rectangular IFE space. In [2, 3], we also reported some numerical results for certain nonlinear
interface problems in axial-symmetric three-dimensional domains.

Because of its simplicity, we only present results obtained by using IFE method based on
Cartesian partitions in the rectangular domain ) = (=1, 1) X (—1, 1). The interface curve I'
is a circle with radius r, = 7/6.28, which separates () into two subdomains Q™ and Q" with

QO ={(x,y): >+ y*=ri.

First, we show numerical results for the IFE interpolant /,u of a test function

o

%, if r=r,

u(x, y) = o 1 (4.43)
— === otherwise,
B (B B ) !

with « = 3 and

B, (yeQ,
B(x,y) = {B+’ (x,y) € Q.

Here
r= \/xz + yz,

with the domain () and the curve I" sketched in Fig. 6 together with a typical partition for our
numerical results.

Table I contains actual errors of the IFE interpolant /,u with various partition sizes & for the
coefficient function:

L (xy e,
B(X’Y):{z, (x,y) € Q.

By simple calculations, we can easily see that the data in this table satisfy
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FIG. 6. A typical grid for the boundary value problem.

1
||I,,u - ”HO = 4 ||Ih'4 — Uljos

1
|Ihu - M|1 gi |[/;M — Ujy,

for h = h/2. Using linear regression, we can also see that the data in this table obey

||Ihu - u||0 =~ 0.855 h1'997,

U

|Lu — ul, = 1.070 A"
which clearly indicates that the interpolant converges to u with convergence rates O(h”) and
O(h) in the L? norm and H' norm, respectively, as predicted by Theorem 3.7.

Table II contains actual errors of the IFE interpolant /,u with various partition size i for the
coefficient function with a larger jump:

(x,y) €Q,

I,
Blx,y) = {1000, (x,y) € Q"

TABLE L. Errors in the interpolant I,u when 8~ = 1, p* = 2.

h ||1h,“ - “Ho |1h,” - “|1
1/8 0.01340296502645 0.13305717054982
1/16 0.00337158277650 0.06605013040974
1/32 0.00084503270234 0.03293429457757
1/64 0.00021161595036 0.01642432606383
1/128 0.00005293970281 0.00820432185076
1/256 0.00001323965088 0.00409991658967
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TABLE II.  Errors in the interpolant /,u when B~ = 1, 8+ = 1000.

h 17t = ullo L — ul,
1/8 0.00419883108135 0.04265805867861
1/16 0.00114533244388 0.02243935983649
1/32 0.00029604487946 0.01148491618700
1/64 0.00007569425803 0.00580755271391
1/128 0.00001909398803 0.00292084704814
1/256 0.00000479645980 0.00146463745501

Using linear regression again, we can see that

[Lu — ully = 0.256 1'%,
L — u), = 0.332 K975,

which are also in agreement with the error estimates given in Theorem 3.7.

Because the IFE space has an O(h?) (in L?*-norm) and an O(h) (in H'-norm) approximation
capability, we naturally expect the finite element method based on this IFE space to perform
accordingly. To confirm this numerically, we consider the interface value problem defined by
(1.1)—~(1.4) in which the boundary condition function g(x, y) and the source term f(x, y) are
chosen such that for « = 3 the function u given above is the exact solution in the domain () with
the interface curve I' defined before. All the IFE solutions presented here are generated with
Cartesian partitions illustrated in Fig. 6. We refer readers to [1] for a comparison of the IFE
method and the standard FE method using a comparable body fit partition.

Table III contains actual errors of the IFE solutions with various partition size h for the
boundary value problem with the coefficient function:

L,  (xyeQ,
B(x, y):{Z, (x,y)€Q".

We can easily see that the data in the second and third columns of this table satisfy

1
”Mh - “”0 = 4 ”uh —u |0,

s

1
|’4h_”|1z§|uﬁ_u

TABLE III. Numerical results for the case when B~ = 1, g% = 2.

h ”’4h - u||0 ‘uh - ’4|1 ”uh - ’4”00
1/8 0.01259368785855 0.13344867525901 0.00309617807508
1/16 0.00318515404195 0.06633277348461 0.00125071300736
1/32 0.00079688638455 0.03333299478264 0.00070955158740
1/64 0.00019975072596 0.01675883476638 0.00031533665223
1/128 0.00004995090290 0.00848995823388 0.00014497566355
1/256 0.00001247445372 0.00438231449652 0.00007395804432
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TABLE IV. Numerical results for the case when B~ = 1, 8+ = 1000.

h [y, = ullo |y, — ul,
1/8 0.00501120556232 0.05453969221442
1/16 0.00135523677651 0.02707248382673
1/32 0.00035702301314 0.01342153161376
1/64 0.00007999830913 0.00643491056234
1/128 0.00001867669405 0.00322926125945
1/256 0.00000434992267 0.00166074411817

for h = h/2. Using linear regression, we can also see that the data in this table obey

||Mh - MHO = 0.804 h1'997,
lu, — ul, = 1.026 K%,

which indicates that the IFE solution u, converges to the exact solution with convergence rates
O(h*) and O(h) in the L* norm and H' norm, respectively, and are in agreement with those error
estimates for the IFE interpolant obtained in the previous section.

However, these numerical experiments indicate that the IFE method does not always have the
second-order convergence in the L™ norm because the data in the fourth column of Table IIT
obey

lu, = ul.. = 0.0271 A5,

which clearly shows that the rate at which u,, converges to u is not O(h?). The question of the
conditions under which the IFE solution can have a second order convergence in the L™ norm
is still open.

The IFE method also works well for the case in which the coefficient function has a large
jump, see Table IV. The errors in this group of computations obey

||I/lh - MHO =~ (0.384 h2'044,
’uh - u|1 = 0446 h1.0]3’

which again are in agreement with those error estimates for the IFE interpolant.

5. CONCLUSIONS

In this article, we have discussed an immersed finite element (IFE) space that can be used to
solve interface problems of second-order elliptic partial differential equations. The partition of
this IFE space can be formed without consideration of the interface location. If applicable, even
a Cartesian partition can be used in this IFE space to solve a problem with a rather arbitrary
interface. The IFE space is closely related to the standard finite element space formed by
piecewise first-degree polynomials except for functions over interface triangles. Over an
interface triangle, IFE functions are formed according to the jump conditions of the interface
problem to be solved. We have employed the multipoint Taylor expansion technique to analyze
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the interpolation errors in the IFE space for functions in the Sobolev space related to the
interface problems. It has been shown that the IFE space has an approximation capability similar
to that of the standard linear finite element space. The estimates for the interpolation error
obtained here are critical for deriving error estimates for the finite element (volume) solution to
an interface problem based on this IFE space.
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