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This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic bound-
ary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite
element space and its partition can be independent of the interface. The error estimates for the interpolation
of a Sobolev function indicate that this IFE space has the usual approximation capability expected from
bilinear polynomials. Numerical examples of the related finite element method are provided. © 2008 Wiley
Periodicals, Inc. Numer Methods Partial Differential Eq 24: 1265–1300, 2008
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I. INTRODUCTION

In this article, we investigate the approximation capability of a bilinear immersed finite element
(IFE) space introduced in [1] for solving the following interface problem:

− ∇ · (β∇u) = f , (x, y) ∈ �, (1.1)

u|∂� = g (1.2)

together with the jump conditions on the interface �:

[u]|� = 0, (1.3)[
β

∂u

∂n

]
|� = 0. (1.4)
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FIG. 1. A sketch of the domain for the interface problem.

Here, see the sketch in Fig. 1, without loss of generality, we assume that � ⊂ IR2 is a rectan-
gular domain, the interface � is a curve separating � into two sub-domains �−, �+ such that
� = �− ∪ �+ ∪ �, and the coefficient β(x, y) is a piecewise constant function defined by

β(x, y) =
{

β−, (x, y) ∈ �−,

β+, (x, y) ∈ �+.

Our main goal to show that this bilinear IFE space has the usual approximation capability expected
from the bilinear polynomials.

It is well known that efficiently solving this interface problem is critical in many applications
of engineering and sciences, including flow problems [2–8], electromagnetic problems [9–17],
and shape/topology optimization problems [6,18–25], and the modeling of nonlinear phenomena
[26, 27], to name just a few.

Interface problem (1.1)–(1.4) can be solved by conventional numerical methods, including
both finite difference (FD) methods, see [28, 29] and references therein, and finite element (FE)
methods, see [30–32] and references therein, provided that their meshes are tailored to resolve the
interfaces, see the illustration in Fig. 2. Otherwise, the lack of smoothness of the exact solution

FIG. 2. The plot on the left shows how elements are placed along an interface in a standard FE method. An
element not allowed in a standard FE method is illustrated by the plot on the right in which the red curve is the
interface. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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across the interface can make a numerical method not to perform as expected or converge at
all [31–33].

Many efforts have been attempted to get rid of this limitation so that interface problems
can be solved with meshes independent of the interfaces. In FD formulation, we note the early
work of Peskin’s immersed boundary method [34, 35]. Since then, FD methods such as the
Cartesian grid method, embedded boundary method, cut-cell methods, etc., have been devel-
oped, and they have been used to treat Euler flows [36–40], Navier-Stokes flow [41–43], and
of course, the interface problems involving the fundamental elliptic operators with discontinu-
ous coefficients [44–50]. In FE formulation, Babuška et al. [51–53] developed the generalized
and the partition of unity FE methods in which the local basis functions in an element are
formed by solving the interface problem locally. The local basis functions in these methods
can capture important features of the exact solution and they can even be non-polynomials.
Exemplary methods in this framework are the partition of unity method and the extended
finite element methods (X-FEMs) [54–56]. X-FEMs are very versatile and they can be used
to handle many problems with discontinuity including the interface problems. The central
idea of an X-FEM is to employ appropriate enrichment functions at the places needed. For
convection dominant problems, the Eulerian-Lagrangian localized adjoint methods use spe-
cial test functions designed according to the characteristic lines, see [57, 58] and references
therein.

The recently developed IFE methods [1, 59–70] also fall into the general framework of
Babuška and Osborn [53, 71] to adapt FE methods for interface problems by employing local
basis functions formed according to the interface jump conditions while their meshes do not have
to be conformed with the interfaces. However, IFE methods do not locally solve the interface
problem and its basis functions are always piecewise polynomials. The main idea in IFE methods
is more similar to that used for the Hsieh-Clough-Tocher macro C1 element [72] where each local
basis function in an element is defined piecewisely by cubic polynomials on three subtriangles
such that the required continuity can be satisfied. In general, the elements in an IFE method consist
of interface elements whose interiors are cut through by the interfaces and the rest called non-
interface elements. An IFE method uses standard FE functions in all the non-interface elements,
special piecewise finite element functions satisfying interface jump conditions are employed only
in interface elements. We note that, when a mesh is fined enough, there are far more non-interface
elements than interface elements.

Our goal here is to analyze the approximation capability of the bilinear IFE space introduced
in [1], and this is a critical step in errors estimation of a FE (or finite volume-element) method
based on this bilinear IFE space for the interface problem which we plan to dress in a forthcoming
article. We will basically follow the framework developed in [66] that dealt with a triangular
IFE space. However, the local bilinear IFE basis functions have a second degree term involving
xy which leads to new difficulties demanding different techniques to analyze the interpolation
error. In addition, we note that there are two types of interface elements topologically for a mesh
formed by rectangles in contrast with a triangular mesh in which there is basically only one type
of interface element, and they need to be discussed separately.

Without loss of generality, we assume in the discussion from now on that the elements in a
rectangular mesh of � have the following features when the mesh size is small enough:

(H1): An interface � will not intersect an edge of any element at more than two points unless
this edge is part of �.

(H2): If � intersects the boundary of a rectangle at two points, then these two points must be on
different edges of this rectangle.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Also, for any subset T of �, we let

T s = T ∩ �s , s = −, +.

For any function f (x, y) defined in T ⊂ �, we can restrict it to T s , s = −, + to obtain two
functions as

f s(x, y) = f (x, y), if (x, y) ∈ T s , s = −, +.

We use DE to denote the line segment between two points D, E ∈ �. For any curve �, we use
n� to denote its unit normal vector pointing to a particular side of �. For any measurable subset
� of �, we use |�| to denote its measure. In deriving estimates, we often use C to represent a
generic constant whose value might be different from line to line. Also, in the discussion later we
add assumptions as we progress, and all the assumptions made before any theorem or lemma are
assumed to hold for that statement.

The rest of this article is organized as follows. In Section II, we reintroduce the bilinear IFE
space and describe basic properties of its local nodal basis functions. In Section III, we use the
technique based on the multipoint Taylor expansion to derive error estimates for the bilinear IFE
interpolation of the functions in Sobolev spaces. In Section IV, we present several numerical
examples generated by the this bilinear IFE space.

II. THE BILINEAR IMMERSED FINITE ELEMENT SPACE

In this section, we first introduce the local bilinear nodal IFE basis functions and then use them
to define the IFE space over �. We will also describe basic features of these basis functions.

We first consider a typical rectangle element T ∈ Th. Here, Th, h > 0 is a family of rectan-
gular meshes of the solution domain � that can be a union of rectangles. Assume that the four
vertices of T are Ai , i = 1, 2, 3, 4, with Ai = (xi , yi)

t . If T is an interface element, then we use
D = (xD , yD)T and E = (xE , yE)T to denote the interface points on its edges. There are two types
of rectangle interface elements. Type I are those for which the interface intersects with two of its
adjacent edges; Type II are those for which the interface intersects with two of its opposite edges,
see the sketch in Fig. 3.

Our main concern is the FE functions in an interface rectangle T ∈ Th. For our interface prob-
lems, the interface � separates an interface element T into two subsets T − and T +, we naturally

FIG. 3. Two typical interface elements. The element on the left is of Type I while the one on the right
is of Type II. [Color figure can be viewed in the online issue, which is available at www.interscience.
wiley.com.]
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can try to form a piecewise function by two bilinear polynomials defined in T − and T +, respec-
tively. The challenge is obviously how to put them together so that the jump conditions across the
interface are maintained.

Note that each bilinear polynomial has four freedoms (coefficients). The values of the FE
function at the vertices of T provide four restrictions. The normal derivative jump condition on
DE provides another. Then we can have three more restrictions by requiring the continuity of
the finite element function at interface points D,E and D + E

2 . Intuitively, these eight conditions
can yield the desired piecewise bilinear polynomial in an interface rectangle. This idea leads us
to consider functions defined as follows:

φ(x, y) =



φ−(x, y) = a−x + b−y + c− + d−xy, (x, y) ∈ T −,

φ+(x, y) = a+x + b+y + c+ + d+xy, (x, y) ∈ T +,

φ−(D) = φ+(D), φ−(E) = φ+(E),

φ−
(
D + E

2

)
= φ+

(
D + E

2

)
,∫

DE

(
β− ∂φ−

∂nDE
− β+ ∂φ+

∂nDE

)
ds = 0,

(2.5)

where nDE is the unit vector perpendicular to the line DE.

Remark 2.1. The last four equations can be modified accordingly to generate the IFE space
that can be used to handle problems with inhomogeneous interface jump conditions.

We let φi(X) be the piecewise linear function described by (2.5) such that

φi(xj , yj ) =
{

1, if i = j ,

0, if i �= j

for 1 ≤ i, j ≤ 4, and we call them the bilinear IFE nodal basis functions on an interface
element T .

Now we use the partition Th to define the bilinear IFE space Sh(�). First, for every element
T ∈ Th, we let Sh(T ) = span{φi , i = 1, 2, 3, 4}, where φi , i = 1, 2, 3, 4 are the standard bilinear
nodal basis functions for a non-interface element T ; otherwise, φi , i = 1, 2, 3, 4 are the bilinear
IFE nodal basis functions defined earlier. Then, we define a piecewise bilinear global nodal basis
function φN(x, y) for each node (xN , yN)t of Th such that φN(xN , yN) = 1 but zero at other nodes,
and φN |T ∈ Sh(T ) for any rectangle T ∈ Th. Finally, we define Sh(�) as the span of these global
nodal basis functions.

A. Bilinear IFE Basis Functions in the Reference Element

As usual, we only need to define the nodal bilinear IFE basis functions φ̂i(X̂), i = 1, 2, 3, 4 in the
reference element T̂ with vertices Âi = (x̂i , ŷi)

T , i = 1, 2, 3, 4:

Â1 =
(

0
0

)
, Â2 =

(
1
0

)
, Â3 =

(
1
1

)
, Â4 =

(
0
1

)
.

The interface element T is related to the reference element by the usual affine mapping:

X = F(X̂) = B + MX̂, X =
(

x

y

)
, X̂ =

(
x̂

ŷ

)
. (2.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 4. Two types of reference interface elements. The element on the left is of Type I while the one on the
right is of Type II. [Color figure can be viewed in the online issue, which is available at www.interscience.
wiley.com.]

This affine mapping and φ̂i(X̂), i = 1, 2, 3, 4 can be used to defined φi(X), i = 1, 2, 3, 4 through
the standard procedure.

Under the affine mapping, we assume that �∩T becomes �̂, D becomes D̂, E becomes Ê, and
�̂ separates T̂ into T̂ + and T̂ −. Accordingly, there are two types of reference interface elements,
see the sketch in Fig. 4.

By choosing proper B and M , i.e., a proper affine mapping, we can assume

D̂ =
(

0
b̂

)
, Ê =

(
â

0

)
(2.7)

for Type I reference element, and

D̂ =
(

b̂

1

)
, Ê =

(
â

0

)
(2.8)

for Type II element. Obviously, we can assume 0 < â, b̂ ≤ 1 for Type I reference element, and
0 ≤ â, b̂ ≤ 1 for Type II reference element.

Assume φ̂i(X̂), i = 1, 2, 3, 4 are the bilinear IFE nodal basis on the reference element T̂ such
that

φ̂i(x̂, ŷ) =
{

â−
i + b̂−

i x̂ + ĉ−
i ŷ + d̂−

i x̂ŷ, if (x̂, ŷ) ∈ T̂ −,
â+

i + b̂+
i x̂ + ĉ+

i ŷ + d̂+
i x̂ŷ, if (x̂, ŷ) ∈ T̂ +.

Then φ̂i(X̂), i = 1, 2, 3, 4 should satisfy



φ̂i(Âj ) =
{

1, if i = j ,

0, if i �= j ,

φ̂−
i (D̂) = φ̂+

i (D̂), φ̂−
i (Ê) = φ̂+

i (Ê), φ̂−
i

(
D̂ + Ê

2

)
= φ̂+

i

(
D̂ + Ê

2

)
,

∫
D̂Ê

(
β+ ∂φ̂−

i

∂n
D̂Ê

− β− ∂φ̂+
i

∂n
D̂Ê

)
ds = 0.

(2.9)
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Basis Functions in Type I Elements. For Type I element, we first note that the nodal value
constraints at Â1 imply that

â−
i =

{
1, i = 1,

0, i = 2, 3, 4.

Also, the nodal value constraints at Âi , i = 2, 3, 4 allow us to express b̂+
i , ĉ+

i and d̂+
i as linear

functions of â+
i . Then, conditions across the interface leads to a linear system about b̂−

i , ĉ−
i , d̂−

i , â+
i .

Solving this linear system, we can see that

b̂−
i = Pi,1(â, b̂)

W
, ĉ−

i = Pi,2(â, b̂)

W
, d̂−

i = Pi,3(â, b̂)

W
, â+

i = Pi,4(â, b̂)

W
,

W =


[âb̂2(2 − b̂) + â2b̂(2 − â)] + R[2b̂2(1 − â) + 2â2(1 − b̂) + â3b̂ + âb̂3],

if R = β−/β+ ≥ 1,

R[âb̂2(2 − b̂) + â2b̂(2 − â)] + [2b̂2(1 − â) + 2â2(1 − b̂) + â3b̂ + âb̂3],
if R = β+/β− ≥ 1

(2.10)

where Pi,j (â, b̂), j = 1, 2, 3, 4 are polynomials of â and b̂. Moreover, Pi,j (â, b̂), j = 1, 2, 3, 4 are
linear combinations of the following terms:

â3, b̂3, â2, b̂2, âb̂, â2b̂, â3b̂, âb̂2, âb̂3. (2.11)

Basis Functions in Type II Elements. Similarly, the nodal value constraints require that

â−
i =

{
1, i = 1,

0, i = 2, 3, 4.
ĉ−

i =


−1, i = 1,

0, i = 2, 3,

1, i = 4.

Also, the nodal value constraints imply that b̂+
i , ĉ+

i are linear functions of â+
i and d̂+

i . Then, the
conditions across the interface lead to a linear system about b̂−

i , d̂−
i , â+

i , and d̂+
i . Solving this linear

system, we have

b̂−
i = Pi,1(â, b̂)

W
, ĉ−

i = Pi,2(â, b̂)

W
, d̂−

i = Pi,3(â, b̂)

W
, â+

i = Pi,4(â, b̂)

W
,

W =


if R = β−/β+ ≥ 1 :

[â(1 − â)2 + b̂(1 − b̂2) + 2(â − b̂)2 + â2b̂ + âb̂2] + R[(2 − â − b̂) + (â + b̂)(â − b̂)2]
if R = β+/β− ≥ 1 :

R[â(1 − â)2 + b̂(1 − b̂2) + 2(â − b̂)2 + â2b̂ + âb̂2] + [(2 − â − b̂) + (â + b̂)(â − b̂)2]
(2.12)

where Pi,j (â, b̂), j = 1, 2, 3, 4 are polynomials of â and b̂.
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B. Basic Properties of the Bilinear IFE Space

First, it is easy to see that Sh(�) has the following properties:

• The IFE space Sh(�) has the same number of nodal basis functions as that formed by the
usual bilinear polynomials on the same partition of �.

• For a partition Th fine enough, most of its rectangles are non-interface rectangles, and most
of the nodal basis functions of the IFE space Sh(�) are just the usual bilinear nodal basis
functions except for few nodes in the vicinity of the interface �.

• For any φ ∈ Sh(�), we have

φ|�\�′ ∈ H 1(�\�′),

where �′ is the union of interface rectangles.

In the discussion from now on, we denote any v(x, y) ∈ Sh(T ) as follows

v(x, y) =
{

v−(x, y) = a− + b−x + c−y + d−xy, (x, y) ∈ T −,

v+(x, y) = a+ + b+x + c+y + d+xy, (x, y) ∈ T +.
(2.13)

The results in the following two lemmas are related to the continuity of functions in Sh(�)

across the interface. First, the following lemma shows that every function v ∈ Sh(T ) where T is
an interface element is continuous across DE, and the mixed second derivative of v ∈ Sh(T ) is
also continuous.

Lemma 2.1. For any v ∈ Sh(T ) written as (2.13), we have

v− ≡ v+, on DE, (2.14)

d+ = d−. (2.15)

Proof. Without loss of generality, we can assume that v is one of four basis functions of
Sh(T ), and let v̂(X̂) = v(B + MX̂) be the piecewise bilinear function on the reference element
defined by v and the affine mapping. First, we note that

ds = ∂2vs

∂x∂y
, d̂s = ∂2v̂s

∂x̂∂ŷ
, s = ±.

By direct verification, we can further show that

d̂− = d̂+.

Then, (2.15) follows from the relationship between v and v̂ defined by the affine mapping.
We now prove (2.14) for a Type I element T , the proof for a Type II element is similar. Without

loss of generality, we assume the slope of DE is nonzero and finite, and the equation of DE is
y = kx + p. Hence, on DE, v becomes a piecewise quadratic polynomial in terms of x:

v(x, y) =
{

v−(x, y) = (a− + pc−) + (b− + kc− + pd−)x + kd−x2, (x, y) ∈ T −

v+(x, y) = (a+ + pc+) + (b+ + kc+ + pd+)x + kd+x2, (x, y) ∈ T +

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Because v(x, y) ∈ Sh(T ), we have

v−(D) = v+(D), v−(E) = v+(E), v−
(

D + E

2

)
= v+

(
D + E

2

)
Hence v− ≡ v+ on DE.

Lemma 2.2. Assume T ∈ Th is an interface element.

1. If � ∩ T is a line segment, then

φ−|�∩T = φ+|�∩T , ∀φ ∈ Sh(�).

2. Every function φ ∈ Sh(T ) satisfies the flux jump condition on �∩T exactly in the following
weak sense: ∫

�∩T

(β−∇φ− − β+∇φ+) · n�ds = 0.

Proof. Property 1 follows directly from (2.14). For any φ ∈ Sh(T ), it is obvious that
φs ∈ H 2(T s), s = −, +. Also, because φ is a piecewise bilinear polynomial satisfying (2.5),
Green’s formula leads to∫

�∩T

(β−∇φ− − β+∇φ+) · n�ds = −
∫

DE

(β−∇φ− − β+∇φ+) · nDEds = 0.

The local basis functions of this bilinear IFE space has the property of partition of unity.

Theorem 2.1. Let T ∈ Th be an interface element and let φi(X) ∈ Sh(T ), i = 1, 2, 3, 4 be the
bilinear IFE nodal basis functions defined above. Then,

φ1(X) + φ2(X) + φ3(X) + φ4(X) = 1, ∀X ∈ T

Proof. We only need to verify this for the corresponding basis functions on the reference
element T̂ . For either Type I or Type II element, by direct calculations, we can see that

4∑
i=1

âs
i = 1,

4∑
i=1

b̂s
i = 0,

4∑
i=1

ĉs
i = 0,

4∑
i=1

d̂s
i = 0, s = ±.

These imply that the partition of unity holds for the basis functions on the reference element and
the result of this theorem follows.

The following lemma suggests that the bilinear IFE functions are consistent with standard
bilinear FE functions.

Lemma 2.3. Consider an interface element T ∈ Th and a function φ ∈ Sh(T ). If β− = β+,
then

φ− = φ+

and φ becomes a bilinear polynomial.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Proof. By direct calculations we can see that the result is true for φ̂i , i = 1, 2, 3, 4 and then
for φi , i = 1, 2, 3, 4. Since φ ∈ Sh(T ) is a linear combination of φi , i = 1, 2, 3, 4, we know that
the result of this lemma is also true for every φ ∈ Sh(T ).

In the discussion later, we need another assumption on the partition Th.

(H3): The family of partitions Th with h > 0 is regular. (See Definition 3.4.1 of [73])

The following theorem establishes bounds for the bilinear IFE basis functions.

Theorem 2.2. Let T ∈ Th be an interface element and let φi(X) ∈ Sh(T ), i = 1, 2, 3, 4, be the
bilinear IFE nodal basis functions defined above. Then, there exists constants C such that

|φi(X)| ≤ C, i = 1, 2, 3, 4, (2.16)

‖∇φi(X)‖ ≤ Ch−1, i = 1, 2, 3, 4. (2.17)

Proof. Without loss of generality, we assume that R = β−/β+ ≥ 1, the similar arguments
hold for R = β+/β− ≥ 1. Also, we consider the case in which T ∈ Th is a Type I element, similar
arguments can be applied to the case in which T ∈ Th is a Type II element.

First, we show that the coefficients âs
i , b̂s

i , ĉ
s
i , d̂

s
i , s = ±, i = 1, 2, 3, 4 of φ̂is are bounded. Note

that these coefficients are linear combinations of âkb̂l

W
with the values of k and l listed in (2.11).

By direct calculations, we can see that there exists a constant C such that 0 ≤ | âkb̂l

W
| ≤ C for

the values of k and l listed in (2.11). These inequalities lead to the boundedness of âi , b̂i , ĉi , d̂i ,
i = 1, 2, 3, 4 which imply the boundedness of φ̂i , i = 1, 2, 3, 4. Then (2.16) follows because the
affine transformation (2.6) is used to define φi , i = 1, 2, 3, 4 from φ̂is.

Since the partition is regular, we have ‖M−T ‖ ≤ Ch−1. Then, (2.17) follows from ∇φi =
M−T ∇φ̂i and the boundedness of the coefficients of ∇φ̂is.

III. ERROR ESTIMATES FOR INTERPOLATION APPROXIMATIONS

We now discuss the approximation capability of the bilinear IFE space introduced in the last
section. We focus on the bilinear IFE interpolation of a function from a suitable Sobolev space,
and will derive error estimates in the corresponding Sobolev norms.

For an element T in �, we let

PWm
p (T ) = {

u|u|T s ∈ Wm
p (T s), s = −, +}

, p ≥ 1, m = 0, 1, 2,

PH 2
int(T ) =

{
u ∈ C(T ), u|T s ∈ H 2(T s), s = −, +,

[
β

∂u

∂n�

]
= 0 on � ∩ T

}
,

PCm
int(T ) =

{
u ∈ C(T ), u|T s ∈ Cm(T s), s = −, +,

[
β

∂u

∂n�

]
= 0 on �

}
,

where Wm
p (�) is the standard Soblev space defined on a set � equipped with the norm

‖ · ‖m,p,� and seminorm | · |m,p,�. As usual, we let PHm(T ) = PWm
2 (T ). Obviously, we have

PC2
int(T ) ⊂ PH 2

int(T ). Also, for any function u ∈ PWm
p (T ), we let

‖u‖2
m,p,T = ‖u‖2

m,p,T − + ‖u‖2
m,p,T + , (3.18)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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and the seminorm of PWm
p (T ) can be defined accordingly by

|u|2m,p,T = |u|2
m,p,T − + |u|2

m,p,T + . (3.19)

When p = 2, we will drop p from the notation of the norms, e.g., we will use ‖u‖m,T =
‖u‖m,2,T . Similar definitions can be introduced for PH 2

int(T ), PCm
int(T ) for any T ∈ Th and

PHm(�), PH 2
int(�), PCm

int(�).
In this section, we assume that the interface curve � and the partition Th satisfy the following

assumptions:

(H4): The interface curve � is defined by a piecewise C2 function, and the partition Th is formed
such that the subset of � in any interface element is C2.

(H5): The interface � is smooth enough so that PC3
int(T ) is dense in PH 2

int(T ) for any interface
element T of Th.

We note that (H5) will hold if � is sufficiently smooth, see the results of [74, 75] on the trans-
mission problems.

For a function u ∈ PH 2
int(T ), T ∈ Th, we let Ih,T u ∈ Sh(T ) be its interpolant such that

Ih,T u(X) = u(X) when X is a vertex of T . For an element T with vertices A1, A2, A3, A4,
we have

Ih,T u(X) = u(A1)φ1(X) + u(A2)φ2(X) + u(A3)φ3(X) + u(A4)φ4(X).

Accordingly, for a function u ∈ PH 2
int(�), we let Ihu ∈ Sh(�) be its interpolation such that

Ihu|T = Ih,T (u|T ) for any T ∈ Th.
The purpose of this section is to derive error estimates for the interpolation of u ∈ PH 2

int(�),
and we will carry the discussion piecewisely for each element T in the partition Th. Recall that
the error estimate of Ihu in any non-interface rectangular element T is well known, see for
example [73]:

‖Ihu − u‖0,T + h‖Ihu − u‖1,T ≤ Ch2‖u‖2,T .

Therefore, in the discussion from now on, we focus on interface elements of Th.
We call a point X = (x, y)T in an interface element T an obscure point if one of the four line

segments connecting X and the vertices of T intersects the interface more than once. Without
loss of generality, we discuss interface elements that do not contain any obscure point because
the arguments used below can be readily extended to handle the interface elements with obscure
points.

Now we discuss the IFE interpolation error estimates for the two types of interface elements,
i.e, Type I elements and Type II elements.

A. Interpolation Error on a Type I Interface Element

Without loss of generality, we assume T ∈ Th is a Type I interface element with vertices
Ai = (xi , yi), i = 1, 2, 3, 4, such that A1 ∈ T + and Ai ∈ T −, i = 2, 3, 4, see Fig. 5.

We start with the estimation on T −. Consider a point X = (x, y)T ∈ T − and assume that line
segments XAi , i = 2, 3, 4 do not intersect with the interface and DE, while line segment XA1

meets � at Ã1 (see Fig. 5) with

Ã1 = t̃A1 + (1 − t̃ )X = (̃x1, ỹ1)
T

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1276 HE, LIN, AND LIN

FIG. 5. An interface rectangle element with no obscure point. A point X ∈ T − is connected to the four
vertices by line segments in a Type I interface element.

for a certain t̃ . For any point Ã ∈ �, let Ã⊥ be the orthogonal projection of Ã onto DE (see

Fig. 5). We will also use the following notations: ρ̃ = β+
β− , ρ = β−

β+ .

First, let us recall two lemmas from [66].

Lemma 3.1. Assume n(Ã) = (nx(Ã), ny(Ã))T is the unit normal vector of � at Ã, n(DE) =
(nx , ny)

T is the unit normal vector of DE, and XDE is a point on DE. Then, for every function
u(x, y) satisfying the interface jump conditions (1.3) and (1.4), we have

∇u+(Ã) = N−(Ã)∇u−(Ã), N−(Ã) =
(

ny(Ã)2 + ρnx(Ã)2 (ρ − 1)nx(Ã)ny(Ã)

(ρ − 1)nx(Ã)ny(Ã) nx(Ã)2 + ρny(Ã)2

)
,

(3.20)

∇u−(Ã) = N+(Ã)∇u+(Ã), N+(Ã) =
(

ny(Ã)2 + ρ̃nx(Ã)2 (ρ̃ − 1)nx(Ã)ny(Ã)

(ρ̃ − 1)nx(Ã)ny(Ã) nx(Ã)2 + ρ̃ny(Ã)2

)
,

(3.21)

and for every u ∈ Sh(T ) we have

∇u+(XDE) = N−
DE

∇u−(XDE), N−
DE

=
(

n2
y + ρn2

x (ρ − 1)nxny

(ρ − 1)nxny n2
x + ρn2

y

)
, (3.22)

∇u−(XDE) = N+
DE

∇u+(XDE), N+
DE

=
(

n2
y + ρ̃n2

x (ρ̃ − 1)nxny

(ρ̃ − 1)nxny n2
x + ρ̃n2

y

)
. (3.23)

Lemma 3.2. There exist constants C > 0 such that for any point Ã ∈ �, we have

‖Ã − Ã⊥‖ ≤ Ch2. (3.24)∥∥Ns

DE
− Ns(Ã)

∥∥ ≤ Ch, s = −, +. (3.25)
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The following lemma gives the straight forward Taylor expansion of a bilinear function.

Lemma 3.3. If f (x, y) = a + bx + cy + dxy, X = (x, y), Z = (xz, yz), then

f (Z) = f (X) + ∇f (X) · (Z − X) + d(xz − x)(yz − y).

In all the discussion from now on, for a given point X = (x, y)T , we let Xs = (y, x)T .
∀X = (x, y)T ∈ T −, A = (xA, yA)T ∈ T +, we let Ã = (̃x, ỹ)T be the intersection point of � and
AX.

The lemma below establishes an expansion of a bilinear IFE function across the interface.

Lemma 3.4. Assume that v ∈ Sh(T ), X = (x, y)T ∈ T −, A = (xA, yA)T ∈ T +. Then

v(A) = v(X) + ∇v(X) · (A − X) + (
N−

DE
− I

)∇v(X) · (A − Ã)

+ (
N−

DE
− I

)∇v(X) · (Ã − XDE) + d−N−
DE

(
Xs

DE
− Xs

) · (A − XDE)

+ d−(xA − x̄)(yA − ȳ) + d−(x̄ − x)(ȳ − y)

where XDE = (x̄, ȳ)T is an arbitrary point on DE.

Proof. By Lemma 3.3, Lemma 2.1 and (3.22), we have

v(A) = v+(A) = v+(XDE) + ∇v+(XDE) · (A − XDE) + d+(xA − x̄)(yA − ȳ)

= v−(XDE) + N−
DE

∇v−(XDE) · (A − XDE) + d−(xA − x̄)(yA − ȳ)

= v−(X) + ∇v−(X) · (XDE − X) + d−(x̄ − x)(ȳ − y)

+ N−
DE

∇v−(XDE) · (A − XDE) + d−(xA − x̄)(yA − ȳ)

= v−(X) + ∇v−(X) · (A − X) + (
N−

DE
− I

)∇v−(X) · (A − XDE)

+ N−
DE

[∇v−(XDE) − ∇v−(X)] · (A − XDE) + d−(xA − x̄)(yA − ȳ)

+ d−(x̄ − x)(ȳ − y).

Because

∇v−(XDE) =
(

b− + d−ȳ

c− + d−x̄

)
, ∇v−(X) =

(
b− + d−y

c− + d−x

)
,

we have ∇v−(XDE) − ∇v−(X) = d−(Xs

DE
− Xs). Hence,

v(A) = v−(X) + ∇v−(X) · (A − X) + (
N−

DE
− I

)∇v−(X) · (A − XDE)

+ N−
DE

d−(
Xs

DE
− Xs

) · (A − XDE) + d−(xA − x̄)(yA − ȳ) + d−(x̄ − x)(ȳ − y)

= v(X) + ∇v(X) · (A − X) + (
N−

DE
− I

)∇v(X) · (A − Ã)

+ (
N−

DE
− I

)∇v(X) · (Ã − XDE) + d−N−
DE

(
Xs

DE
− Xs

) · (A − XDE)

+ d−(xA − x̄)(yA − ȳ) + d−(x̄ − x)(ȳ − y).
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Lemma 3.5. Assume that v ∈ Sh(T ), X = (x, y)T ∈ T −. Then we have

∇v(X) ·
4∑

i=1

(Ai − X)φi(X) = −(
N−

DE
− I

)∇v(X) · (A1 − Ã1)φ1(X) − (
N−

DE
− I

)∇v(X)

· (Ã1 − XDE)φ1(X) − d−
[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X)

+ (x1 − x̄)(y1 − ȳ)φ1(X) + (x̄ − x)(ȳ − y)φ1(X)

+
4∑

i=2

[(xi − x)(yi − y)φi(X)]
]

.

Proof. By using Lemma 3.3 and Lemma 3.4, we can get

v(Ai) = v(X) + ∇v(X) · (Ai − X) + d−(xi − x)(yi − y), i = 2, 3, 4,

v(A1) = v(X) + ∇v(X) · (A1 − X) + (
N−

DE
− I

)∇v(X) · (A1 − Ã1)

+ (
N−

DE
− I

)∇v(X) · (Ã1 − XDE) + d−N−
DE

(
Xs

DE
− Xs

) · (A1 − XDE)

+ d−(x1 − x̄)(y1 − ȳ) + d−(x̄ − x1)(ȳ − y1).

Because v ∈ Sh(T ),

v(X) = Ih,T v(X) =
4∑

i=1

v(Ai)φi(X) = v(X)

4∑
i=1

φi(X) + ∇v(X) ·
4∑

i=1

(Ai − X)φi(X)

+ (
N−

DE
− I

)∇v(X) · (A1 − Ã1)φ1(X) + (
N−

DE
− I

)∇v(X) · (Ã1 − XDE)φ1(X)

+ d−
[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+ (x̄ − x)(ȳ − y)φ1(X) +
4∑

i=2

(xi − x)(yi − y)φi(X)

]
which leads to the result of this lemma because of Theorem 2.1.

Lemma 3.6. Given a two-dimensional vector q, a point X ∈ T − and two real numbers r , d−,

then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r , ∂2v−(X)
∂x∂y

= d− and

q ·
4∑

i=1

(Ai − X)φi(X) = −(
N−

DE
− I

)
q · (A1 − Ã1)φ1(X) − (

N−
DE

− I
)
q · (Ã1 − XDE)φ1(X)

− d−
[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)φ1(X)

+ (x̄ − x)(ȳ − y)φ1(X) +
4∑

i=2

(xi − x)(yi − y)φi(X)

]

where XDE is an arbitrary point on DE.
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Proof. Let v(Ŷ ) be a piecewise bilinear function in term of Ŷ . First, ∇v(X) = q,

v(X) = r , ∂2v−(X)
∂x∂y

= d− uniquely determine v−(Ŷ ). Then the interface conditions∫
DE

(
β+ ∂v+

∂nDE
− β− ∂v−

∂nDE

)
ds = 0 and v−(D) = v+(D), v−(E) = v+(E), v−(E) = v+(E)

uniquely determine v+(Ŷ ). These conditions also imply that v(Ŷ ) is a function in the local bilinear
IFE space Sh(T ). The proof is finished by replacing ∇v(X) by q in Lemma 3.5.

We can now derive an expansion of the bilinear IFE interpolation error.

Theorem 3.1. For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T −, we have

Ih,T u(X) − u(X) = (
N−(Ã1) − N−

DE

)∇u(X) · (A1 − Ã1)φ1(X) − (
N−

DE
− I

)∇u(X)

× ·(Ã1 − XDE)φ1(X) − ∂2u−(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X)

+ (x1 − x̄)(y1 − ȳ)φ1(X) + (x̄ − x)(ȳ − y)φ1(X)

+
4∑

i=2

(xi − x)(yi − y)φi(X)

]

+ (N−(Ã1) − I )

∫ 1

0

d∇u−(tÃ1 + (1 − t)X)

dt
· (A1 − Ã1)dtφ1(X)

+
∫ t̃

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dtφ1(X)

+
∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2 dtφ1(X)

+
4∑

i=2

∫ 1

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X). (3.26)

where XDE is an arbitrary point on DE.

Proof. Since t �→ u(tAi + (1 − t)X)), i = 2, 3, 4 are C2 functions in terms of t , we have

u(Ai) = u(X) +
∫ 1

0

du(tAi + (1 − t)X)

dt
dt

= u(X) + ∇u(X) · (Ai − X) +
∫ 1

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dt . (3.27)
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By using (3.20), we have

u(A1) = u(X) +
∫ 1

0

du(tA1 + (1 − t)X)

dt
dt

= u(X) +
∫ t̃

0

du(tA1 + (1 − t)X)

dt
dt +

∫ 1

t̃

du(tA1 + (1 − t)X)

dt
dt

= u(X) − ∇u−(Ã1) · (A1 − Ã1) + ∇u(X) · (A1 − X)

+
∫ t̃

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dt + ∇u+(Ã1) · (A1 − Ã1)

+
∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2 dt

= u(X) + ∇u(X) · (A1 − X) + (N−(Ã1) − I )∇u−(Ã1) · (A1 − Ã1)

+
∫ t̃

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dt +
∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2 dt

= u(X) + ∇u(X) · (A1 − X) + (N−(Ã1) − I )∇u(X) · (A1 − Ã1)

+ (N−(Ã1) − I )

∫ 1

0

d∇u−(tÃ1 + (1 − t)X)

dt
· (A1 − Ã1)dt

+
∫ t̃

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dt +
∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2 dt .

(3.28)

Then

Ih,T u(X) =
4∑

i=1

u(Ai)φi(X) = u(X)

4∑
i=1

φi(X) + ∇u(X) ·
4∑

i=1

(Ai − X)φi(X)

+ (N−(Ã1) − I )∇u(X) · (A1 − Ã1)φ1(X)

+ (N−(Ã1) − I )

∫ 1

0

d∇u−(tÃ1 + (1 − t)X)

dt
· (A1 − Ã1)dtφ1(X)

+
∫ t̃

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dtφ1(X)

+
∫ 1

t̃

(1 − t)
d2u(tA1 + (1 − t)X)

dt2 dtφ1(X)

+
4∑

i=2

∫ 1

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X). (3.29)
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Now letting q = ∇u(X), r = u(X), d− = ∂2u(X)
∂x∂y

in Lemma 3.6, we have

∇u(X) ·
4∑

i=1

(Ai − X)φi(X) = −(
N−

DE
− I

)∇u(X) · (A1 − Ã1)φ1(X)

− (
N−

DE
− I

)∇u(X) · (Ã1 − XDE)φ1(X) − ∂2u(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X)

+ (x1 − x̄)(y1 − ȳ)φ1(X) + (x̄ − x)(ȳ − y)φ1(X) +
4∑

i=2

(xi − x)(yi − y)φi(X)

]
. (3.30)

Finally, (3.26) follows from (3.29), (3.30) and Theorem 2.1.

The following theorem establish a bound in L2 norm for the bilinear IFE interpolation error.

Theorem 3.2. There exits a constant C such that

‖Ih,T u − u‖0,T − ≤ Ch2‖u‖2,T (3.31)

for any u ∈ PH 2
int(T ) where T ∈ Th is an interface element.

Proof. Let Qi , i = 1, 2, · · · , 9 be the 9 terms on the right hand side of (3.26), and we proceed
by estimating their L2 norms. By Lemma 3.2, Theorem 2.2, and by letting XDE = Ã⊥

1 in (3.26),
we have the following estimate for the L2 norms of the first 3 terms:

‖Q1‖0,T − + ‖Q2‖0,T − + ‖Q3‖0,T − = ∥∥(
N−(Ã1) − N−

DE

)∇u(X) · (A1 − Ã1)φ1(X)
∥∥

0,T −

+ ∥∥(
N−

DE
− I

)∇u−(X) · (
Ã1 − Ã⊥

1

)
φ1(X)

∥∥
0,T −

+
∥∥∥∥∥∂2u−(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X)

+ (x1 − x̄)(y1 − ȳ)φ1(X) + (x̄ − x)(ȳ − y)φ1(X)

+
4∑

i=2

(xi − x)(yi − y)φi(X)

]∥∥∥∥∥
0,T −

≤ Ch2‖u‖1,T − + Ch2‖u‖2,T − ≤ Ch2‖u‖2,T − .

For the fourth term, we first note that

d∇u−

dt
(tÃ1 + (1 − t)X) · (A1 − Ã1) = uξξ (ξ , η)(̃x1 − x)(x1 − x̃1) + 2uξη(ξ , η)[̃y1 − y)(x1 − x̃1)

+ (̃x1 − x)(y1 − ỹ1)] + uηη(ξ , η)(ỹ1 − y)(y1 − ỹ1)
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with ξ = t x̃1 + (1 − t)x, η = t ỹ1 + (1 − t)y. Then,

Q2
4 ≤ C

(∫ 1

0
[uξξ (ξ , η)(̃x1 − x)(x1 − x̃1) + 2uξη(ξ , η)((ỹ1 − y)(x1 − x̃1)

+ (̃x1 − x)(y1 − ỹ1)) + uηη(ξ , η)(ỹ1 − y)(y1 − ỹ1)]dt

)2

≤ Ch4

(∫ 1

0
[uξξ (ξ , η) + 2uξη(ξ , η) + uηη(ξ , η)]dt

)2

≤ Ch4

∫ 1

0

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dt ,

here C stands for a generic constant. Since XÃ1 must be in T −, then (ξ , η) ∈ T −. Therefore,

‖Q4‖2
0,T − =

∫
T −

Q2
4dξdη ≤ Ch4

∫
T −

∫ 1

0

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dtdξdη

≤ Ch4

∫
T −

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dξdη ≤ Ch4‖u‖2

2,T − ,

or

‖Q4‖0,T − ≤ Ch2‖u‖2,T − ≤ Ch2‖u‖2,T .

For the fifth term, we have

Q2
5 ≤ C

(∫ t̃

0
(1 − t)[uξξ (ξ , η)(x1 − x)2 + 2uξη(ξ , η)(x1 − x)(y1 − y) + uηη(ξ , η)(y1 − y)2]dt

)2

≤ Ch4

(∫ t̃

0
(1 − t)[uξξ (ξ , η) + 2uξη(ξ , η) + uηη(ξ , η)]dt

)2

≤ Ch4

∫ t̃

0
(1 − t)2

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dt

with ξ = tx1 + (1 − t)x, η = ty1 + (1 − t)y. Therefore

‖Q5‖2
T − ≤ Ch4

∫
T −

∫ t̃

0
(1 − t)2

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dtdξdη

≤ Ch4

∫
T −

[
u2

ξξ (ξ , η) + u2
ξη(ξ , η) + u2

ηη(ξ , η)
]
dξdη ≤ Ch4‖u‖2,T −

or

‖Q5‖T − ≤ Ch2‖u‖2,T − ≤ Ch2‖u‖2,T .

Similarly, we can show that ‖Qi‖T − ≤ Ch2‖u‖2,T , i = 6, 7, 8, 9. Finally, (3.31) follows from the
estimates for Qi , i = 1, 2, · · · , 9 above.
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We now turn to the estimate of bilinear IFE interpolation error in H 1 norm on the subelement
T −. In the discussion later, we let Ii , i = 1, 2, 3, 4 be the integral terms involving the vertices Ai ,
i = 1, 2, 3, 4 in (3.26).

Theorem 3.3. For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T −, we have

∂(Ih,T u(X) − u(X))

∂x
= (

N−(Ã1) − N−
DE

)∇u(X) · (A1 − Ã1)
∂φ1(X)

∂x

− (
N−

DE
− I

)∇u(X) · (Ã1 − XDE)
φ1(X)

∂x

− ∂2u−(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)
φ1(X)

∂x

+ N−
DE

(0, −1)T · (A1 − XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)
φ1(X)

∂x

− (ȳ − y)φ1(X) + (x̄ − x)(ȳ − y)
φ1(X)

∂x

+
4∑

i=2

[
−(yi − y)φi(X) + (xi − x)(yi − y)

φi(X)

∂x

]]
+

4∑
i=1

Ii

φi(X)

∂x
.

(3.32)

∂(Ih,T u(X) − u(X))

∂y
= (

N−(Ã1) − N−
DE

)∇u(X) · (A1 − Ã1)
∂φ1(X)

∂y

− (
N−

DE
− I

)∇u(X) · (Ã1 − XDE)
φ1(X)

∂y

− ∂2u−(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)
φ1(X)

∂y

+ N−
DE

(−1, 0)T · (A1 − XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)
φ1(X)

∂y

− (x̄ − x)φ1(X) + (x̄ − x)(ȳ − y)
φ1(X)

∂y

+
4∑

i=2

[
−(xi − x)φi(X) + (xi − x)(yi − y)

φi(X)

∂y

]]
+

4∑
i=1

Ii

φi(X)

∂y
.

(3.33)

where XDE is an arbitrary point on DE.

Proof. We give a proof only for (3.32), similar arguments can be used to show (3.33). From
(3.26), we can get

∂(Ih,T u(X) − u(X))

∂x
= ∂

∂x

[(
N−(Ã1) − N−

DE

)∇u(X) · (A1 − Ã1)
]
φ1(X)

+ (
N−(Ã1) − N−

DE

)∇u(X) · (A1 − Ã1)
∂φ1(X)

∂x
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− ∂

∂x

[(
N−

DE
− I

)∇u(X) · (Ã1 − XDE)
]
φ1(X)

− (
N−

DE
− I

)∇u(X) · (Ã1 − XDE)
φ1(X)

∂x

− ∂3u−(X)

∂x2∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X)

+ (x1 − x̄)(y1 − ȳ)φ1(X) + (x̄ − x)(ȳ − y)φ1(X)

+
4∑

i=2

(xi − x)(yi − y)φi(X)

]

− ∂2u−(X)

∂x∂y

[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)
φ1(X)

∂x

+ N−
DE

(0, −1)T · (A1 − XDE)φ1(X) + (x1 − x̄)(y1 − ȳ)
φ1(X)

∂x

− (ȳ − y)φ1(X) + (x̄ − x)(ȳ − y)
φ1(X)

∂x

+
4∑

i=2

[
−(yi − y)φi(X) + (xi − x)(yi − y)

φi(X)

∂x

]]

+
4∑

i=1

Ii

φi(X)

∂x
+

4∑
i=1

∂Ii

∂x
φi(X). (3.34)

Taking the first derivative with respect to x on both sides of (3.27) and (3.28), we can get

∂Ii

∂x
= −P · (Ai − X), i = 2, 3, 4 with P = ∂

∂x
∇u(X),

∂I1

∂x
= −P · (A1 − X) − ∂

∂x
[(N−(Ã1) − I )∇u(X)(A1 − Ã1)].

Hence,

4∑
i=1

∂Ii

∂x
φi(X) = −P ·

4∑
i=1

(Ai − X)φi(X) − ∂

∂x
[(N−(Ã1) − I )∇u(X)(A1 − Ã1)]φ1(X).

Applying Lemma 3.6 to the first term on the right hand side above, letting q = P , d− = ∂3u−(X)
∂x2∂y

,

we have

4∑
i=1

∂Ii

∂x
φi(X) = − ∂

∂x
[(N−(Ã1) − I )∇u(X)(A1 − Ã1)]φ1(X) + (

N−
DE

− I
)
P · (A1 − Ã1)φ1(X)

+ (
N−

DE
− I

)
P · (Ã1 − XDE)φ1(X) + ∂3u−(X)

∂x2∂y
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×
[
N−

DE

(
Xs

DE
− Xs

) · (A1 − XDE)φ1(X) + (x̄ − x)(ȳ − y)φ1(X)

+ (x̄ − x)(ȳ − y)φ1(X) +
4∑

i=2

(xi − x)(yi − y)φi(X)

]
. (3.35)

By direct calculations, we also have

∂

∂x

(
N−(Ã1) − N−

DE

)∇u(X) · (A1 − Ã1)φ1(X) − ∂

∂x

[(
N−

DE
− I

)∇u(X) · (Ã1 − XDE)
]
φ1(X)

− ∂

∂x
[(N−(Ã1) − I )∇u(X)(A1 − Ã1)]φ1(X) + (

N−
DE

− I
)
P · (A1 − Ã1)φ1(X)

+ (
N−

DE
− I

)
P · (Ã1 − XDE)φ1(X) = 0. (3.36)

Putting (3.35) and (3.36) into (3.34), we finish the proof of (3.32).

Theorem 3.4. There exits a constant C such that∥∥∥∥∂(Ih,T u − u)

∂v

∥∥∥∥
0,T −

≤ Ch‖u‖2,T , v = x, y, (3.37)

for any u ∈ PH 2
int(T ) where T is a Type I interface element.

Proof. The result follows by letting XDE = Ã⊥
1 in (3.32) and (3.33), applying Theorem 2.2,

and applying arguments similar to those used in the proof of Theorem 3.2.

The estimation on T + is rather similar. We state the results in the following Lemmas and
Theorems without proof in order to reduce page usage. Let X = (x, y)T be a point in T +. Without
loss of generality, we can assume that line segments XA1 does not intersect with the interface and
DE, while line segment XAi , i = 2, 3, 4 meet � at Ãi , i = 2, 3, 4, see Fig. 6. Also, we assume
that Ai = (xi , yi)

T , i = 1, 2, 3, 4 and

Ãi = t̃iAi + (1 − t̃i )X = (̃xi , ỹi)
T , i = 2, 3, 4.

Lemma 3.7. Given a two-dimensional vector q, a point X ∈ T + and two real numbers r , d+,

then there exists a v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r , ∂2v+(X)
∂x∂y

= d+ and

q ·
4∑

i=1

[(Ai − X)φi(X)] =
4∑

i=2

[ − (
N+

DE
− I

)
q · (Ai − Ãi)φ1(X)

− (
N+

DE
− I

)
q · (

Ãi − X
(i)

DE

)
φ1(X)

]
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FIG. 6. A point X ∈ T + is connected to the four vertices by line segments in a Type I interface element.

− d+
[

4∑
i=2

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φ1(X)
]

+ (x1 − x)(y1 − y)φ1(X)

]

where X
(i)

DE
= (x̄i , ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.

Theorem 3.5. For any u ∈ PC2
int(T ), X = (x, y)T ∈ T +, we have

Ih,T u(X) − u(X) =
4∑

i=2

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)φi(X)

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)
φi(X)

] − ∂2u+(X)

∂x∂y

×
[

4∑
i=2

[
N+

DE

(
X

(i)s

DE
− Xs) · (

Ai − X
(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)φi(X)

+ (x̄i − x)(ȳi − y)φi(X)
] + (x1 − x)(y1 − y)φ1(X)

]
+

4∑
i=2

[
(N+(Ãi) − I )

∫ 1

0

d∇u+(tÃi + (1 − t)X)

dt
· (Ai − Ãi)dtφi(X)

+
∫ t̃i

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X)
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+
∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2 dtφi(X)

]

+
∫ 1

0
(1 − t)

d2u(tA1 + (1 − t)X)

dt2 dtφ1(X). (3.38)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.

We now let Ii , i = 1, 2, 3, 4 be the integral involving the vertices Ai , i = 1, 2, 3, 4 in (3.38).

Theorem 3.6. For any u ∈ PC3
int(T ), X = (x, y)T ∈ T +, we have

∂(Ih,T u(X) − u(X))

∂x
=

4∑
i=2

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂x

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂x

]

− ∂2u+(X)

∂x∂y

[ 4∑
i=2

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂x

+ N+
DE

(0, −1)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂x

− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂x

]
− (y1 − y)φ1(X)

+ (x1 − x)(y1 − y)
φ1(X)

∂x

]
+

4∑
i=1

Ii

φi(X)

∂x
. (3.39)

∂(Ih,T u(X) − u(X))

∂y
=

4∑
i=2

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂y

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂y

]

− ∂2u+(X)

∂x∂y

[ 4∑
i=2

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂y

+ N+
DE

(−1, 0)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂y

− (x̄i − x)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂y

]
− (x1 − x)φ1(X)

+ (x1 − x)(y1 − y)
φ1(X)

∂y

]
+

4∑
i=1

Ii

φi(X)

∂y
. (3.40)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 2, 3, 4 are arbitrary points on DE.
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Theorem 3.7. There exits a constant C such that

‖Ih,T u − u‖0,T + ≤ Ch2‖u‖2,T (3.41)

and ∥∥∥∥∂(Ih,T u − u)

∂v

∥∥∥∥
0,T +

≤ Ch‖u‖2,T , v = x, y (3.42)

for any u ∈ PH 2
int(T ), where T is a Type I interface element.

B. Interpolation Error on a Type II Interface Element

The estimate for Type II interface elements is similar to that for Type I interface elements, so
we only state the results in this section. Without loss of generality, we assume T ∈ Th is a
Type II interface element with vertices Ai = (xi , yi), i = 1, 2, 3, 4, such that A1, A2 ∈ T + and
A3, A4 ∈ T −, see Fig. 7.

We start with the estimation on T −. Let X = (x, y)T be a point in T −. Without loss of gen-
erality, we can assume that line segments XAi , i = 3, 4 do not intersect with the interface � and
DE, while line segment XAi , i = 1, 2 meet � at Ãi , i = 1, 2, see Fig. 7. Also, we assume that

Ãi = t̃iAi + (1 − t̃i )X = (̃xi , ỹi)
T , i = 1, 2

Lemma 3.8. For any v ∈ Sh(T ),

∇v(X) ·
4∑

i=1

(Ai − X)φi(X) =
2∑

i=1

[ − (
N−

DE
− I

)∇v(X) · (Ai − Ãi)φi(X)

− (
N−

DE
− I

)∇v(X) · (
Ãi − X

(i)

DE

)
φi(X)

]

FIG. 7. A point X ∈ T − is connected to the four vertices by line segments in a Type II interface element.
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− d−
[

2∑
i=1

[
N−

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φi(X)
]

+
4∑

i=3

[(xi − x)(yi − y)φi(X)]
]

where X
(i)

DE
= (x̄i , ȳi)

T , i = 1, 2 are arbitrary points on DE.

Lemma 3.9. Given a two-dimensional vector q, a point X ∈ T − and two real numbers r , d−,

then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r , ∂2v−(X)
∂x∂y

= d− and

q(X) ·
4∑

i=1

(Ai − X)φi(X) =
2∑

i=1

[ − (
N−

DE
− I

)
q · (Ai − Ãi)φi(X)

− (
N−

DE
− I

)
q · (

Ãi − X
(i)

DE

)
φi(X)

]
− d−

[
2∑

i=1

[
N−

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φi(X)
]

+
4∑

i=3

[(xi − x)(yi − y)φi(X)]
]

where X
(i)

DE
= (x̄i , ȳi)

T , i = 1, 2 are arbitrary points on DE.

Theorem 3.8. For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T −, we have

Ih,T u(X) − u(X) =
2∑

i=1

[(
N−(Ãi) − N−

DE

)∇u(X) · (Ai − Ãi)φi(X)

− (
N−

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)
φi(X)

]
− ∂2u−(X)

∂x∂y

[
2∑

i=1

[
N−

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φi(X)
]

+
4∑

i=3

(xi − x)(yi − y)φi(X)

]

+
2∑

i=1

[
(N−(Ãi) − I )

∫ 1

0

d∇u−(tÃi + (1 − t)X)

dt
· (Ai − Ãi)dtφi(X)
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+
∫ t̃i

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X)

+
∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2 dtφi(X)

]

+
4∑

i=3

∫ 1

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X) (3.43)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 1, 2 are arbitrary points on DE.

Let Ii , i = 1, 2, 3, 4 be the integral terms involving vertices Ai , i = 1, 2, 3, 4 in (3.43).

Theorem 3.9. For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T −, we have

∂(Ih,T u(X) − u(X))

∂x
=

2∑
i=1

[(
N−(Ãi) − N−

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂x

− (
N−

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂x

]

− ∂2u−(X)

∂x∂y

[
2∑

i=1

[
N−

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂x

+ N−
DE

(0, −1)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂x

− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂x

]

+
4∑

i=3

[
−(yi − y)φi(X) + (xi − x)(yi − y)

φi(X)

∂x

]]
+

4∑
i=1

Ii

φi(X)

∂x

(3.44)

∂(Ih,T u(X) − u(X))

∂y
=

2∑
i=1

[(
N−(Ãi) − N−

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂y

− (
N−

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂y

]

− ∂2u−(X)

∂x∂y

[
2∑

i=1

[
N−

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂y

+ N−
DE

(−1, 0)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂y
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− (x̄i − x)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂y

]

+
4∑

i=3

[
−(xi − x)φi(X) + (xi − x)(yi − y)

φi(X)

∂y

]]
+

4∑
i=1

Ii

φi(X)

∂y

(3.45)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 1, 2 are arbitrary points on DE.

Theorem 3.10. There exits a constant C such that

‖Ih,T u − u‖0,T − ≤ Ch2‖u‖2,T (3.46)

and ∥∥∥∥∂(Ih,T u − u)

∂v

∥∥∥∥
0,T −

≤ Ch‖u‖2,T , v = x, y, (3.47)

for any u ∈ PH 2
int(T ) where T is an arbitrary interface triangle.

As for the estimates on T +, we let X = (x, y)T be a point in T +. Without loss of gener-
ality, we assume that line segments XAi , i = 1, 2 do not intersect with the interface and DE,
while line segment XAi , i = 3, 4 meet � at Ãi , i = 3, 4, see Fig. 8. Also, we assume that
Ai = (xi , yi)

T , i = 1, 2, 3, 4 and

Ãi = t̃iAi + (1 − t̃i )X = (̃xi , ỹi)
T , i = 3, 4

Lemma 3.10. Given a two-dimensional vector q, a point X ∈ T + and two real numbers r , d+,

then there exists a function v ∈ Sh(T ) such that ∇v(X) = q, v(X) = r , ∂2v+(X)
∂x∂y

= d+ and

q(X) ·
4∑

i=1

(Ai − X)φi(X) =
4∑

i=3

[ − (
N+

DE
− I

)
q · (Ai − Ãi)φi(X)

− (
N+

DE
− I

)
q · (

Ãi − X
(i)

DE

)
φi(X)

]

FIG. 8. A point X ∈ T + is connected to the four vertices by line segments in a Type II interface element.
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− d+
[

4∑
i=3

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φi(X)
]

+
2∑

i=1

[(xi − x)(yi − y)φi(X)]
]

where X
(i)

DE
= (x̄i , ȳi)

T , i = 3, 4 are arbitrary points on DE.

Theorem 3.11. For any u ∈ PC2
int(T ) and X = (x, y)T ∈ T +, we have

Ih,T u(X) − u(X) =
4∑

i=3

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)φi(X)

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)
φi(X)

]
− ∂2u+(X)

∂x∂y

[
4∑

i=3

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)
φi(X)

+ (xi − x̄i)(yi − ȳi)φi(X) + (x̄i − x)(ȳi − y)φi(X)
]

+
2∑

i=1

(xi − x)(yi − y)φi(X)

]

+
4∑

i=3

[
(N+(Ãi) − I )

∫ 1

0

d∇u+(tÃi + (1 − t)X)

dt
· (Ai − Ãi)dtφi(X)

+
∫ t̃i

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X)

+
∫ 1

t̃i

(1 − t)
d2u(tAi + (1 − t)X)

dt2 dtφi(X)

]

+
2∑

i=1

∫ 1

0
(1 − t)

d2u(tAi + (1 − t)X)

dt2 dtφi(X) (3.48)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 3, 4 are arbitrary points on DE.

Let Ii , i = 1, 2, 3, 4 be the integral terms involving vertices Ai , i = 1, 2, 3, 4 in (3.48).

Theorem 3.12. For any u ∈ PC3
int(T ) and X = (x, y)T ∈ T +, we have

∂(Ih,T u(X) − u(X))

∂x
=

4∑
i=3

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂x

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂x

]
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− ∂2u+(X)

∂x∂y

[
4∑

i=3

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂x

+ N+
DE

(0, −1)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂x

− (ȳi − y)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂x

]

+
2∑

i=1

[
−(yi − y)φi(X) + (xi − x)(yi − y)

φi(X)

∂x

]]
+

4∑
i=1

Ii

φi(X)

∂x

(3.49)

∂(Ih,T u(X) − u(X))

∂y
=

4∑
i=3

[(
N+(Ãi) − N+

DE

)∇u(X) · (Ai − Ãi)
∂φi(X)

∂y

− (
N+

DE
− I

)∇u(X) · (
Ãi − X

(i)

DE

)φi(X)

∂y

]

− ∂2u+(X)

∂x∂y

[
4∑

i=3

[
N+

DE

(
X

(i)s

DE
− Xs

) · (
Ai − X

(i)

DE

)φi(X)

∂y

+ N+
DE

(−1, 0)T · (
Ai − X

(i)

DE

)
φi(X) + (xi − x̄i)(yi − ȳi)

φi(X)

∂y

− (x̄i − x)φi(X) + (x̄i − x)(ȳi − y)
φi(X)

∂y

]

+
2∑

i=1

[
−(xi − x)φi(X) + (xi − x)(yi − y)

φi(X)

∂y

]]
+

4∑
i=1

Ii

φi(X)

∂y

(3.50)

where X
(i)

DE
= (x̄i , ȳi)

T , i = 3, 4 are arbitrary points on DE.

Theorem 3.13. There exits a constant C such that

‖Ih,T u − u‖0,T + ≤ Ch2‖u‖2,T (3.51)

and ∥∥∥∥∂(Ih,T u − u)

∂v

∥∥∥∥
0,T +

≤ Ch‖u‖2,T , v = x, y, (3.52)

for any u ∈ PH 2
int(T ) where T is an arbitrary interface triangle.

C. Interpolation Error on �

We now ready to derive the error estimates for the interpolation Ihu in Sh(�).
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Theorem 3.14. There exists a constant C such that

‖Ihu − u‖0,� ≤ Ch2‖u‖2,�, (3.53)∥∥∥∥∂(Ihu − u)

∂s

∥∥∥∥
0,�

≤ Ch‖u‖2,�, s = x, y, (3.54)

for any u ∈ PH 2
int(�) and h > 0 small enough.

Proof. First we have ‖Ihu − u‖2
0,� = ∑

T ∈Th

‖Ih,T u − u‖2
0,T . If T is a Type I interface element,

by Theorem 3.2 and Theorem 3.7, we can get

‖Ih,T u − u‖2
0,T = ‖Ih,T u − u‖2

0,T − + ‖Ih,T u − u‖2
0,T + ≤ Ch4‖u‖2

2,T − + Ch4‖u‖2
2,T + ≤ Ch4‖u‖2

2,T

Similarly, if T is a Type II interface element, by Theorem 3.10 and Theorem 3.13, we can get

‖Ih,T u − u‖2
0,T ≤ Ch4‖u‖2

2,T

If T is a noninterface element, by the standard finite element interpolation error theory, we can get

‖Ih,T u − u‖2
0,T ≤ Ch4‖u‖2

2,T

Therefore, ‖Ihu−u‖2
0,� ≤ ∑

T ∈Th

Ch4‖u‖2
2,T = Ch4‖u‖2

2,� which leads to (3.53). Similar derivation

can be carried out to obtain (3.54).

IV. NUMERICAL EXAMPLES

We now present a group of numerical results to illustrate features of the bilinear IFE space. Errors
in both the bilinear IFE interpolant and the bilinear IFE solution to an interface problem will be
given. The error estimation for the related finite element method will be provided in a forthcoming
article.

For simplicity, we only present results obtained by using the bilinear IFE space based on uni-
formly rectangular Cartesian partitions in the rectangular domain � = (−1, 1) × (−1, 1). The
interface curve � is a circle with radius r0 = π/6.28 which separates � into two subdomains �−

and �+ with �− = {(x, y)|x2 + y2 ≤ r2
0 }.

First, we show numerical results for the bilinear IFE interpolant Ihu of the following function

u(x, y) =


rα

β− , if r ≤ r0,

rα

β+ +
(

1
β− − 1

β+

)
rα

0 , otherwise,
(4.55)

with α = 5, r = √
x2 + y2.

Table I contains actual errors of the IFE interpolant Ihu with various partition sizes h for
β− = 1, β+ = 10 which represents a moderate discontinuity in the coefficient. By simple
calculations, we can easily see that the data in this table satisfy

‖Ihu − u‖0 ≈ 1

4
‖Iĥu − u‖0, |Ihu − u|1 ≈ 1

2
|Iĥu − u|1,
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TABLE I. Errors in the interpolant Ihu when β− = 1, β+ = 10.

h ‖Ihu − u‖0 |Ihu − u|1
1/16 0.001479 0.05848
1/32 3.715 × 10−4 0.02918
1/64 9.321 × 10−5 0.01453
1/128 2.334 × 10−5 0.007264
1/256 5.840 × 10−6 0.003635

for h = ĥ/2. Using linear regression, we can also see that the data in this table obey

‖Ihu − u‖0 ≈ 0.3750h1.996, |Ihu − u|1 ≈ 0.9405h1.002

which clearly indicates that the interpolant converges to u with convergence rates O(h2) and O(h)

in the L2 norm and H 1 norm, respectively, as predicted by Theorem 3.14.
Table II contains actual errors of the IFE interpolant Ihu with various partition size h for

β− = 1, β+ = 10, 000 which represents a large discontinuity in the coefficient. Using linear
regression again, we can see that

‖Ihu − u‖0 ≈ 0.09557h1.954, |Ihu − u|1 ≈ 0.3582h1.030,

which are also in agreement with the error estimates given in Theorem 3.14.
Since this bilinear IFE space has an O(h2) (in L2-norm) and an O(h) (in H 1-norm) approxima-

tion capability, we naturally expect the FE method based on this IFE space to perform accordingly.
To confirm this numerically, we consider the interface problem defined by (1.1)–(1.4) in which the
boundary condition function g(x, y) and the source term f (x, y) are chosen such that the function
u given in (4.55) is the exact solution in the domain � with the interface curve � described above.

Table III contains actual errors of the bilinear IFE solutions uh with various partition size h for
the interface problem with the coefficient function β(x, y) with β− = 1, β+ = 10. We can easily
see that the data in the second and third columns of this table satisfy

‖uh − u‖0 ≈ 1

4
‖uĥ − u‖0, |uh − u|1 ≈ 1

2
|uĥ − u|1,

for h = ĥ/2. Using linear regression, we can also see that the data in this table obey

‖uh − u‖0 ≈ 0.2622h1.997, |uh − u|1 ≈ 0.8957 h0.9844,

which indicates that the bilinear IFE solution uh converges to the exact solution with convergence
rates O(h2) and O(h) in the L2 norm and H 1 norm, respectively. This is in agreement with those
error estimates for the bilinear IFE interpolant obtained in the previous section.

TABLE II. Errors in the interpolant Ihu when β− = 1, β+ = 10,000.

h ‖Ihu − u‖0 |Ihu − u|1
1/16 4.159 × 10−4 0.02089
1/32 1.104 × 10−4 0.01011
1/64 2.878 × 10−5 0.004832
1/128 7.323 × 10−6 0.002401
1/256 1.848 × 10−6 0.001209
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TABLE III. Errors of the IFE solutions for the case when β− = 1, β+ = 10.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞

1/16 0.001653 0.05882 9.500 × 10−4

1/32 4.100 × 10−4 0.02948 4.853 × 10−4

1/64 1.017 × 10−4 0.01482 3.256 × 10−4

1/128 2.542 × 10−5 0.007520 1.594 × 10−4

1/256 6.559 × 10−6 0.003841 7.410 × 10−5

However, numerical experiments indicate that the bilinear IFE solution does not always have
the second order convergence in the L∞ norm because the data in the fourth column of Table III
obey

|uh − u|∞ ≈ 0.01173h0.8967

which clearly shows that the rate at which uh converges to u is not O(h2). The question under
what conditions the bilinear IFE solution can have a second order convergence in the L∞ norm
is still open.

The bilinear IFE method also works well for the case in which the coefficient function has a
large jump, see Table IV. The errors in this group of computations obey

‖uh − u‖0 ≈ 0.1111h1.993, |uh − u|1 ≈ 0.3807h1.040,

which again are in agreement with those error estimates for the bilinear IFE interpolant.

V. CONCLUSIONS

In this article, we have discussed a bilinear IFE space that can be used to solve interface problems
of second-order elliptic partial differential equations. The partition of this bilinear IFE space can
be formed without consideration of the interface location. With this bilinear IFE space, a Cartesian
partition can be used to solve an interface problem with a rather arbitrary interface. The bilinear
IFE space is closely related to the standard finite element space formed by bilinear polynomials
except for functions over interface rectangles. Over an interface rectangle, piecewise bilinear IFE
functions are formed according to the jump conditions of the interface problem to be solved. We
have employed a multipoint Taylor expansion technique to analyze the interpolation errors of this
bilinear IFE space for functions in the Sobolev space related to the interface problems. It has been
shown that this bilinear IFE space has an approximation capability similar to that of the standard
bilinear FE space. The estimates for the interpolation error obtained here are critical for deriving
error estimates for the FE (or volume-element) solution to an interface problem based on this
bilinear IFE space.

TABLE IV. Errors of the IFE solutions for the case when β− = 1, β+ = 10,000.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞

1/16 4.299 × 10−4 0.02142 6.881 × 10−4

1/32 1.150 × 10−4 0.01049 2.400 × 10−4

1/64 2.828 × 10−5 0.004888 8.531 × 10−5

1/128 7.026 × 10−6 0.002419 3.286 × 10−5

1/256 1.743 × 10−6 0.001212 8.741 × 10−6
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