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A selective immersed discontinuous Galerkin
method for elliptic interface problems
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This article proposes a selective immersed discontinuous Galerkin method based on bilinear immersed finite elements
(IFE) for solving second-order elliptic interface problems. This method applies the discontinuous Galerkin formulation
wherever selected, such as those elements around an interface or a singular source, but the regular Galerkin formula-
tion everywhere else. A selective bilinear IFE space is constructed and applied to the selective immersed discontinuous
Galerkin method based on either the symmetric or nonsymmetric interior penalty discontinuous Galerkin formulation.
The new method can solve an interface problem by a rectangular mesh with local mesh refinement independent of the
interface even if its geometry is nontrivial. Meanwhile, if desired, its computational cost can be maintained very close to
that of the standard Galerkin IFE method. It is shown that the selective bilinear IFE space has the optimal approximation
capability expected from piecewise bilinear polynomials. Numerical examples are provided to demonstrate features of
this method, including the effectiveness of local mesh refinement around the interface and the sensitivity to the penalty
parameters. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Because of its flexibility for mesh/polynomial refinement, localizability, stability, parallelizability, and less numerical diffusion/dipersion,
the discontinuous Galerkin(DG) method has been widely extended and applied to solve many partial differential equations. Since its
introduction in the 1970s [1], numerous DG methods have been developed, such as the total variation bounded Runge–Kutta discon-
tinuous Galerkin method [2–8], the local discontinuous Galerkin method [9–16], the interior penalty discontinuous Galerkin (IPDG)
method [17–23], the mixed DG method [24–26], the central DG method [27–29], the hybridizable DG method [30–32], the space-time
DG method [33, 34], the positivity-preserving DG method [35, 36], and many others [37–47]. Some recent developments and analysis
of DG methods can be also found in [48–58] and references therein. For more details, we refer readers to the survey papers [59–61].

The IPDG method [17–21, 23] was introduced to solve second-order elliptic equations. One important feature of this method is its
capability to easily incorporate p and h local refinement. Therefore, it is natural to apply them to elliptic interface problems because
local refinement is usually needed around an interface. However, the IPDG method needs much more finite element basis functions
than the standard Galerkin finite element method on the same mesh. This leads to a much larger algebraic system to be solved with
a significantly higher computational cost. Hence, it is of great importance to find out how to take advantage of the local refinement
feature of DG methods while keeping the computational cost as close as possible to that of standard Galerkin finite element meth-
ods. Coupling [62–64] or hybridization [65, 66] of DG methods and conforming finite element methods are efficient ways to resolve this
challenge. Following this idea, we will introduce a selective immersed discontinuous Galerkin (SIDG) method for solving a second-order
elliptic interface problem on a mesh independent of the interface. The basic idea is to use the IPDG formulation wherever local refine-
ment is needed, such as around an interface or a singular source, but the standard Galerkin formulation everywhere else. The SIDG is
originated from the DG methods, but it has the potential to be more efficient than the standard DG methods in the literature because
the degree of freedom is increased only in the selected area for the mesh refinement.
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Figure 1. A sketch of the domain for the interface problem.

Consider the following typical boundary value problem

�r � .ˇru/D f , .x, y/ 2�, (1.1)

uj@� D g, (1.2)

together with the jump conditions on the interface � :

Œu�j� D 0, (1.3)

�
ˇ
@u

@n

�
j� D 0. (1.4)

As illustrated in Figure 1, without loss of generality, we assume that�� IR2 is a rectangular domain, the interface� is a curve separating

� into two subdomains��,�C such that�D�� [�C [ � , and the coefficient ˇ.x, y/ is a piecewise constant function defined by

ˇ.x, y/D

�
ˇ�, .x, y/ 2��,
ˇC, .x, y/ 2�C.

Interface problem (1.1)–(1.4) can be solved by conventional finite difference or finite element methods, provided that a so-called body-
fitting mesh is utilized [67–71]. However, there are many applications, such as moving interface problems [72] and Particle-In-Cell
method for plasma particle simulation [73–77], in which it is preferable to solve the interface problem on a structured Cartesian mesh.

Therefore, different numerical methods on Cartesian mesh have been developed for interface problems, including immersed bound-
ary method [78–80], immersed interface method [81–83], matched interface and boundary methods [84, 85], cut-cell methods [86, 87],
embedded boundary methods [88], Cartesian grid methods [89, 90], generalized finite element methods [91–94], extended finite
element methods [95–97], and Eulerian–Lagrangian localized adjoint methods [98–100].

Those methods based on finite difference formulation on Cartesian mesh, such as the immersed interface method, is efficient for
solving the interface problems. But it has no guaranty of a symmetric positive definite linear system for the interface problem (1.1)–
(1.4). It is also not straightforward to carry out the mesh refinement for this method. With a similar ‘immersed’ idea under the framework
of finite element methods, the immersed finite elements (IFEs) have been developed [72, 83, 101–126]. Similar to the aforementioned
numerical methods, the IFEs allow the elements to be cut through by the interface; hence, a mesh independent of the interface, such
as a Cartesian mesh, can be used for solving interface problems. Furthermore, the linear system arising from the IFEs is naturally sym-
metric positive definite. The combination of the proposed selective DG formulation and the IFEs allows an adaptive structured mesh
to be used for solving interface problems while keeping the computational cost close to that of the standard Galerkin method. In this
article, we will focus on applying a bilinear IFE [109, 117] space in the SIDG method.

The rest of this article is organized as follows. In Section 2, we discuss the formulation of the SIDG method. In Section 3, we form
a selective bilinear IFE space and apply it in the SIDG method for solving elliptic interface problems. In Section 4, we carry out the
interpolation error estimation for the selective bilinear IFE space. In Section 5, we present some numerical examples to illustrate the
features of this SIDG method.

2. Formulation of the selective immersed discontinuous Galerkin method

In this section, we will formulate the SIDG method for second-order elliptic interface problems described by (1.1)–(1.4). The basic idea
can be extended to other problems.
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Figure 2. Two typical rectangular interface elements.

First, we introduce some conventions. For a setƒ ��, we letƒs Dƒ\�s, sD˙. Let Th .h > 0/ be a mesh of the solution domain
�, and let Eh be the set of edges of elements in Th. The mesh consists of interface elements whose interiors are cut by interfaces and
the rest of elements called noninterface elements. Interface edges and noninterface edges have a similar meaning. Consider a typical
rectangular element T 2 Th. Assume that the four vertices of T are Ai , i D 1, 2, 3, 4 in the counterclockwise order, with Ai D .xi , yi/

t . If T
is an interface element, then we use D D .xD , yD/

T and E D .xE , yE /
T to denote the interface points on its edges. The line DE separates

T into two subelements: QT� and QTC. Here, QT� is the polygon contained in T sharing at least one vertex of T� inside��, and the other
subelement is QTC. There are two types of interface elements. We call an interface element a Type I interface element if its interface
points, D and E, are on two adjacent edges; otherwise, we call this element a Type II interface element. Related illustrations can be seen
in Figure 2.

We let Eo
h denote the collection of all interior element edges of mesh Th and let ES � Eo

h denote the collection of selected element

edges where a discontinuity will be allowed by the DG formulation. Also, we let ED
h denote the collection of element edges on the

boundary and let �S be the union of elements in Th having at least one of its edges in ES. The key point of the SIDG method is to
properly select these two sets based on the features of the problem to be solved. For our model interface problem, the discontinuity
of the coefficient results in the lack of smoothness across the interface. In order to apply local mesh refinement in the vicinity of the
interface to obtain a better approximation, we can choose�S to be the union of all interface elements, and ES to be the set of all edges
of elements in�S.

To describe the formulation, we will use the following spaces:

PH1
S.Th/D

n
v : Œv�je D 0 8e 2 Eh=ES; vjT 2 C.T/\ H1.T/ 8T 2 Th

o
,

PH2
int.ƒ/D

�
u 2 C.ƒ/, ujƒs 2 H2.ƒs/, sD�,C,

�
ˇ
@u

@n�

�
�\ƒ

D 0

�
.

Here,ƒ��, whose interior is cut through by � .
Following the usual DG framework [26], we assume that the solution u of the model interface problem (1.1)–(1.4) is in PH2

int.�/. Let

.�, �/ƒ denote the usual L2 inner product of two functions on a setƒ. For each e 2 Eh, we let T1, T2 be the two elements in Th such that
eD @T1\@T2 and let � be the unit normal vector of e exterior to T2. For a rectangular mesh, we define T2 to be the element on the right
hand side of e if e is vertical, and the element over e if e is horizontal. Also, 8e 2 ED

h , we let � be the unit normal vector of e exterior to
�. On each e 2 ES, we define the usual jump and average functions as follows

Œv� D .vjT2 /je � .vjT1/je, fvg D
1

2
..vjT2/jeC .vjT1/je/.

8e 2 ED
h , the jump and average functions are just the function itself.

Multiplying (1.1) by v 2 PH1
S.Th/, integrating over each element T 2 Th, applying Green’s formula, and summing over T 2 Th,

we have

�
X

e2ED
h

.ˇru � �, v/e �
X

e2ES

Œ.ˇru � �, v/@T2\e � .ˇru � �, v/@T1\e�C
X

T2Th

.ˇru,rv/T D
X

T2Th

.f , v/T . (2.5)

In addition, assuming ˇru � � is continuous almost everywhere on each e 2 ES, we haveX
e2ES

.Œˇru � ��, fvg/e D 0.

Then, applying the algebraic identity

ab� cdD
1

2
.aC c/.b� d/C

1

2
.a� c/.bC d/

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002

9
8

5



X. HE, T. LIN AND Y. LIN

to the second term in (2.5), we getX
T2Th

.ˇru,rv/T �
X

e2ES

.fˇru � �g, Œv�/e �
X

e2ED
h

.ˇru � �, v/e D
X

T2Th

.f , v/T .

Define

b.u, v/D
X

T2Th

.ˇru,rv/T , (2.6)

JS.u, v/D
X

e2ES

.fˇru � �g, Œv�/eC
X

e2ED
h

.ˇru � �, v/e, (2.7)

aS.u, v/D b.u, v/� JS.u, v/, (2.8)

L.v/D
X

T2Th

.f , v/T . (2.9)

Then, a weak formulation of (1.1) is to find a u 2 PH2
int.�/ such that

aS.u, v/D L.v/, 8v 2 PH1
S.Th/. (2.10)

Remark 2.1
Because u 2 PH2

int.�/, we have .ˇru � �/je 2 H1=2.e/. In fact, we can use the space H1.�/ instead of the space PH2
int.�/ for u to reduce

the smoothness requirement. That is, we can find a u 2 H1.�/ such that (2.10) is true. Then we have .ˇru � �/je 2 H�1=2.e/.

Because the bilinear form of the above weak formulation is neither symmetric nor positive definite, we follow [17, 19, 23, 26, 127] to
generate a symmetric positive definite discontinuous weak formulation as follows. Consider the following penalty term

JS� .u, v/D
X

e2ES

�e.Œu�, Œv�/eC
X

e2ED
h

�e.u, v/e,

where �e is the penalty parameter. Define

a�S� .u, v/D b.u, v/� JS.u, v/� JS.v, u/C JS� .u, v/,

L�� .v/D L.v/�
X

e2ED
h

.ˇrv � �, g/eC
X

e2ED
h

�e.g, v/e.

Then, the symmetric selective discontinuous weak formulation is to find a u 2 PH2
int.�/ such that

a�S� .u, v/D L�� .v/, 8v 2 PH1
S.Th/. (2.11)

On the basis of the convergence analysis for the related DG finite element method in [17, 19, 23, 26], we usually need to choose the
penalty parameter such that

�e D
C�
h

, (2.12)

where C� is a constant such that C� > C0 for some positive constant C0. This restriction can be relaxed by the nonsymmetric formulation
[18, 20, 21, 26]: Find a u 2 PH2

int.�/ such that

aCS� .u, v/D LC
�
.v/, 8v 2 PH1

S.Th/, (2.13)

where

aCS� .u, v/D b.u, v/� JS.u, v/C JS.v, u/C JS� .u, v/,

LC
�
.v/D L.v/C

X
e2ED

h

.ˇrv � �, g/eC
X

e2ED
h

�e.g, v/e.

The analysis in [18, 20, 21, 26] suggests the following choice for the penalty parameter:

�e D
C��

h
, (2.14)

where C�� is a just positive constant.
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Then, we can use the IFEs [109, 110, 117–119] and the weak formulations aforementioned to solve an interface problem on a rectan-
gular mesh or a structured triangular mesh. Suppose we have constructed a selective IFE space SS

h.�/� PH1
S.Th/ according to a certain

selecting rule for ES, then our symmetric SIDG method is to find uh 2 SS
h.�/ such that

a�S� .uh, vh/D L�� .vh/, 8vh 2 SS
h.�/, (2.15)

and our nonsymmetric SIDG method is to find uh 2 SS
h.�/ such that

aCS� .uh, vh/D LC
�
.vh/, 8vh 2 SS

h.�/. (2.16)

Remark 2.2
The SIDG method depends on two key components: ES and SS

h.�/. ES and/or �S depend on the problem and our desire to use the

DG formulation at the locations needed. The selective immersed finite element space SS
h.�/ can then be defined according to ES,�S

and our desire to include other features, such as the need to control computational cost. As we can see later, a suitable choice of these
components can generate a convergent method for solving an interface problem on a rectangular mesh with local mesh refinement
capability at a reduced computational cost.

Remark 2.3
If we choose ES to be the set of all interior edges, then �S is the union of all elements in Th, and the SIDG method becomes the usual
IPDG method with IFEs [111].

3. Selective immersed discontinuous Galerkin method with a bilinear immersed finite
elements space

In this section, we will first use the bilinear IFE functions introduced in [109, 119, 128] to form a selective bilinear IFE space SSb
h .�/. Then,

we apply this space to the SIDG method for solving the interface problem and discuss its advantages.

3.1. A selective bilinear immersed finite elements space

First, we briefly recall the piecewise bilinear IFE functions discussed in [109, 119, 128]. On a typical interface rectangular element T 2 Th
with 4 vertices Ai D .xi , yi/

t , iD 1, 2, 3, 4, see Figure 2 for the illustration, we define the piecewise bilinear IFE functions as follows:

�.x, y/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

��.x, y/D a�xC b�yC c�C d�xy, .x, y/ 2 QT�,

�C.x, y/D aCxC bCyC cCC dCxy, .x, y/ 2 QTC,

��.D/D �C.D/, ��.E/D �C.E/, d� D dC,R
DE

�
ˇ�

@��

@nDE
� ˇC @�

C

@nDE

�
dsD 0.

(3.17)

We let �i.X/ be the bilinear IFE function such that

�i.xj , yj/D

�
1, if iD j,
0, if i¤ j,

for 1 � i, j � 4, and we call them the bilinear IFE nodal basis functions on an interface element T . For every element T 2 Th, we let
Sh.T/ D spanf�i , i D 1, 2, 3, 4g, where �i , i D 1, 2, 3, 4, are the standard bilinear nodal basis functions for a noninterface element T ;
otherwise, �i , iD 1, 2, 3, 4, are the immersed bilinear basis functions defined previously.

Remark 3.1
On an interface element T , according to [109], every function� 2 Sh.T/ satisfies the flux jump condition on�\T exactly in the following
weak sense: Z

�\T

�
ˇ
@�

@n
�

�
j�dsD 0.

We need to introduce a few terminologies for describing the selective bilinear IFE space. Assume that we start from a rectangular
mesh T 0

h of � without any hanging nodes, and we call its elements the 0th level elements. If needed, we refine T 0
h once by dividing

each of a collection of selected elements in T 0
h into 4 congruent subrectangles to generate a new mesh T 1

h . We call those new smaller

rectangles in T 1
h the first level elements. Repeating this procedure to the nth level, we can generate a refined mesh Th D T n

h , which
can contain elements from level 0 to level n.

For each node .xN, yN/
t in a mesh Th, we define its associated elements to be those elements in which .xN, yN/

t is a vertex. For
example, the associated elements of node K in Figure 3 are�NKIL and�JEKN, but�EBFI is not an associated element of node K even
though it is a neighboring element of K . The associated elements of node I in Figure 3 are�NKIL,�EBFI,�IFCG, and�HIGD. We then
use Th,N � Th to represent the collection of all associated elements of a node .xN, yN/

t .

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002

9
8

7



X. HE, T. LIN AND Y. LIN

Figure 3. A sketch for the associated elements, coarsenable sets, and hanging nodes.

At each node .xN, yN/
t of Th, we also define a coarsenable set to be a subset Th,N,c � Th,N such that

(1)
ˇ̌
Th,N,c

ˇ̌
� 2, that is, Th,N,c must contain at least two associated elements of .xN, yN/

t .
(2) All elements in Th,N,c are in the same level.
(3) Each element in Th,N,c shares at least one element edge with another element in Th,N,c .

For example, for the node I in Figure 3,

f�EBFI,�IFCG,�HIGDg, f�EBFI,�IFCGg, f�IFCG,�HIGDg

are coarsenable sets, but f�EBFI, �HIGDg is not a coarsenable set. For node I, there is no coarsenable set containing�NKIL.
For each coarsenable set Th,N,c at a node .xN, yN/

t , we can define a piecewise bilinear function‰N,c as follows:

‰N,cjT2Th,N,c 2 Sh.T/, ‰N,c.xN, yN/D 1 but‰N,c is zero at other nodes,

‰N,cjT 62Th,N,c
D 0, ‰N,cj[Th,N,c is continuous at all nodes in Th,N,c .

Then, we define the selective global bilinear IFE basis functions associated with each node .xN, yN/
t 2 Th as follows:

Step 1: For each associated element TN,i 2 Th,N , we define a piecewise bilinear function ‰N,i associated with .xN , yN/
t by the zero

extension of the local bilinear IFE or FE nodal basis function �.x, y/ on TN,i such that‰N,i.xN, yN/D 1.
Step 2: We select a collection of coarsenable sets Th,N,cj , j D 1, 2, � � � , mN and introduce piecewise bilinear functions ‰N,cj , j D

1, 2, � � � , mN.
Step 3: We discard every ‰N,i defined earlier if TN,i is contained in one of the selected coarsenable sets Th,N,cj , j D 1, 2, � � � , mN

and call all the remaining piecewise bilinear functions the selective global bilinear IFE basis functions associated with the
.xN, yN/

t .

Finally, we define the selective bilinear IFE space SSb
h .�/ to be the space spanned by the selective global bilinear IFE basis functions

associated with all the nodes in Th.

Remark 3.2
We note that in forming the global nodal basis functions associated with a node .xN, yN/

t , Step 3 actually replaces those functions‰N,i

with smaller supports by a function‰N,cj with a larger support provided that TN,i 2 Th,N,cj . This makes it possible to construct SSb
h .�/ of

a lower dimension. Also, this step is very similar to the coarsening step in an adaptive mesh refinement procedure.

The selection of coarsenable sets at each node in the Step 2 is up to the user of this method. A user can use this opportunity to include
desirable features in the method. One necessary requirement is to make sure that the global bilinear IFE basis functions associated with
each node are linearly independent. We describe two specific rules for selecting coarsenable sets at each node so that this necessary
requirement is fulfilled.

Selective rule 1: At each node .xN, yN/
t of Th, we select only the largest coarsenable set that doesn’t include any interface element.

For example, in Figure 3, suppose �AJNM is the only interface element around node N, then the coarsenable set to be used N is
f�JEKN,�NKIL,�MNLHg according to Selective rule 1.

9
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Selective rule 2: At each node .xN, yN/
t of Th, if .xN , yN/

t is also a node of T 0
h , then we select only the largest coarsenable set which

doesn’t include any interface element. If .xN, yN/
t is not a node of T 0

h , we don’t select any coarsenable set.

For example, suppose the T 0
h consists of elements�AEIH,�EBFI,�IFCG, and�HIGD in Figure 3, and we refine�AEIH into four con-

gruent rectangular elements to form the mesh Th. If�AJNM is the only interface element, then we don’t select any coarsenable set for
nodes J, K , L, M, N but select the coarsenable set f�EBFI,�IFCG,�HIGDg for node I.

Now, we use the selective bilinear IFE space SSb
h .�/� PH1

S.Th/ and the selective DG formulations introduced in the previous section

to construct the SIDG method with bilinear IFE as follows: find uh 2 SSb
h .�/ such that

a�S� .uh, vh/D L�� .vh/, 8vh 2 SSb
h .�/ (3.18)

or find uh 2 SSb
h .�/ such that

aCS� .uh, vh/D LC
�
.vh/, 8vh 2 SSb

h .�/. (3.19)

3.2. Advantages of the selective immersed discontinuous Galerkin method

In this section, we will first point out a limitation of Galerkin finite element method for using an adaptive Cartesian mesh. Then we
will explain how the combination of the SIDG method and bilinear IFE allows us to form an efficient numerical method with adaptive
Cartesian mesh for solving interface problems.

In a Galerkin method based on Lagrange type finite elements, the involved finite element space can be described by the global nodal
basis functions. These global basis functions are often required to have certain continuity at each node in the mesh. When a global basis
function is restricted to an element, it is either the zero function or becomes one of the local basis function in that element. If we refine
the mesh, new nodes usually need to be introduced. A new node becomes a so called hanging node if it is in the interior of an edge
of an element. At a hanging node, the global basis function of the original type usually cannot be defined. As remarked in [129], the
construction of a conforming finite element space on a mesh with hanging nodes is a nontrivial matter. Techniques using continuity
constraints to handle hanging nodes in finite element methods based on the conforming Galerkin formulation have been developed
in [129, 130]. However, IFEs are nonconforming because of their discontinuity across edges between two interface elements, and this
makes the ideas in [129, 130] not directly applicable to hanging nodes in the IFE method with local refinement. On the other hand, the
DG formulation can be naturally employed in local refinement without the concern of hanging nodes because it allows interelement
discontinuity. This motivates us to combine the DG formulation with IFEs for solving interface problems on Cartesian meshes with
local refinement.

For a hanging nodes in a SIDG method, we can find the element in which this hanging node is a vertex and use the corresponding
local nodal basis to introduce a global basis at this hanging node. For example, for the hanging node K in Figure 3, we can define a
global nodal basis from the local nodal basis at K in element �NKIL and another global nodal basis from the local nodal basis at K in
element�JEKN. Because there is no local nodal basis at K in element�EBFI, no global nodal basis is introduced at K with respect to this
element. This is why the SIDG method does not have the limitation of hanging nodes and can allow us to employ the mesh refinement
locally at the places needed.

Meanwhile, the IFE feature allows us to use structured meshes for interface problems; hence, the SIDG method based on IFE spaces
will allow us to use locally adaptive structured meshes for solving interface problems with nontrivial interfaces. That is, in a structured
mesh, we can refine any region again and again while keeping the mesh in the remaining region coarse. For example, we can repeatedly
refine the interface elements along the interface locally, see Figure 4, if the solution/physics changes drastically across the interface.
This is very important for maintaining the efficiency of mesh refinement.

We would like to note that the local refinement capability is a common feature for all DG methods. Therefore, the usual IPDG method
with IFEs also has this advantage. However, as mentioned in the introduction section, the traditional IPDG formulation increases the
computational cost by a significant amount compared with the standard Galerkin formulation. In the following, we will explain how
the selective feature in the SIDG method can help to keep the computational cost low while retaining the local mesh refinement with
structured mesh.

Figure 4. The left plot is a usual rectangular mesh without refinement. In the middle plot, each interface element in the left mesh is refined into four congruent

rectangular elements. In the right plot, each interface element in the middle graph is refined into four congruent rectangular elements.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002
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Table I. Comparison of the number of global basis functions used
by the Galerkin method, the interior penalty discontinuous Galerkin
(IPDG) method, and the selective immersed discontinuous Galerkin
(SIDG) method.

h NG NIPDG NSIDG

1/16 961 4092 1357
1/32 3721 16 380 4749
1/64 15 625 65 532 17 681
1/128 64 009 262 140 68 113
1/256 259 081 1 048 572 267 281

Assuming we use the SIDG method to solve an interface problem with a rectangular mesh. The SIDG method will use only one global
nodal basis function at each node outside of�S, which is the same as that used in the IFE method based on the usual Galerkin formu-
lation. The SIDG method only increases the number of global nodal basis functions at those nodes inside�S. If the nodes inside�S are
much less than those outside of �S, then the SIDG method doesn’t increase the number of global nodal basis functions significantly
compared with the method based on the Galerkin formulation. To be specific, let us consider a rectangular mesh Th on � with N � N
nodes, and assume that L of its nodes are in�S. On this mesh, the Galerkin IFE method will use .N�2/2 global nodal basis functions; the
IPDG method with bilinear IFEs needs 4N2 � 8N global nodal basis functions. However, the SIDG method will use at most .N� 2/2C 3L
global nodal basis functions. Assume that the SIDG method uses the DG formulation only in interface elements, and without loss of
generality, we can assume LD CN for some constant C. In this case, the number of global nodal basis functions for the SIDG method is
at most .N� 2/2C 3CN, which is much closer to .N� 2/2 than 4N2 � 8N when N is large.

We can also observe the efficiency of the SIDG method in actual computations. Tables 5.1, 7.1, and 7.6 in [128], Table II and Table X
in Section 5 present the solution errors of Galerkin IFE method, the IPDG IFE method, and the SIDG method for the same example
described in Section 5 with ˇ� D 1 and ˇC D 10. From these tables, we can see that all of these methods achieve comparable
accuracy on the same mesh. To be specific, we have used the Selective rule 2 in Section 3.1 for the SIDG method.

However, the dimensions of these three methods are not at the same level. For example, let us consider a domain�D Œ�1, 1��Œ�1, 1�
with the interface curve � D f.x, y/ : x2 C y2 D .�=6.28/2g. Note that a rectangular Cartesian mesh with a step size h has . 2

h C 1/2

nodes. Let NG, NIPDG, and NSIDG denote the number of global basis functions used by Galerkin method, the IPDG method, and the SIDG
method separately. Then, we get the following table:

The datum in Table I shows that NG
NSIDG

becomes closer and closer to 1 when the mesh size h becomes smaller, but NIPDG stays around
four times of NG. This means that to solve an interface problem by the IPDG IFE method with a comparable accuracy, we need to solve a
linear system whose number of unknowns is about four times that of the SIDG method. Therefore, the selective feature can be used to
effectively reduce the computational cost in the SIDG method without the loss of its local refinement capability on structured meshes.
Also, we note that the SIDG method needs less computations in assembling its algebraic system because it only computes the jump
terms for the edges in ES instead of Eh in the IPDG IFE method. Even though the Galerkin method uses less number of global basis
functions than the SIDG method, it does have a much more stringent requirement on mesh refinement.

4. Approximation capability of the selective bilinear immersed finite elements space

In this section, we will analyze the approximation capability of the selective bilinear IFE space by estimating its interpolation error. This
is also an important preparation for the convergence analysis of the selective DG methods, which is an interesting future work. We use
C to represent a generic constant whose value might be different from line to line. Unless otherwise specified, all the generic constants
C in the presentation in the succeeding text are independent of the interface and mesh. Define the following space

PCm
int.ƒ/D

�
u 2 C.ƒ/, ujƒs 2 Cm.ƒs/, sD�,C,

�
ˇ
@u

@n�

�
�\ƒ

D 0

�
, m� 1,

whereƒ��whose interior is cut through by � . Consider a mesh Th with step size h. In the discussion in the succeeding text, we need
three assumptions on the interface curve � and the mesh Th.

(H1): The family of meshes Th with h > 0 is regular.
(H2): The interface curve � is defined by a piecewise C2 function, and the mesh Th is formed such that the subset of � in any

interface element is C2.
(H3): The interface � is smooth enough so that PC3

int.T/ is dense in PH2
int.T/ for any interface element T of Th.

9
9
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To describe the errors in our analysis in the succeeding text, we need to use the following slightly modified definitions for the norms
involving functions of Sh.T/ for interface elements T 2 Th. First, for each wh 2 Sh.T/, we define

kwhk
2
s,T D kwhk

2
s,QTC
Ckwhk

2
s,QT�

, sD 0, 1, 2,

jwhj
2
s,T D jwhj

2
s,QTC
C jwhj

2
s,QT�

, sD 0, 1, 2.

For each wh 2 Sh.T/ and u 2 PH2
int.T/, wh˙ u is also a piecewise H2 function on T , and we define

kwh˙ uk2
s,T D kwh ˙ uk2

s,QTC\TC
Ckwh˙ uk2

s,QTC\T�
Ckwh˙ uk2

s,QT�\TC
Ckwh ˙ uk2

s,QT�\T�
, sD 0, 1, 2,

jwh˙ uj2s,T D jwh˙ uj2
s,QTC\TC

C jwh ˙ uj2
s,QTC\T�

C jwh˙ uj2
s,QT�\TC

C jwh˙ uj2
s,QT�\T�

, sD 0, 1, 2.

Then, for each wh 2 SSb
h .�/ and u 2 PH2

int.�/, we define

kuk2
s,Th
D
X

T2Th

kuk2
s,T , sD 0, 1, 2,

juj2s,Th
D
X

T2Th

juj2s,T , sD 0, 1, 2,

kwh˙ uk2
s,Th
D
X

T2Th

kwh˙ uk2
s,T , sD 0, 1, 2,

jwh˙ uj2s,Th
D
X

T2Th

jwh˙ uj2s,T , sD 0, 1, 2.

Now, we define the bilinear IFE interpolation. For a function u 2 PH2
int.T/, T 2 Th, we let Ih,T u 2 Sh.T/ be its interpolant such that

Ih,T u.X/D u.X/when X is a vertex of T . In general, for an element T with vertices A1, A2, A3, A4, we have

Ih,T u.X/D u.A1/�1.X/C u.A2/�2.X/C u.A3/�3.X/C u.A4/�4.X/.

Accordingly, for a function u 2 PH2
int.�/, we let Ihu 2 SSb

h .�/ be its interpolant such that IhujT D Ih,T .ujT / for any T 2 Th. For more details
about the bilinear IFE interpolation, we refer readers to [109, 128]. Now, we recall the following theorem from [109, 128].

Theorem 4.1
There exists a constant C independent of the interfaces such that

kIhu� uk0,Th � Ch2kuk2,Th , (4.20)

jIhu� uj1,Th � Chkuk2,Th . (4.21)

for any u 2 PH2
int.�/ and h > 0 small enough.

Now, we estimate the interpolation error in the H2 seminorm for bilinear IFE interpolation. Because the arguments used in this esti-
mation are rather similar to that of [109, 128], we only show the major steps of the proof here. We will also recall and directly use some
conclusions in [109,128]. We would like to note that the two pieces of local IFE functions in [109] are defined on T� and TC, but the two
pieces of local IFE functions in this article and [128] are defined on QT� and QTC. Even though this difference causes a slight difference in
the proof, the arguments in [109] can still go through for the IFE functions defined in this article and [128]. Instead of discussing only

T� and TC as in [109], we need to discuss QT� \ T�, QT� \ TC, QTC \ T�, and QTC \ TC with the same arguments as used in this article
and in [128].

We call a point X D .x, y/T in an interface element T an obscure point if one of the four line segments connecting X and the vertices
of T intersects the interface more than once. Without loss of generality, we discuss interface elements that do not contain any obscure
point because the arguments used in the succeeding text can be readily extended to handle the interface elements with obscure
points.

Without loss of generality, we assume T 2 Th is a Type I interface element(see Figure 2) with vertices Ai D .xi , yi/, i D 1, 2, 3, 4, such
that A1 2 TC and Ai 2 T�, i D 2, 3, 4, see Figure 5. We start with the estimation on QT� \ T�. Consider a point X D .x, y/ 2 QT� \ T�

and assume that line segments XAi , iD 2, 3, 4 do not intersect with the interface and DE, whereas line segment XA1 meets � at eA1 (see
Figure 5) with

eA1 D QtA1C .1� Qt/X D .ex1,ey1/

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002
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Figure 5. An interface rectangle element with no obscure point. A point X 2 QT� \ T� is connected to the four vertices by line segments in a Type I interface

element.

for a certain Qt. For any point eA 2 � , let eA? be the orthogonal projection of QA onto DE (see Figure 5). Let 	D ˇ�

ˇC
, n.eA /D .nx.eA /, ny.eA //

be the unit normal vector of � at eA, n.DE/ D .nx , ny/ be the unit normal vector of DE, XDE D .Nx, Ny/ be a point on DE, Xs
DE
D . Ny, Nx/ and

Xs D . y, x/. For every function u.x, y/ satisfying the interface jump conditions (1.3) and (1.4), we define

N�.eA /D
0@ ny.eA /2C 	nx.eA /2 .	� 1/nx.eA /ny.eA /
.	� 1/nx.eA /ny.eA / nx.eA /2C 	ny.eA /2

1A ,

N�
DE
D

0@ n2
y C 	n2

x .	� 1/nxny

.	� 1/nxny n2
x C 	n2

y

1A .

In the discussion in the succeeding text, we let Ii , i D 1, 2, 3, 4 be the integral terms involving the vertices Ai , i D 1, 2, 3, 4 of
Theorem 3.1 in [109]. With the same arguments as those used for Theorems 3.1 and 3.3 in [109], we can prove the following lemma.

Lemma 4.1
For any u 2 PC3

int.T/ and X D .x, y/ 2 QT� \ T�, we have

@2
�

Ih,T u.X/� u.X/
	

@x@y
D .N�

�eA1
	
� N�

DE
/ru.X/ � .A1 �eA1/

@2�1.X/

@x@y
� .N�

DE
� I/ru.X/ � .eA1 � XDE/

@2�1.X/

@x@y

�
@2u�.X/

@x@y

�
N�

DE

�
Xs

DE
� Xs

�
� .A1 � XDE/

@2�1.X/

@x@y
C N�

DE
.�1, 0/ � .A1 � XDE/

@�1.X/

@x

C N�
DE
.0,�1/ � .A1 � XDE/

@�1.X/

@y
C .x1 � Nx/. y1 � Ny/

@2�1.X/

@x@y
C 2�1.X/� . Ny � y/

@�1.X/

@y

� .Nx � x/
@�1.X/

@x
C .Nx � x/. Ny � y/

@2�1.X/

@x@y
C

4X
iD2

�
2�i.X/� . yi � y/

@�i.X/

@y

�.xi � x/
@�i.X/

@x
C .xi � x/. yi � y/

@2�i.X/

@x@y

��
C

4X
iD1

Ii
@2�i.X/

@x@y
.

(4.22)

9
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Proof
From Theorem 3.3 in [109], we can get

@2.Ih,T u.X/� u.X//

@x@y
D

@

@y

h�
N�

�eA1
	
� N�

DE

�
ru.X/ �

�
A1 �eA1

	i @�1.X/

@x
C .N�

�eA1
	
� N�

DE
/ru.X/ �

�
A1 �eA1

	 @2�1.X/

@x@y

�
@

@y

h�
N�

DE
� I
�
ru.X/ �

�eA1 � XDE

	i @�1.X/

@x
� .N�

DE
� I/ru.X/ �

�eA1 � XDE

	 @2�1.X/

@x@y

�
@3u�.X/

@x@y2

�
N�

DE

�
Xs

DE
� Xs

�
�
�

A1 � XDE

	 @�1.X/

@x
C N�

DE
.0,�1/ �

�
A1 � XDE

	
�1.X/

C .x1 � Nx/. y1 � Ny/
@�1.X/

@x
� . Ny � y/�1.X/C .Nx � x/. Ny � y/

@�1.X/

@x
C

4X
iD2

�
� . yi � y/�i.X/

C.xi � x/. yi � y/
@�i.X/

@x

��
�
@2u�.X/

@x@y

�
N�

DE

�
Xs

DE
� Xs

�
�
�

A1 � XDE

	 @2�1.X/

@x@y

C N�
DE
.�1, 0/ �

�
A1 � XDE

	 @�1.X/

@x
C N�

DE
.0,�1/ �

�
A1 � XDE

	 @�1.X/

@y

C .x1 � Nx/. y1 � Ny/
@2�1.X/

@x@y
C �1.X/� . Ny � y/

@�1.X/

@y
� .Nx � x/

@�1.X/

@x
C .Nx � x/. Ny � y/

@2�1.X/

@x@y

C

4X
iD2

�
�i.X/� . yi � y/

@�i.X/

@y
� .xi � x/

@�i.X/

@x
C .xi � x/. yi � y/

@2�i.X/

@x@y

�#

C

4X
iD1

@Ii

@y

@�i.X/

@x
C

4X
iD1

Ii
@2�i.X/

@x@y
.

(4.23)

Taking the first derivative with respect to y on both sides of (3.27) and (3.28) in [109], we can get

@Ii

@y
D�P � .Ai � X/, iD 2, 3, 4 where PD

@

@y
ru.X/,

@I1
@y
D�P � .A1 � X/�

@

@y



.N�

�eA1
	
� I/ru.X/

�
A1 �eA1

	�
.

Hence,

4X
iD1

@Ii

@y

@�i.X/

@x
D�P �

4X
iD1

.Ai � X/
@�i.X/

@x
�
@

@y


�
N�

�eA1
	
� I
	
ru.X/

�
A1 �eA1

	� @�1.X/

@x
. (4.24)

Taking the derivative for x on both sides of the conclusion of Lemma 3.6 in [109], we get

q �
4X

iD1

.Ai � X/
@�i.X/

@x
D�q �

4X
iD1

.�1, 0/�i.X/�
�

N�
DE
� I
�

q �
�

A1 �eA1
	 @�1.X/

@x
�
�

N�
DE
� I
�

q �
�eA1 � XDE

	 @�1.X/

@x

� d�
�

N�
DE

�
Xs

DE
� Xs

�
�
�

A1 � XDE

	 @�1.X/

@x
C N�

DE
.0,�1/ �

�
A1 � XDE

	
�1.X/

C .x1 � Nx/. y1 � Ny/
@�1.X/

@x
� . Ny � y/�1.X/C .Nx � x/. Ny � y/

@�1.X/

@x

C

4X
iD2

�
�. yi � y/�i.X/C .xi � x/. yi � y/

@�i.X/

@x

�#
,

(4.25)

where q is any given two-dimensional vector and d� is any given real number.
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Letting qD P, d� D @3u�.X/
@x@y2 in (4.25) and applying it to the first term on the right hand side of (4.24), we have

4X
iD1

@Ii

@y

@�i.X/

@x
D�

@2u�.X/

@x@y

4X
iD1

�i.X/C
�

N�
DE
� I
�

P �
�

A1 �eA1
	 @�1.X/

@x
C
�

N�
DE
� I
�

P �
�eA1 � XDE

	 @�1.X/

@x

C
@3u�.X/

@x@y2

�
N�

DE

�
Xs

DE
� Xs

�
�
�

A1 � XDE

	 @�1.X/

@x
C N�

DE
.0,�1/ �

�
A1 � XDE

	
�1.X/

C .x1 � Nx/. y1 � Ny/
@�1.X/

@x
� . Ny � y/�1.X/C .Nx � x/. Ny � y/

@�1.X/

@x

C

4X
iD2

�
�. yi � y/�i.X/C .xi � x/. yi � y/

@�i.X/

@x

�#

�
@

@y


�
N�

�eA1
	
� I
	
ru.X/

�
A1 �eA1

	� @�1.X/

@x
.

(4.26)

By direct calculations, we also have

@

@y

�
N�

�eA1
	
� N�

DE

�
ru.X/ �

�
A1 �eA1

	 @�1.X/

@x
�
@

@y

h�
N�

DE
� I
�
ru.X/ �

�eA1 � XDE

	i @�1.X/

@x

�
@

@y


�
N�

�eA1
	
� I
	
ru.X/

�
A1 �eA1

	� @�1.X/

@x
C
�

N�
DE
� I
�

P �
�

A1 �eA1
	 @�1.X/

@x

C
�

N�
DE
� I
�

P �
�eA1 � XDE

	 @�1.X/

@x
D 0.

(4.27)

Plugging (4.26) and (4.27) into (4.23), we finish the proof of (4.22). �

Lemma 4.2
There exists a constant C such that ��Ih,T u� u

��
2,QT�\T� � C kuk2,T (4.28)

for any u 2 PH2
int.T/where T is a Type I interface element.

Proof
Because of assumption .H3/, we only need to show that (4.28) is true for any u 2 PC3

int.T/. Assume that the interface element T is related

to the reference element OT D Œ0, 1�� Œ0, 1� by the usual affine mapping:

X D F. OX/D BCM OX , X D



x
y

�
, OX D



Ox
Oy

�
. (4.29)

Then, define O�i. OX/ to be a nodal bilinear IFE basis function in the reference element OT , which is corresponding to the local nodal bilinear
IFE basis function �i.X/. Assume

M�1 D



m11 m12

m21 m22

�
.

Then,

@2�i.X/

@x@y
D
@2 O�i. OX/

@Ox@Oy
.m12m21Cm11m22/.

Because the mesh is regular, we have kMk � Ch�1, then jmijj � Ch�1; hence, jm12m21 C m11m22j � Ch�2. Note that @
2 O�i. OX/
@Ox@Oy

is a

bounded constant, then ˇ̌̌̌
@2�i.X/

@x@y

ˇ̌̌̌
� Ch�2.

Because @2.Ih,T u/
@x2 D

@2.Ih,T u/
@y2 D 0, we complete the proof by applying the same arguments of Theorem 3.2 and Theorem 3.4 in [109] to

Lemma 4.1. �

We can get similar conclusions for QT� \ TC, QTC \ T�, and QTC \ TC of the Type I interface elements. The conclusions on each Type II
interface element are also similar. Finally, with the same idea as Theorem 3.14 in [109], we get the following theorem.

Theorem 4.2
8u 2 PH2

int.�/, there exists a constant C independent of the interfaces such that

jIhu� uj2,Th � Ckuk2,Th . (4.30)9
9

4
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5. Numerical examples

In this section, we will provide numerical examples to demonstrate features of the SIDG method with bilinear IFEs. Because large errors
usually appear in interface elements, we will try to reduce the error by refining interface elements as follows. With a chosen mesh size
h, we start from a rectangular Cartesian mesh T 0

h without any hanging nodes, see the left plot of Figure 4. Then, we divide each inter-

face element of T 0
h into four congruent rectangular elements to obtain the first-level refined mesh T 1

h , see the middle plot of Figure 4.

We continue to refine the mesh T 1
h by dividing each interface element of T 1

h into four congruent rectangular elements to obtain the

second-level refined mesh T 2
h , see the right plot of Figure 4. Repeating this process, we can obtain the nth level refined mesh Th D T n

h
to be used for solving the interface problem. How many levels of refinements to be used in Th depends on the refinement rule chosen
in the computation. All the numerical results in this section are generated by the SIDG method with Selecting rule 2 described in
Section 3.1. In this case,�S is actually the union of all interface elements in T 0

h , and ES is the collection of all element edges of Th that

are in�S.
To generate the numerical results, we consider the interface problem defined by (1.1)–(1.4) on � D Œ�1, 1� � Œ�1, 1�. The interface

curve � is a circle with radius r0 D �=6.28 which separates� into two subdomains�� and�C with�� D f.x, y/ j x2C y2 � r2
0g. The

coefficient function is

ˇ.x, y/D

�
ˇ� D 1, .x, y/ 2��,
ˇC, .x, y/ 2�C,

with ˇC to be chosen to reflect different jump ratios in the coefficient. The boundary condition function g.x, y/, and the source term
f .x, y/ are chosen such that the following function u is the exact solution.

u.x, y/D

8<:
r˛

ˇ�
, if r � r0,

r˛

ˇC
C
�

1
ˇ�
� 1
ˇC

�
r˛0 , otherwise,

with ˛ D 3, r D
p

x2C y2. We will present numerical results for two cases with ˇC D 10 and ˇC D 1 000 000, which represent a
moderate and large jumps in the coefficient, respectively.

5.1. Numerical results for the symmetric selective immersed discontinuous Galerkin method without local mesh refinement

In this section, we will consider the convergence of the symmetric SIDG solutions with bilinear IFEs in the L2 and H1 norms on rectan-
gular meshes Th D T 0

h without local refinement. Table II contains the errors of the solutions uh with various mesh sizes h, ˇC D 10 and

C� D 1000. Table III and IV contain the errors of the solutions uh with various mesh sizes h, ˇC D 1 000 000 and C� D 1000, 0.0001,
respectively.

Using linear regression, we can see that the data in Table II obey

kuh � uk0 � 0.2309 h1.9933, juh � uj1 � 0.8318 h1.0431,

Table II. Errors of the symmetric selective immersed discontinuous
Galerkin (SIDG) solutions without mesh refinement for ˇC D 10 and
C�=1000.

h kuh � uk0 juh � uj1

1=16 9.3598� 10�4 4.6983� 10�2

1=32 2.2376� 10�4 2.2336� 10�2

1=64 5.8624� 10�5 1.0568� 10�2

1=128 1.4462� 10�5 5.2162� 10�3

1=256 3.6792� 10�6 2.6168� 10�3

Table III. Errors of the symmetric selective immersed discontinu-
ous Galerkin (SIDG) solutions without mesh refinement for ˇC D
1 000 000 and C�=1000.

h kuh � uk0 juh � uj1

1=16 9.5450� 10�4 4.5462� 10�2

1=32 2.4804� 10�4 2.1547� 10�2

1=64 5.9188� 10�5 9.5477� 10�3

1=128 1.4644� 10�5 4.6827� 10�3

1=256 3.8419� 10�6 2.3697� 10�3

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002
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Table IV. Errors of the symmetric selective immersed discontinu-
ous Galerkin (SIDG) solutions without mesh refinement for ˇC D
1 000 000 and C�=0.0001.

h kuh � uk0 juh � uj1

1=16 7.0060� 10�3 2.2073� 100

1=32 1.0443� 10�2 3.0078� 100

1=64 3.0155� 10�4 3.6226� 10�1

1=128 2.3456� 10�3 6.1921� 10�1

1=256 5.4700� 10�5 2.8866� 10�1

Table V. L2 norm errors of the symmetric selective immersed discontinuous Galerkin (SIDG) solutions
on different meshes for ˇC D 10 and C�=100 000.

h 1
8

1
16

1
32

Original mesh 2.1366� 10�2 4.7971� 10�3 7.2254� 10�4

First-level refined mesh 4.3277� 10�3 8.2111� 10�4 1.7169� 10�4

Second-level refined mesh 2.2492� 10�3 5.9412� 10�4 1.5710� 10�4

Third-level refined mesh 2.0740� 10�3 5.8111� 10�4 1.5364� 10�4

Fourth-level refined mesh 2.0634� 10�3 5.7744� 10�4 1.5281� 10�4

Table VI. H1 norm errors of the symmetric selective immersed discontinuous Galerkin (SIDG) solutions
on different meshes for ˇC D 10 and C�=100 000.

h 1
8

1
16

1
32

Original mesh 1.7413� 10�1 7.2458� 10�2 2.7376� 10�2

First-level refined mesh 7.8639� 10�2 3.9678� 10�2 1.9964� 10�2

Second-level refined mesh 6.6543� 10�2 3.7186� 10�2 1.9708� 10�2

Third-level refined mesh 6.5186� 10�2 3.7008� 10�2 1.9664� 10�2

Fourth-level refined mesh 6.5084� 10�2 3.6968� 10�2 1.9656� 10�2

and the data in Table III obey

kuh � uk0 � 0.2460 h1.9996, juh � uj1 � 0.8720 h1.0726.

These data indicate that, with a large penalty constant C�, the symmetric SIDG solutions converge to the exact solution with
convergence rates O.h2/ in the L2 norm and O.h/ in the H1 norm.

The analysis for the IPDG method suggests that the symmetric SIDG requires a large enough penalty constant C� to perform satisfac-
torily. The issue here is that there is no specific guide for the choice of the penalty parameter C�. Furthermore, in using the symmetric
SIDG method, an arbitrarily chosen value for C� may hinder its performance, and the oscillating errors in Table IV corroborates this
numerically.

5.2. Numerical results for the symmetric selective immersed discontinuous Galerkin method with local mesh refinement

For the symmetric SIDG method with bilinear IFE, we now observe the effect of local mesh refinement by comparing the numerical
errors in the L2, H1, and discrete infinity norms on meshes with different refinement levels using the step sizes hD 1

8 , 1
16 , and 1

32 . Tables V
to VII contain numerical results generated on meshes from the 0th level to the fourth level. Table V is for the L2 norm errors, Table VI
contains the H1 norm errors, and Table VII contains the discrete infinity norm errors. Note that h is the mesh size for T 0

h . From these
tables, we can see that the first-level and second-level mesh refinements dramatically reduce the global errors. Table VIII shows the
discrete infinity norm errors in noninterface elements and interface elements separately for the third-level and the fourth-level mesh
refinements. Because the error in the noninterface area becomes more and more dominant during the repeated local refinements in
interface elements, the third-level and fourth-level mesh refinements do not reduce the global error much any more.

We can also observe the effect of local mesh refinement from the error on the interface elements. Table IX contains the discrete infin-
ity norm errors of the solutions uh on the interface elements for meshes with the step sizes h D 1

8 , 1
16 , 1

32 . From this table, we can see
that when interface elements are refined, the error around the interface decreases quickly. Therefore, the SIDG method can efficiently
control the error across the interface where interesting physics happens in many applications.

9
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Table VII. Discrete infinity norm errors of the symmetric selective immersed discontinuous Galerkin
(SIDG) solutions on different meshes for ˇC D 10 and C�=100 000.

h 1
8

1
16

1
32

Original mesh 3.0810� 10�2 8.0050� 10�3 3.2539� 10�3

First-level refined mesh 8.3872� 10�3 1.9109� 10�3 4.6486� 10�4

Second-level refined mesh 5.0352� 10�3 1.4862� 10�3 4.0208� 10�4

Third-level refined mesh 4.6433� 10�3 1.4302� 10�3 3.7831� 10�4

Fourth-level refined mesh 4.6150� 10�3 1.4105� 10�3 3.7724� 10�4

Table VIII. Discrete infinity norm errors of the symmetric selective immersed discontinuous Galerkin (SIDG) solutions
on interface elements and noninterface elements for ˇC D 10 and C�=100 000.

element type hD 1
8 hD 1

16 hD 1
32

Third-level refined mesh noninterface elements 4.6433� 10�3 1.4302� 10�3 3.7831� 10�4

interface elements 3.7265� 10�4 1.9026� 10�4 8.3144� 10�5

Fourth-level refined mesh noninterface elements 4.6150� 10�3 1.4105� 10�3 3.7724� 10�4

interface elements 2.5030� 10�4 9.3606� 10�5 3.1081� 10�5

Table IX. Discrete infinity norm errors of the symmetric selective immersed discontinuous Galerkin
(SIDG) solutions on interface elements for ˇC D 10 and C�=100 000.

h 1
8

1
16

1
32

Original mesh 2.7754� 10�2 8.0050� 10�3 3.2539� 10�3

First-level refined mesh 5.4905� 10�3 1.7120� 10�3 3.1164� 10�4

Second-level refined mesh 1.7126� 10�3 6.2751� 10�4 1.6193� 10�4

Third-level refined mesh 3.7265� 10�4 1.9026� 10�4 8.3144� 10�5

Fourth-level refined mesh 2.5030� 10�4 9.3606� 10�5 3.1081� 10�5

Table X. Errors of the nonsymmetric selective immersed discontinu-
ous Galerkin (SIDG) solutions without mesh refinement for ˇC D 10
and C��=1000.

h kuh � uk0 juh � uj1

1=8 4.8417� 10�3 9.4182� 10�2

1=16 1.2938� 10�3 4.6984� 10�2

1=32 3.1571� 10�4 2.2336� 10�2

1=64 8.1634� 10�5 1.0568� 10�2

1=128 2.0260� 10�5 5.2162� 10�3

1=256 5.1259� 10�6 2.6168� 10�3

5.3. Numerical results for the nonsymmetric selective immersed discontinuous Galerkin method

In this section, we will numerically demonstrate the convergence of the nonsymmetric SIDG method and its insensitivity on the choice
of the penalty parameter C��. Table X contains the error in the solution uh for various mesh sizes h, ˇC D 10, and the penalty con-
stant C�� D 1000. Table XI and XII contain the error in the solution uh for various mesh sizes h, ˇC D 1000000, and penalty constants
C�� D 1000 and 0.0001 separately. All of these data are generated on meshes Th D T 0

h with the specified mesh size h.
Using linear regression, we can also see that the data in Table X obey

kuh � uk0 � 0.3056 h1.9817, juh � uj1 � 0.8244 h1.0412,

the data in Table XI obey

kuh � uk0 � 0.2176 h1.9756, juh � uj1 � 0.8532 h1.0682,

and the data in Table XII obey

kuh � uk0 � 0.1753 h1.9831, juh � uj1 � 0.8303 h1.0634,

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 37 983–1002
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Table XI. Errors of the nonsymmetric selective immersed discontin-
uous Galerkin (SIDG) solutions without mesh refinement for ˇC D
1 000 000 and C��=1000.

h kuh � uk0 juh � uj1

1=8 3.3558� 10�3 9.0901� 10�2

1=16 9.4698� 10�4 4.5722� 10�2

1=32 2.4617� 10�4 2.1560� 10�2

1=64 5.8874� 10�5 9.5491� 10�3

1=128 1.4523� 10�5 4.6839� 10�3

1=256 3.7641� 10�6 2.3559� 10�3

Table XII. Errors of the nonsymmetric selective
immersed discontinuous Galerkin (SIDG) solutions
without mesh refinement for ˇC D 1 000 000 and
C��=0.0001.

h kuh � uk0 juh � uj1

1=8 4.1938� 10�3 8.9981� 10�2

1=16 5.6185� 10�4 4.5020� 10�2

1=32 1.1305� 10�4 2.0943� 10�2

1=64 5.4539� 10�5 9.5756� 10�3

1=128 1.2871� 10�5 4.6820� 10�3

1=256 3.0983� 10�6 2.3497� 10�3

and these data indicate the optimal convergence of the nonsymmetric SIDG solutions in the L2 norm and the H1 norm for the penalty
constants C�� D 1000 and 0.0001. This numerically suggests that the nonsymmetric SIDG is insensitive to the choice of the penalty
parameter C��. Assigning an arbitrary positive value to C�� seems to be enough for the nonsymmetric SIDG method to produce
satisfactory numerical solutions to an interface problem.

In our numerical experiments, we have also observed that the effect of the local mesh refinement on the nonsymmetric SIDG method
is very similar to that reported for the symmetric SIDG method in the previous section; hence, we omit the related datum here to reduce
the presentation.

6. Conclusion

In this paper, following the framework of the IPDG method, we have developed the SIDG method for solving interface problems in
which the DG formulation is applied only at selected locations. We use the nodal basis functions of the bilinear IFE to construct a selec-
tive bilinear IFE space by imposing a certain selective rule. We also analyze the approximation capability of this space and apply it to
the SIDG method.

The combination of a DG formulation and the IFE makes it possible to solve interface problems efficiently by a rectangular mesh
with local mesh refinement, even if the interface has a nontrivial geometry. The selective feature of this method can be used to reduce
the computational cost and/or incorporate desirable features in the numerical solver. Our interpolation error estimates and numerical
examples show that the finite element solutions generated by this method have the optimal approximation capability. The numerical
results also demonstrate the efficiency of the local mesh refinement.
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