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Motivated by the need to handle complex boundary conditions efficiently and accurately 
in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear 
immersed finite element (IFE) method with non-homogeneous flux jump conditions for 
solving electrostatic field involving complex boundary conditions using structured meshes 
independent of the interface. This method treats an object boundary as part of the 
simulation domain and solves the electric field at the boundary as an interface problem. 
In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function 
is designed for each interface element to capture the electric field jump on the interface. 
Numerical experiments are provided to demonstrate the optimal convergence rates in L2

and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method 
for simulations involving charging of a complex dielectric surface in a plasma. A numerical 
study of plasma–surface interactions at the lunar terminator is presented to demonstrate 
the applicability of the new method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Particle-in-Cell (PIC) method is a standard tool to model the interactions of a rarefied plasma with complex surfaces 
of different types of objects. In PIC simulations of plasma–object interaction, the objects’ surfaces divide the domain into two 
or more sub-domains. In order to take into account the electrical interactions between the objects and plasma, the following 
three-dimensional interface elliptic equation involving the electric field (E) discontinuity across the interface needs to be 
considered for the electric potential φ(X) [12,30,68]:
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Fig. 1. A sketch of the interface problem.

−∇ · (ε∇φ(X)
) = ρ(X), X = (x, y, z) ∈ �− ∪ �+, (1.1)

φ(X)|�D = g(X), (1.2)
∂φ(X)

∂n�N

|�N = p(X), (1.3)

together with the jump conditions across the interface �:

[φ(X)]|� = 0, (1.4)[
ε
∂φ(X)

∂n�

]∣∣∣∣
�

= q(X) = −(ε2E2 − ε1E1) · n� = −σs. (1.5)

Here, see the sketch in Fig. 1, without loss of generality, we assume that � ⊂ R
3 is a box domain, the interface � is a 

curved surface separating � into two sub-domains (�− and �+) such that � = �− ∪ �+ ∪ �, �D and �N are the Dirichlet 
and Neumann boundaries such that ∂� = �D ∪ �N , n�N is the unit outer normal vector of �N , n� is the unit normal vector 
of � pointing from �− to �+ , Ei (i = 1, 2) is the electric field in the medium i, and the material-dependent coefficient 
ε(x, y) is a piecewise constant function defined by

ε(X) =
{

ε−, X ∈ �−,

ε+, X ∈ �+.

Because PIC simulations spend a significant amount of time on locating a huge number of simulation particles in the 
mesh at each iteration, it is preferable to utilize structured meshes that can deal with the complex interfaces. However, 
when conventional numerical methods [3,5,8,28,59] are used to solve the interface problem (1.1)–(1.5), body-fitting meshes, 
which are unstructured, need to be utilized in order to guarantee these methods’ performance. Therefore, the immersed 
finite element (IFE) methods, which were developed for solving interface problems on meshes independent of interface [1,
6,9,15,19,22,23,26,27,31,39–41,43–47,49,50,53,69], have been integrated into the PIC method as the electric field solver on 
structured meshes. This resulted in the IFE-PIC method [7,11,33,37,51,52,64,68], which has been employed in the modeling 
of plasma flow in ion thrusters and plume–spacecraft interactions. In these applications, the electric potentials of the objects 
are assumed to be fixed and known, which yields the homogeneous flux jump condition across the interface for the interface 
model. Therefore, the existing IFE-PIC method and 3D IFE method [34,58,63] consider only the homogeneous flux jump 
condition.

This study concerns application problems involving a dielectric object immersed in a plasma. The surface potential on 
a dielectric surface is determined by local charge deposition, which results in a non-homogeneous flux jump (i.e. electric 
field) conditions across the interface. In this paper, we develop a three-dimensional immersed finite element method for 
the second order interface elliptic problems with non-homogeneous flux jump condition, and integrate it to the PIC method. 
This new IFE-PIC method allows one to solve self-consistently the surface potential of a complex dielectric object and the 
plasma flow directly from local charge deposition on the surface.

The basic idea of the new IFE method is to locally enrich the 3D linear IFE space in [34] by adding new piecewise 
polynomials that can approximate the non-homogeneous flux jump conditions satisfactorily [24]. The major difficulty for 
proposing the new IFE-PIC method lies in the dynamic interaction between the IFE and PIC methods, especially the accu-
mulation of the surface charging q expressed by surface charge density σs as shown in Fig. 1b. In addition to the traditional 
advantages of the IFE and PIC methods, another practical advantage of this new method is the convenience to implement 
it based on the existing 3D IFE-PIC package for homogeneous interface conditions since the new method keeps the basic 
framework of the existing IFE space and the method developed in [34].

This new IFE-PIC method is applied to study plasma–surface interactions at the lunar terminator. Without a global 
magnetic field, the lunar surface is directly exposed to the solar radiation and the space plasma environments. Substantial 
studies have been carried out to understand the near surface plasma environment on the Moon [14,16,55–57,66–68]. The 
lunar polar region is of particular interest to future lunar exploration missions due to the availability of solar power and the 
existence of cold-trapped lunar water/ice. Modeling plasma–surface interactions in the terminator region is a challenging 
numerical problem as it requires the model to calculate the charging of a complex shaped surface terrain self-consistently 
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Fig. 2. Intersection topologies for tetrahedral elements.

with the plasma flow field. Previously, finite-difference based PIC models combining plasma simulation with the calculation 
of the electric field or charging at the boundary surface have been developed (for example, see [62,66,67] and references 
therein). All published modeling studies on plasma interactions with the lunar surface utilize finite-difference based PIC 
models which limit their applications to relatively simple surface configurations.

The rest of this article is organized as follows. In Section 2, we construct a 3D linear IFE space for the non-homogeneous 
flux jump conditions and discuss its approximation capability by using the finite element interpolation with a numerical 
example. In Section 3 we show how this new IFE space can be used in a Galerkin formulation to solve interface problems 
with a non-homogeneous flux jump, and a numerical example is presented to show the optimal convergence of the IFE 
method. In Section 4, the IFE method will be assembled into a PIC method, which is improved for accumulating the surface 
charge density, in order to form the new IFE-PIC method with non-homogeneous flux jump conditions. A 3D test case is 
also presented for validation. In Section 5, the new IFE-PIC method will be utilized to simulate the plasma environment on 
a local uneven surface terrain at the lunar terminator regions. Brief conclusions will be given in Section 6.

2. 3D linear IFE space for the non-homogeneous flux jump condition

In this section we construct and study a three-dimensional linear IFE space that can be used to approximate functions 
satisfying the interface conditions (1.4) and (1.5). We first recall the 3D local linear IFE space capable of handling the 
corresponding homogeneous jump condition [ε ∂φ(X)

∂n�
]|� = 0 from [34]. Then we describe how to enrich this space locally 

in each interface element by adding a new IFE function that is constructed based on the non-homogeneous flux jump 
condition (1.5). The computation of the coefficients of the new IFE function will be discussed shortly. Finally, we define the 
corresponding global IFE space for the non-homogeneous jump condition and investigate on its approximation capability by 
utilizing the IFE interpolation with a numerical experiment.

First, we introduce a typical tetrahedron mesh Th on � that is independent of the interface �. When the mesh size is 
small enough, only a small portion of elements in Th are cut through by the interface � and we call them the interface 
elements. Most of the elements are non-interface elements. Without loss of generality, we only consider the following two 
typical intersection topologies (see Fig. 2) when the mesh size is small enough [34]:

1. Three-edge cut: The interface surface � intersects with the edges of an element T at three distinct points which are 
not on the same face of T .

2. Four-edge cut: The interface surface � intersect with the edges of an element T at four distinct points on four different 
edges, and each three of these intersection points are not on a line.

On a typical non-interface tetrahedron element T with vertices Ai(i = 1, 2, 3, 4), we can use the usual local 3D linear 
finite element space Sh(T ) = span{ψi(x, y), i = 1, 2, 3, 4} with 3D linear polynomials such that

ψi(A j) =
{

1, if i = j
0, if i �= j.

(2.6)

On the other hand, for each interface tetrahedron element T , we can use the 3D IFE functions developed in [34]. To describe 
these IFE functions on a typical interface element T , we use the strategy in [34] to select three points P1, P2, P3 on the 
intersection of the interface and T . Assume the intersection between the plane determined by these three points and T
is �T , which separates T into two sub-elements T − and T + , as shown in Fig. 3 (see [34] for more details). Then the IFE 
functions introduced in [34] are characterized by the following formula:
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Fig. 3. Two cases of possible three-edge cut in the reference element T̂ .

ϕ(x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ−(x, y, z) = a−x + b− y + c−z + d−, (x, y, z) ∈ T −,

ϕ+(x, y, z) = a+x + b+ y + c+z + d+, (x, y, z) ∈ T +,

ϕ−(P1) = ϕ+(P1), ϕ−(P2) = ϕ+(P2), ϕ−(P3) = ϕ+(P3),

ε+ ∂ϕ+
∂n − ε− ∂ϕ−

∂n = 0, on �T

(2.7)

where n = (n1, n2, n3) is the unit normal vector of �T pointing from T − to T + . It has been shown in [34] that, for each 
i = 1, 2, 3, 4, there exists a unique IFE function ϕi(x, y, z) such that

ϕi(A j) =
{

1, if i = j,
0, if i �= j.

(2.8)

Then the local 3D linear immersed finite element space is defined as Sh(T ) = span{ϕi(x, y, z), i = 1, 2, 3, 4} in [34], which 
can only handle the homogeneous flux jump conditions.

Furthermore, in order to handle the non-homogeneous flux jump conditions on an interface element T , we follow the 
idea in [24] to design the following 3D IFE function ϕT , J (x, y, z) which is zero at all the vertices of T but has a unit flux 
jump.

ϕT , J (x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ−
T , J (x, y, z) = a−

J x + b−
J y + c−

J z + d−
J , (x, y, z) ∈ T −,

ϕ+
T , J (x, y, z) = a+

J x + b+
J y + c+

J z + d+
J , (x, y, z) ∈ T +,

ϕ−
T , J (P1) = ϕ+

T , J (P1), ϕ−
T , J (P2) = ϕ+

T , J (P2), ϕ−
T , J (P3) = ϕ+

T , J (P3),

ε+ ∂ϕ+
T , J

∂n − ε− ∂ϕ−
T , J

∂n = 1, on �T

ϕT , J (A j) = 0, j = 1,2,3,4.

(2.9)

Then the new local 3D IFE space on the interface element can be defined as:

S J
h (T ) = span{ϕT , J (x, y, z),ϕi(x, y, z) : i = 1,2,3,4}. (2.10)

To shortly describe the computation of the coefficients in ϕT , J (x, y, z), we consider the reference element T̂ with vertices 
Âi (i = 1, 2, 3, 4) where Â1 = (1, 0, 0), Â2 = (0, 1, 0), Â3 = (0, 0, 1), and Â4 = (0, 0, 0). Consider the intersection case shown 
in the left panel of Fig. 3, assume the coordinates of the three points P1, P2, P3 are:

P1 = [ξ,0,0]T , P2 = [0, η,0]T , P3 = [0,0, ζ ]T , (2.11)

where 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1. Let n̂ = (n̂1, ̂n2, ̂n3) denote the unit normal vector of 	P1 P2 P3 pointing from 
T̂ − to T̂ + . Then, the eight equations arising from (2.9) are:

d+
J = ϕT , J (A4) = 0 (2.12)

a−
J + d−

J = ϕT , J (A1) = 0 (2.13)

b−
J + d−

J = ϕT , J (A2) = 0 (2.14)

c−
J + d−

J = ϕT , J (A3) = 0 (2.15)

ξa+ + d+ = ϕ+ (P1) = ϕ− (P1) = ξa− + d− (2.16)
J J T , J T , J J J
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ηb+
J + d+

J = ϕ+
T , J (P2) = ϕ−

T , J (P2) = ηb−
J + d−

J (2.17)

ζ c+
J + d+

J = ϕ+
T , J (P3) = ϕ−

T , J (P3) = ζ c−
J + d−

J (2.18)

ε+(n̂1a+
J + n̂2b+

J + n̂3c+
J ) − ε−(n̂1a−

J + n̂2b−
J + n̂3c−

J ) = 1. (2.19)

Solving these equations, we obtain the following unique set of coefficients, which guarantees the existence and uniqueness 
of the basis function ϕT , J :

a+
J = 1 − ξ

ξ
d−

J , b+
J = 1 − η

η
d−

J , c+
J = 1 − ζ

ζ
d−

J , d+
J = 0, (2.20)

a−
J = −d−

J , b−
J = −d−

J , c−
J = −d−

J , d−
J = λ1

ε+λ2 + ε−λ3
, (2.21)

where

λ1 = ξηζ, λ2 = n̂1(1 − ξ)ηζ + n̂2(1 − η)ξζ + n̂3(1 − ζ )ξη, λ3 = (n̂1 + n̂2 + n̂3)ξηζ.

Now we use the new local IFE space S J
h (T ) to define a new global 3D linear IFE space S J

h (�). Suppose there are N nodes 
and M interface elements in Th . Then, we define a piecewise 3D linear global nodal basis function � j(x, y, z) ( j = 1, · · · , N)

for each node (x j, y j, z j)
t of Th such that � j(x j, y j, z j) = 1 but � j is zero at other nodes, � j |T ∈ S J

h (T ) with a zero flux 
jump for any interface element T ∈ Th , and � j |T ∈ Sh(T ) for any non-interface element T ∈ Th . Additionally, we define 
a piecewise 3D linear global nodal basis function � Jk(x, y) (k = 1, · · · , M) for the kth interface element Tk of Th such 
that � Jk|Tk = φTk, J and � Jk is zero everywhere else. Finally, we define S J

h (�) = span{� j(x, y, z), � Jk(x, y, z) : j = 1, · · · , N;
k = 1, · · · , M}.

In the following, we will define the finite element interpolation in the new 3D linear IFE space S J
h (�) and utilize it to 

investigate the approximation capability of the space S J
h (�) for continuous functions that have a non-homogeneous flux 

jump across the interface.
For any subset � ⊂ � whose interior is cut through by the interface �, we define

P H2
int(�) =

{
φ ∈ C(�),φ|�s ∈ H2(�s), s = −,+,

[
ε

∂φ

∂n�

]
= q on � ∩ �

}
.

For a given function φ ∈ P H2
int(�), we first construct the local IFE interpolation on each element T in a mesh Th as follows. 

If T is a non-interface element, we define the interpolation of φ on T by

Ih,T φ(X) =
4∑

i=1

φ(Ai)ψi(X)

for X = (x, y, z) ∈ T . On an interface element T ∈ Th , we define the IFE interpolation of φ by

Ih,T φ(X) =
NT∑
i=1

φ(Ai)ϕi(X) + qT ϕT , J (X),

where

qT = 1∣∣�T
∣∣
∫
�T

qdS. (2.22)

Then the global IFE interpolation for a function φ ∈ P H2
int(�) can be defined as Ihφ ∈ S J

H (�) such that Ihφ|T = Ih,T (φ|T )

for any T ∈ Th . Using the properties of the local IFE functions, we can show that the IFE function Ihφ on an interface 
element T has the following features:

• Ih,T φ(Ai) = φ(Ai) (i = 1, 2, 3, 4) and this implies Ih,T φ(X) interpolates φ(X) on T .
• [

Ih,T φ
]
�T

= 0 which implies that Ih,T φ ∈ C0(T ) and Ih,T φ locally satisfies the interface condition (1.4).

All of these properties suggest that Ihφ should be a reasonable approximation to φ. The existing analysis works for 
different IFE spaces show that they have the optimal accuracy orders for the interpolation errors and hence the optimal ap-
proximation capability [2,20,21,42]. Here we use the following numerical example to demonstrate that Ihφ can approximate 
φ with an optimal convergence rate provided that φ has enough piecewise smoothness.

Consider � = (−1, 1) × (−1, 1) × (−1, 1). The interface � is a sphere centered at the origin (0, 0, 0) with radius r0 =
0.4051, which separates the domain into two subdomains �− and �+ with �− = {(x, y, z) : x2 + y2 + z2 ≤ r2}.
0
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Table 1
Errors in the 3D linear IFE interpolation Ihu.

h ‖Ihu − u‖0 |Ihu − u|1
1/20 0.00719936258 0.3061815025
1/25 0.00460761352 0.2449285280
1/32 0.00281226556 0.1913444061
1/40 0.00179986496 0.1530734428
1/50 0.00115190276 0.1224568242
1/64 0.00070306438 0.0956674239
1/80 0.00044996093 0.0765335987
1/100 0.00028797420 0.0612264756

The approximated function and coefficient ε are chosen to be

φ(x, y, z) = (x2 + y2 + z2)3/2 (2.23)

and

ε(x, y) =
{

ε− = 2, (x, y, z) ∈ �−,

ε+ = 1, (x, y, z) ∈ �+,

respectively. Note that φ(x, y, z) satisfies the following jump conditions:

[φ]� = 0,

[
ε
∂φ(X)

∂n�

]∣∣∣∣
�

= 3(ε+ − ε−)(x2 + y2 + z2).

Hence the flux jump is

q(x, y, z) = 3(ε+ − ε−)(x2 + y2 + z2). (2.24)

The errors of Ihφ in the L2 and semi-H1 norms are listed in Table 1. To generate data in this table, we use a Cartesian 
mesh Th for each h that is formed by partitioning � with boxes of size h × h × h, and then dividing each box into five 
tetrahedrons along the diagonal lines. Using the linear regression, we can see that the data in this table obey

‖Ihφ − φ‖0 ≈ 2.8798 h2.0000, |Ihφ − φ|1 ≈ 6.1250 h1.0001

which indicate that Ihφ can approximate φ optimally in both L2 norm and semi-H1 norm.

3. 3D linear IFE method for a model interface problem with non-homogeneous flux jump

In this section, we will introduce and numerically validate a Galerkin method with the new 3D IFE space S J
h (�) to solve 

a model interface problem with non-homogeneous flux jump condition.
First, we have the weak formulation for the model interface problem: find φ ∈ H1(�) such that∫

�

ε∇φ · ∇v dxdy =
∫
�

ρv dxdy +
∫
�N

pvds −
∫
�

qvds,∀ v ∈ H1
0D , (3.25)

where H1
0D(�) = {v ∈ H1(�) : v = 0 on �D}.

Based on a mesh Th of the solution domain �, we define

Nh = {(xi, yi, zi)
t ∈R

3 | (xi, yi, zi)
t is a node of Th},

N o
h = Nh ∩ (� ∪ �N),

N b
h = Nh ∩ �D ,

T i
h = {T ∈ Th | T is an interface element}.

Then, the IFE interpolation discussed in the previous section suggests we look for an IFE solution to the interface problem 
in the following form:

φh(X) =
∑

(x j,y j ,z j)∈N o
h

φ j� j(X) +
∑

(x j,y j ,z j)∈N b
h

g(X j)� j(X) +
∑

Tk∈T i
h

qT � Jk(X) (3.26)

with coefficient φ j to be determined, where g(X) and qT are given in (1.2) and (2.22) respectively.
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Table 2
The errors of the 3D linear IFE solutions for the interface problem.

h ‖uh − u‖0 |uh − u|1
1/20 0.0055169524 0.2419986152
1/25 0.0035467267 0.1925017621
1/32 0.0021499146 0.1493660743
1/40 0.0013533077 0.1188110521
1/50 0.0008688439 0.0947487154
1/64 0.0005292758 0.0738441154
1/80 0.0003362958 0.0589198287
1/100 0.0002153340 0.0470062393

Finally, using the weak form (3.25), we have the following equations for the IFE solution φh :

∑
(x j ,y j ,z j)∈N o

h

⎛
⎝ ∑

T ∈Th

∫
T

ε∇�i · ∇� jdX

⎞
⎠φ j

=
∫
�

ρ�idX +
∫
�N

p�ids −
∫
�

q�ids −
∑

(x j ,y j ,z j)∈N b
h

⎛
⎝ ∑

T ∈Th

∫
T

ε∇�i · ∇� jdX

⎞
⎠ g(X j)

−
∑

Tk∈T i
h

qT

⎛
⎜⎝∫

Tk

ε∇�i · ∇� JkdX

⎞
⎟⎠ , ∀i such that (xi, yi, zi) ∈ N o

h . (3.27)

The existing IFE methods in the literature have the optimal convergence rates expected from the utilized polynomials and 
provide symmetric positive definite matrices for fast solvers [10,17,18,25,38,48,70]. Here we present a numerical example to 
demonstrate the convergence of the new 3D IFE method solving interface problems with the non-homogeneous flux jump 
condition. In this example, the source term, boundary conditions, and interface conditions are chosen such that the exact 
solution φ(x, y, z) of (1.1)–(1.5) is defined by (2.23) and a Dirichlet boundary condition is imposed on the whole ∂�. We 
also use the same domains and parameters as in the example of the previous section.

The errors in the L2 and semi-H1 norms for the 3D linear IFE solutions are listed in Table 2 from which we have

‖φh − φ‖0 ≈ 2.3399 h2.0187, |φh − φ|1 ≈ 5.0914 h1.0178.

This demonstrates that the IFE method can solve the interface problems with non-homogeneous flux jump conditions with 
optimal convergence rates.

4. 3D IFE-PIC method with non-homogeneous flux jump conditions

In this section, we first discuss the integration of the non-homogeneous IFE solver for the electric potential into a legacy 
particle-in-cell (PIC) code which forms a new non-homogeneous IFE-PIC method. Then we provide a validation of the new 
IFE-PIC method on a 3D setup.

4.1. IFE-PIC method

In a PIC method, real plasma particles are usually represented by a number of simulation particles (also referred to as 
macro-particles or super-particles) distributed “freely” in the entire simulation domain, while the field quantities such as 
electric potential are discretized on a mesh. The quantities carried by the simulation particles are weighted onto the mesh 
nodes for the solution of the field, which is in turn interpolated at particle positions to update the velocity/position of the 
particles. Such data exchange between particles and field quantities will iterate for a desired number of steps to obtain the 
self-consistent solution of both plasma and fields.

For a collisionless, unmagnetized plasma under an electrostatic field, the trajectory of each charged particle is determined 
by Newton’s second law and Lorentz force:

F = q(E + v × B) = m
dv

dt
(4.28)

where F is the force, q is electric charge carried by each particle and v is the velocity vector, which is

v = dx

dt
(4.29)

where x is the position vector.
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Table 3
Normalization reference parameters.

Lref qref mref Tref �ref εref nref vref tref

λD e me Te kTe/e ε0 ne vẽ 1/ωpe

The electric field E is calculated from electric potential φ by

E = −∇φ (4.30)

where φ is determined by the electric potential interface problem (1.1)–(1.3) posed in a domain �.
In the study presented here, the external magnetic field B is neglected, which is valid for local plasma–surface interac-

tions on the Moon.
In order to reduce round-off errors when calculating too large or too small numerical values, the above governing 

equations are usually normalized with reference parameters. Those parameters are usually based on electrons in full-PIC 
simulations where both electrons and ions are represented by simulation particles, since they are much more mobile than 
ions. Following are the choices of reference parameters in the normalization.

The lengths are normalized by the Debye length, which is calculated as,

Lref = λD =
√

ε0kTe

nee2
(4.31)

where k is Boltzmann constant; Te is electron temperature; ne is the electron number density. The reference velocity is 
chosen to be electron thermal velocity:

vref = vte =
√

kTe

me
(4.32)

where me is electron mass. Physical time is normalized based on electron plasma frequency, which is,

1

tref
= ωpe =

√
4πnee2

me
(4.33)

in the unit of s−1. A full list of the reference parameters are summarized in Table 3.
With the above reference parameters, the dimensional quantities are normalized such as,

X̂ = X

Xref
(4.34)

where X̂ denotes the normalized (dimensionless) quantity.
Writing each dimensional quantity in terms of normalized quantity and reference quantity, and plugging back into the 

dimensional form of the governing equations, one would get the following normalized system for the PIC code package,

F̂ = q̂Ê = m̂
dv̂

dt̂
(4.35)

v̂ = dx̂

dt̂
(4.36)

∇ · (ε̂∇�̂) = −ρ̂ (4.37)

Ê = −∇�̂ (4.38)

which have the same form as the dimensional equations.
A PIC simulation model has the following major steps in order to solve for plasma dynamics and field quantities self-

consistently:

• Charge Weighting: The charges carried by simulation particles are “scattered” from the particle locations to the mesh 
nodes with the weights provided by linear interpolation (“first-order” weighting [4]). By accumulating all these scattered 
charges on all the mesh nodes, the total charge density, which is the right hand side ρ(X) of the elliptic interface 
equation (1.1), is provided;

• Solving for Field: The interface elliptic problem described by (1.1)–(1.5) is solved for electric potential �;
• Force Weighting: In order to update the velocity of particles by (4.35), the electric field is obtained from the electric 

potential and then “gathered” from the mesh nodes to the particle positions with the same weights as in the charge 
weighting step;

• Moving Particles: The equation of motion (4.36) is solved to update the position of each simulation particle.
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Fig. 4. PIC loop.

The above procedure are iterated (see Fig. 4) for a certain number of simulation steps until a self-consistent solution 
of both plasma and field is obtained. The charge/force weighting scheme for particles inside non-interface elements is the 
same as the classic methods in [4] where tri-linear volumes are used as weights. For particles inside interface elements, the 
charge weighting is still the same, however, the force weighting uses IFE basis functions as the weights in the interpolation 
of IFE field solution.

As mentioned earlier, the development of the non-homogeneous IFE method presented in this paper is motivated by the 
need of particle-in-cell simulations of plasma interactions with astronautical applications. For example, 3D IFE-PIC method 
has been used to model plasma dynamics on ion optics and spacecraft–plume interactions [32–37,64]. However, all the 
existing works on 3D problems only consider homogeneous flux jump conditions rather than the non-homogeneous ones, 
which are essential for the modeling of plasma interactions on the lunar surface. This is because the collection of impacting 
charged particles at the lunar surface combined with photoelectron emissions will lead to surface charging at the top of the 
lunar regolith, which causes a non-zero flux jump of the electric field across the interface between lunar regolith and space, 
as described in (1.5) and illustrated in Fig. 1b. Therefore, the non-homogeneous IFE method which is able to handle such 
non-zero flux jump conditions provides a favorable solver for the PIC method in the modeling of such plasma interactions 
on the lunar surface. Thus, the new non-homogeneous IFE-PIC method has both capabilities of resolving non-zero electric 
field flux jump self-consistently with the solution of electric field and handling realistic non-trivial geometries, which is 
much favorable for the modeling of lunar surface plasma interactions. The detailed non-homogeneous IFE-PIC framework is 
as follows, also illustrated in Fig. 5:

• Step 1: Construct a Cartesian mesh and obtain the intersection points between the mesh lines and the interface for 
constructing IFE basis functions;

• Step 2: Initialize velocities and positions of charged particles;
• Step 3: Deposit charges carried by particles onto the mesh nodes in order to obtain the source term ρ(X) in (1.1);
• Step 4: Collect the particles hitting the objects and accumulate their charges on the object surfaces to obtain the 

non-homogeneous flux jump q(X) in (1.5) for each interface element;
• Step 5: Solve the interface problem (1.1)–(1.5) for the approximated electric field (see φh(X) in (3.26)) self-consistently 

by using the non-homogeneous IFE method proposed in Section 3;
• Step 6: Interpolate field quantities at particle positions to obtain particle accelerations;
• Step 7: Push particles and apply particle boundary conditions (injection, absorption, reflection, periodic, etc.);
• Step 8: Repeat Step 3–Step 7 until the steady state is reached.

Among the above steps, the accumulation of the charge of the particles hitting the objects onto the object surfaces is a 
new and necessary step which we need to assemble into the traditional PIC method. In fact, it is the most critical part of 
the non-homogeneous IFE-PIC method, as it provides the surface charge density for PIC as well as the non-homogeneous 
flux jump condition for IFE. Here we presents the method of collecting particles and accumulating charges at the interface 
for a general shape described by a given algebraic equation z = z(x, y) (referred to as “z-surface”), such that the z-surface 
divides the domain into �+ and �− .

The IFE formulation is constructed following the discussions in Section 2. Within each PIC step, we denote the old and 
new positions of a particle as Xpold and Xpnew , respectively, as shown in Fig. 6. A particle is determined to hit an object 
under a condition such that

zpold > z(xpold , ypold), and (4.39)

zpnew < z(xpnew , ypnew). (4.40)
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Fig. 5. Flowchart of the IFE-PIC method.

Fig. 6. Particle collection and charge accumulation at interface elements.

Once a particle is determined to hit an object within an interface element T , the charge carried by this particle is added 
to the total collected charge cT in this element and this particle is removed from the simulation. Then the qT , which is 
defined in (2.22) and needed for the IFE solution in (3.26), can be calculated as follows
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Fig. 7. 1D potential profiles: IFE-PIC vs. OML analytic solution.

qT = cT

AT
(4.41)

where AT the area of �T within the interface element.
The resulting surface charge density from such an accumulation step provides the non-zero flux jump condition for the 

non-homogeneous IFE method, which solves for the electric field self-consistently with plasma kinetics. The solved electric 
field in turn will govern the motions of charged particles. Such a dynamic interaction between non-homogeneous IFE and 
PIC about surface charging forms a new simulation tool for modeling the plasma environment on the lunar surface with 
realistic geometric configurations.

4.2. Validation of the non-homogeneous IFE-PIC method

Before we apply the non-homogeneous IFE-PIC method to the modeling of lunar surface–plasma interactions, we first 
present a validation test of the method with charging of a dielectric sphere in stationary plasmas. Consider a dielectric 
sphere in a collisionless, stationary plasma with ion and electron temperature ratio of 0.5 (Ti = 0.5Te). The floating potential 
at the sphere surface �s is determined by the current balance condition. The ambient ion and electron fluxes are

J i = en0

√
kTi

2πmi

(
1 − e�s

kTi

)
(4.42)

Je = en0

√
kTe

2πme
exp

(
e�s

kTe

)
(4.43)

where n0 is the ambient plasma density. The analytic formula of ion and electron densities are given by the revised Orbit-
Motion-Limited (OML) theory [13,61]. Therefore, the analytic potential profile near the sphere can be obtained numerically 
by solving Poisson’s equation in spherical coordinates. Details of the formulation of the revised OML theory can be found in 
Refs. [13,61].

In the test, we consider the realistic ion-to-electron mass ratio of mi/me = 1836. The floating potential of the sphere is 
found to be �s/Te = −2.3602. In the simulation, we use a computation domain of a 3 × 3 × 3 Debye cube with the mesh 
size of d = 0.05λD in all dimensions. Therefore, the simulation domain has 60 × 60 × 60 PIC cells. The sphere is centered 
at (0, 0, 0) with a radius of Rs = 0.201. Due to symmetry in all three dimensions, only 1/8 of the sphere is included in 
the domain. At Xmax, Ymax, Zmax boundaries, the potentials are set to 0. At Xmin, Ymin, Zmin boundaries, zero-Neumann 
boundary conditions are applied due to symmetry. The relative permittivity of the sphere is set to 4. The floating potential 
of the sphere is calculated from the jump condition at the sphere surface. Particles are pre-loaded into the domain and 
absorbed/injected at all three ambient boundaries (Xmax, Ymax, Zmax) following stationary Maxwellian distributions and re-
flected at all three symmetric boundaries (Xmin, Ymin, Zmin). 216 macro-particles are used per PIC cell per species. The time 
step is set as dt̂ = 0.005.

The field solution approaches to the steady state at about t̂ = 200. The IFE-PIC solution of the floating potential is 
φs|I F E−P IC ≈ −2.3708 at t̂ = 220 whereas φs|O ML ≈ −2.3602. The relative error of the floating potential for the last a few 
steps are about 3%. Fig. 7 compares IFE-PIC solution and analytic OML solution for the 1D potential profiles in the r ≥ Rs
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Table 4
Solar wind plasma and photoelectron (at 90◦ SEA) parameters.

Species Number density n (cm−3) Drifting velocity vd (km/s) Temperature T (eV)

s.w.e. 8.7 468 12
s.w.i. 8.7 468 10

photo.e. 64 N/A 2.2

Fig. 8. Simulation domain and interface for the lunar plasma interactions.

region at t̂ = 220. The results show that the IFE-PIC solution agrees very well with the analytic solution from the revised 
OML theory [13,61].

5. Application to PIC simulations of plasma–surface interaction at the lunar terminator

In this section, we present simulations of plasma–surface interactions at the lunar terminator under an average solar 
wind condition. The interface is defined by an algebraic equation z = z(x, y) such that the sub-domain above the interface is 
space and the sub-domain below is lunar regolith. In the following, we will discuss briefly the plasma conditions considered 
in those simulations, and the simulation setup of the plasma–surface interactions. Then we present the simulation results 
with brief discussions.

5.1. Plasma species

The plasma species considered in this example include solar wind ions, solar wind electrons, and photoelectrons. Here, 
we consider the average solar wind condition. The parameters of the plasma species are listed in Table 4, where “s.w.e.” 
stands for “solar wind electrons”, “s.w.i.” for “solar wind ions”, and “photo.e.” for “photoelectrons”. All the plasma species 
are normalized based on photoelectrons at 90◦ Sun Elevation Angle (SEA) condition [67].

5.2. Simulation setup

The simulation domain has a size of 120 × 10 × 30 PIC cells with mesh size 1.38 m (the Debye length of photoelectrons 
at 90◦ SEA) in each dimension. For the illustration purpose, the local lunar surface terrain is modeled as a 3D cosine-curved 
column on a flat surface as described by the following equation:

ẑ = ẑ(x̂, ŷ) =
{

0.5 · (− cos x̂−45
10 + 1) · 4.3 + 5.9, (45 ≤ x̂ ≤ 55),

5.9, (x̂ < 45 or x̂ > 55).
(5.44)

See Fig. 8 for an illustration of a 2D cut of the domain along the y-axis.
It is necessary to point out that the lunar surface is not a part of the boundary of the simulation domain but an interface 

(see Fig. 8). The medium below the interface has the physical meaning of the surface regolith of the Moon. In this setup, the 
regolith thickness is set to be 5.9 × 1.38 m which is a typical value for most areas on the lunar surface [54,60]. The relative 
permittivity of the lunar surface regolith is set to 4 [29,67]. The summit of the local lunar surface is of height 4.3 × 1.38 m.

Dirichlet field boundary conditions are applied at Zmax (top) boundary which represents the far-field plasma condition. 
Zero-Neumann boundary conditions are applied at all other five boundaries. Particles representing solar wind electrons 
and ions are pre-loaded into the simulation domain and absorbed/injected at the boundaries Xmin (left), Xmax (right), and 
Zmax (top) following their respective Maxwellian distributions. 64 macro-particles are used per PIC cell per species for 
solar wind plasma. For photoelectrons, macro-particles are generated together with local sunlit condition such that about 
4 macro-particles are generated per time step under normal incidence. Reflection particle boundary conditions are applied 
in the y-direction. Photoelectrons are emitted from the sunlit regions at each PIC step and leave positive charges on the 
lunar surface. Particles hitting the surface are collected and charges carried by the particles are deposited at the surface 
for the calculation of surface charging. In the cases presented here, the solar wind flows at an incidence angle of 5◦ in the 
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Fig. 9. Density contours of solar wind ions. Normalized by 64 cm−3.

Fig. 10. Density contours of solar wind electrons. Normalized by 64 cm−3.

X − Z plane towards the lunar surface and the solar illumination angle is assumed to be the same as the solar wind flowing 
direction. The time step is set to be dt̂ = 0.1.

5.3. Results and discussions

To illustrate the effects of the non-homogeneous flux jump condition on the solution of lunar surface charging, we 
present simulation results using both the non-homogeneous flux jump condition algorithm and the homogeneous flux jump 
condition algorithm. The results shown are taken at t̂ = 600. Figs. 9 through 11 compare the steady state density contours 
of solar wind ions (with streamlines), solar wind electrons, and photoelectrons, respectively. The solar wind ion density 
contour plots clearly show that a plasma wake [65] is created by the local uneven surface. While the ion density contours 
generated by both models are similar, the solar wind electron density contour (Fig. 10) and photoelectron density contour 
plots (Fig. 11) show significant differences between the two models. For instance, the non-homogeneous flux jump condition 
algorithm resolves the sheath structure in the solar wind electron density contours and the non-uniform spatial distribution 
of the photoelectrons, which are the features missed from the plots generated by the homogeneous flux jump condition 
algorithm. The features shown in the Figs. 10 and 11 reflect the effects of the surface electric field. (Such effects are not 
obvious in the ion density contour plot, Fig. 9, because the kinetic energy of the stream ions are orders of magnitude larger 
than that of the electric field energy and hence, the perturbation of the surface potential on ion dynamics is insignificant in 
this case.) The electric potential contours are compared in Fig. 12. The two algorithms lead to two totally different potential 
solutions. The non-homogeneous flux jump condition algorithm resolves the differential charging on the lunar surface and 
inside the regolith layer due to charge deposition from the plasma and/or photoelectron emission. The solution shows 
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Fig. 11. Density contours of photoelectrons. Normalized by 64 cm−3.

Fig. 12. Potential contours. Normalized by 2.2 V.

that the surface potential is slightly positive in the sunlit/ram region due to photoelectron emission and negative in the 
wake region due to lack of ions in the wake [65]. On the other hand, the differential charging is not resolved under the 
homogeneous flux condition algorithm because the effect of charge deposition on surface is not included. This leads to an 
incorrect solution to the electric field.

Such plasma environments and electric fields indicate complex interactions between plasma environments and the lunar 
surface, which further influence the transport of charged dust grains under the localized electric field. Therefore, the self-
consistent resolution of lunar surface potential along with the plasma environment will provide more accurate knowledge 
about the plasma environment for future exploration missions. This numerical example validates our new IFE-PIC simulation 
tool and demonstrates its capability to handle a variety of complicated and realistic space plasma environments (solar wind 
plasma, photoelectrons, etc.) interacting with bodies of non-trivial geometries (lunar surface, asteroidal surfaces, etc.).

6. Conclusions

In this paper, we constructed a new 3D IFE space and utilized it in a Galerkin formulation to solve the 3D second order 
elliptic partial differential equations with discontinuous coefficient and non-homogeneous flux jump conditions, which has 
an important application in the PIC simulations of the plasma environment on the lunar surface. The mesh of the IFE 
method can be independent of the interface location. Our numerical experiments demonstrate that the new IFE space has 
the optimal approximation capability and the IFE method with Galerkin formulation has the optimal convergence rates. We 
also improved the PIC method and combined it with the new IFE method in order to form the new IFE-PIC method with 
non-homogeneous flux jump conditions, which is utilized to simulate the plasma environment at the lunar terminator.
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