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We construct and analyze a group of immersed finite element

(IFE) spaces formed by linear, bilinear, and rotated Q1 poly-

nomials for solving planar elasticity equation involving inter-

face. The shape functions in these IFE spaces are constructed

through a group of approximate jump conditions such that the

unisolvence of the bilinear and rotated Q1 IFE shape func-

tions are always guaranteed regardless of the Lamé parameters

and the interface location. The boundedness property and a

group of identities of the proposed IFE shape functions are

established. A multi-point Taylor expansion is utilized to show

the optimal approximation capabilities for the proposed IFE

spaces through the Lagrange type interpolation operators.
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1 INTRODUCTION

In many applications of sciences and engineering, we need to consider an elastic object formed

with multiple materials which leads to a linear elasticity system with discontinuous coefficients whose

values reflect the difference between materials. To be specific and without loss of generality, we con-

sider an elastic object forming a domain Ω⊂R2 separated by a smooth interface curve Γ into two

subdomains Ω− and Ω+ each of which is occupied by a different material. Thus, the Lamé parameters

of Ω are piecewise constant functions in the following forms:

𝜆 =

{
𝜆− if X ∈ Ω−,

𝜆+ if X ∈ Ω+,
𝜇 =

{
𝜇− if X ∈ Ω−,

𝜇+ if X ∈ Ω+.
(1.1)
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As usual, we assume that the u= (u1, u2)T is modeled by the planar linear elasticity equations:

−𝑑iv 𝜎(u) = f in Ω− ∪ Ω+, (1.2)

u = g on 𝜕Ω, (1.3)

where f= (f 1, f 2)T and g= (g1, g2)T represent the given body force and the displacement on the

boundary, 𝜎(u)= (𝜎ij(u))1≤ i, j≤ 2 is the stress tensor given by

𝜎𝑖𝑗(u) = 𝜆(𝛻 ⋅ u)𝛿i,j + 2𝜇𝜀𝑖𝑗(u), with 𝜀𝑖𝑗(u) =
1

2

(
𝜕ui
𝜕xj

+
𝜕uj

𝜕xi

)
(1.4)

being the strain tensor. Furthermore, the discontinuity in the Lamé parameters requires the displace-

ment u= (u1, u2)T to satisfy the jump conditions across the material interface Γ:

[u]Γ ≔ (u+ − u−)|Γ = 0, (1.5)

[𝜎(u)n]Γ ≔ (𝜎+(u+)n − 𝜎−(u−)n)|Γ = 0, (1.6)

where us = u|Ωs , 𝜎s(us) = 𝜎(u)|Ωs , s = −,+, and n is the normal vector to Γ.

We call (1.2)–(1.6) an elasticity interface problem for determining the displacement u= (u1, u2)T .

Elasticity interface problems have a wide range of applications in engineering and science, such as the

inverse problems [1–3] in which one needs to recover the location or geometry of buried cracks, cavities

or inclusions, and the structure optimization problems [4, 5] in which one aims at optimizing the

distribution of different elastic materials such that the overall structure compliance can be minimized,

and additional elasticity problems can be found in [6–9], to name just a few.

Finite element methods [10–12] and discontinuous Galerkin methods [13–15] have been devel-

oped to solve elasticity interface problems, and these methods perform optimally provided that their

mesh is interface-fitted [16, 17]. However, in some applications such as those inverse/design problems

mentioned above solved by shape optimization methods, the shape or location of the interface usually

involves large changes in the computation. In general, it is nontrivial and time consuming to gener-

ate an interface-fitting mesh again and again; therefore, solving (1.2)–(1.6) on interface-independent

(noninterface-fitted) meshes has attracted research attentions. Both the finite element approach and

the finite difference approach have been attempted. For example, an unfitted finite element method

using the Nitsche’s penalty along the interface to enforce the jump conditions is presented in [18,

19], and some immersed interface methods (IIM) based on finite difference formulation are pre-

sented in [20–22] which handle the jump conditions through a local coordinate transformation between

subelements partitioned by the interface.

Immersed finite element (IFE) methods are developed for solving interface problems with

interface-independent meshes. The key idea of an IFE space is to use standard polynomials on nonin-

terface elements, but Hsieh–Clough–Tocher type [23, 24] macro polynomials constructed according to

interface jump conditions on interface elements. There have been quite a few publications on IFE meth-

ods, for example, IFE methods for elliptic interface problems are discussed in [25–32], IFE methods

for interface problems of other types partial differential equations are presented in [33–41]. In particu-

lar, for planar-elasticity interface problems described by (1.2)–(1.6), a nonconforming linear IFE space

on a uniform triangular mesh is discussed in [21, 42, 43]. A conforming IFE space is developed in [21,

44] by extending the IFE shape functions in [21, 42, 43] to the neighborhood interface elements. A

bilinear IFE space on a rectangular Cartesian mesh is discussed in [45]. A nonconforming IFE space

using the rotated Q1 polynomials is presented in [46] which leads to a locking-free IFE method. Most

of the IFE methods for the planar-elasticity interface problems are Galerkin type, that is, the test and

trial functions used in each of these methods are from the same IFE space, but the Petrov–Galerkin
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formulation can also be used, for example, a Petrov–Galerkin IFE scheme is developed in [47] that

uses standard Lagrange polynomials as the test functions.

This article focuses on two issues in the research of IFE methods for interface problems of the

planar elasticity. First, we develop a unified construction procedure for the shape functions of the IFE

spaces defined on a triangular or rectangular mesh with the linear, bilinear, or rotated Q1 polynomials.

By this procedure, the coefficients in an IFE shape function satisfy a Sherman–Morrison linear system

from which the unisolvence of the IFE shape functions can be readily deducted. Second, we derive a

group of multi-point Taylor expansions for vector functions satisfying the jump conditions specified in

(1.5) and (1.6) for the planar-elasticity interface problems, and we then employ them in the framework

recently developed in [48] to show the optimal approximation capabilities for the IFE spaces consid-

ered in this article. However, the major challenge in applying it to the analysis of the approximation

capability of the IFE spaces developed for the elasticity interface problems is the coupling of the two

components in the displacement through the jump conditions. Because of this coupling, a multi-point

Taylor expansion for each component (which is a scalar function) of the displacement individually is

difficulty, if not impossible, to be used in the analysis of the approximation capability of the proposed

vector IFE spaces. To deal with this challenge, more sophisticated identities have to be developed for

transferring the quantities of a vector function from one side of the interface to the other according to

the jump conditions, and these identities are nontrivial extensions of their scalar counterparts. To the

best of our knowledge, this is the first time the approximation capability of IFE spaces formed with

vector functions is analyzed, and this is an important step toward to the establishment of the theoret-

ical foundation for IFE methods that can solve interface problems of the linear elasticity system with

interface-independent (such as Cartesian) meshes.

We note that the unisolvence results established in this article can be used to show the existence

of the IFE functions satisfying nonhomogeneous jump conditions such as those in [47] because coef-

ficients in such an IFE function are determined by a linear system with the same matrix as the one for

determining the coefficients in the IFE function satisfying the related homogeneous jump conditions.

These IFE functions are not suitable for constructing IFE spaces because of their nonhomogeneity;

therefore, their research is beyond the scope of this article. However, they can be used together with the

homogeneous IFE spaces developed in this article to deal with the planar-elasticity interface problems

with nonhomogeneous jump conditions in a homogenization technique such as one of those proposed

in [28, 49].

This article consists of five additional sections. The next section is for some basic notations and

assumptions. In Section 3, we establish a few fundamental geometric identities and estimates related to

the interface. In Section 4, we derive the multi-point Taylor expansions for a vector function u satisfy-

ing the jump conditions (1.5) and (1.6) along the interface. In Section 5, we derive a Sherman–Morrison
linear system for determining the coefficients in IFE shape functions on an interface element, study

properties of these shape functions, and prove the optimal approximation capabilities for the IFE spaces

considered in this article. In the last section, we present a group of numerical examples to illustrate the

approximation features of these IFE spaces.

2 PRELIMINARIES

We now describe terms and facts to be used in the discussion. LetΩ⊂R2 be a polygonal domain formed

as union of finitely many rectangles/triangles, and without loss of generality, we assume Ω is separated

by Γ into two subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω−. For a measurable subset Ω̃ ⊆ Ω, we

define the vector Sobolev space Wk,p(Ω̃) = [Wk,p(Ω̃)]2 where Wk,p(Ω̃) is the standard Sobolev space,
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and the associated norm and semi-norm of Wk,p(Ω̃) are such that for every u = (u1, u2)T ∈ Wk,p(Ω̃),‖u‖k,p,Ω̃ = ‖u1‖k,p,Ω̃ + ‖u2‖k,p,Ω̃ and |u|k,p,Ω̃ = ‖D𝛼u1‖0,p,Ω̃ + ‖D𝛼u2‖0,p,Ω̃, ∣ 𝛼 ∣= k. (2.1)

The related vector Hilbert space is denoted by Hk(Ω̃) = Wk,2(Ω̃). Let Ck(Ω̃) be the collection of kth

differentiable smooth vector functions. When Ω̃s = Ω̃ ∩ Ωs ≠ ∅, s = ±, and k≥ 1, we define

PWk,p
𝑖𝑛𝑡 (Ω̃) = {u ∶ u ∈ Wk,p(Ω̃s), s = ±; [u]Γ = 0, and [𝜎(u)n]Γ = 0}, (2.2)

PCk
𝑖𝑛𝑡(Ω̃) = {u ∶ u ∈ Ck(Ω̃s), s = ±; [u]Γ = 0, and [𝜎(u)n]Γ = 0}. (2.3)

Here, the definition implicitly implies that the zeroth- and first-order trace of u are well defined on Γ.

We then define the following norms and semi-norms associated with these spaces:

‖u‖k,p,Ω̃ =
2∑

i=1

(‖ui‖k,p,Ω̃− + ‖ui‖k,p,Ω̃+ ), and |u|k,p,Ω̃ =
2∑

i=1

(|ui|k,p,Ω̃− + |ui|k,p,Ω̃+ ),

‖u‖k,∞,Ω̃ = max
i=1,2

{max{‖ui‖k,∞,Ω̃− , ‖ui‖k,∞,Ω̃+}}, and |u|k,∞,Ω̃ = max
i=1,2

{max{|ui|k,∞,Ω̃− , |ui|k,∞,Ω̃+}}.

Also we denote the corresponding Hilbert space PHk(Ω̃) = PWk,2(Ω̃) with the norm ‖⋅‖k,Ω̃ = ‖⋅‖k,2,Ω̃

and the semi-norm |⋅|k,Ω̃ = |⋅|k,2,Ω̃. Furthermore, for any vector function v = (v1, v2)T ∈ H1(Ω̃), let 𝛻v
be its 2-by-2 Jacobian matrix where the ith row is the row vector 𝛻vi, i= 1, 2.

Let h be a Cartesian rectangular or triangular mesh of the domain Ω with a mesh size h > 0.

An element T ∈ h is called an interface element if the intersection of the interior of T with the

interface Γ is nonempty; otherwise, it is called a noninterface element. Let  i
h and  n

h be the sets

of interface elements and noninterface elements, respectively. Similarly, let  i
h and n

h be the sets of

interface edges and noninterface edges, respectively. In addition, as in [50, 51], we assume that h
satisfies the following hypotheses when the mesh size h is small enough:

Hypothesis 1 The interface Γ cannot intersect an edge of any element at more than two

points unless the edge is part of Γ.

Hypothesis 2 IfΓ intersects the boundary of an element at two points, these intersection

points must be on different edges of this element.

Hypothesis 3 The interface Γ is a piecewise C2 function, and the mesh h is formed

such that the subset of Γ in every interface element T ∈  i
h is C2.

Hypothesis 4 The interface Γ is smooth enough so that PC2
𝑖𝑛𝑡(T) is dense in PH2

𝑖𝑛𝑡(T)
for every interface element T ∈  i

h .

We will discuss IFE spaces formed by linear polynomials on triangular meshes and bilinear or

rotated Q1 polynomials on rectangular meshes. For each element T in a mesh h, we introduce

an index set  = {1, 2, 3} when T is triangular or  = {1, 2, 3, 4} when T is rectangular. Then, the

local finite element space is denoted by (T ,𝚷T ,𝚺T ), with 𝚷T = [Span{1, x, y}]2, [Span{1, x, y, xy}]2,

or [Span{1, x, y, x2 − y2}]2 for the linear, bilinear, or rotated Q1 polynomial space, respectively,

and the local degrees of freedom 𝚺T = {𝝍T (Ai) : i∈,𝝍T ∈𝚷T}, where Ais are the vertices

of T for the conforming linear and bilinear cases, or midpoints of edges of T for the noncon-

forming linear (Crouzeix–Raviart elements) and rotated Q1 case. For these finite element spaces,

according to [10, 52–54], there exist vector shape functions 𝝍 i, T ∈𝚷T , i= 1, 2,…,2 ∣∣ such that
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𝚷T =Span{𝝍 i, T , 1≤ i≤ 2| | } with

𝝍 i,T (Aj) =

{
𝛿i,j,

0,
i = 1,… , ∣  ∣, and 𝝍 i,T (Aj) =

{
0,

𝛿i−∣∣,j,
i =∣  ∣ +1,… , 2 ∣  ∣, (2.4)

|𝝍 i,T |k,∞,T ≤ 𝐶ℎ−k, k = 0, 1, 2. (2.5)

In addition, we will use a vectorization mapping Vec: Rm× n →Rmn× 1 such that for any A = (a𝑖𝑗)m,n
i=1,j=1,

Vec(A) ≔ (a11,… , am1, a12,… , am2,… , a1n,… , a𝑚𝑛)T ,

and a Kronecker product ⊗ : Rm× n ×Rp× q →Rmp× nq such that for any A = (a𝑖𝑗)m,n
i=1,j=1 ∈ Rm×n and

B∈Rp× q, there holds

A ⊗ B =

[a11B · · · a1nB
⋮ ⋱ ⋮

am1B · · · a𝑚𝑛B

]
. (2.6)

A well-known formula [55] about the Kronecker product and the vectorization operation is the

following:
Vec(𝐶𝐷𝐸) = (ET ⊗ C)Vec(D). (2.7)

Throughout this article, we use the notation In to denote the n-by-n identity matrix and 0m× n to denote

the m-by-n zero matrix for positive integers m and n, and to simplify the presentation, we adopt the

notation 𝜕xk =
𝜕

𝜕xk
, k= 1, 2, for partial derivatives with x1 = x, x2 = y. Also, as usual, we will use C to

denote generic constants independent with the mesh size h in all the discussion from now on.

3 GEOMETRIC PROPERTIES OF THE INTERFACE

In this section, we derive a group of geometric properties on the interface elements for estimating

interpolation errors of vector-valued functions. These properties are extensions of those developed

in [48] for scalar functions. Let T be an interface element and l be a line connecting the intersection

points of the interface Γ with 𝜕T . Let n(X̃) = (ñ1(X̃), ñ2(X̃))T and t(X̃) = (ñ2(X̃),−ñ1(X̃))T be the

normal and tangential vectors of Γ at a point X̃ ∈ Γ∩T , respectively, and let the normal and tangential

vectors of l be n = (n1, n2)T and t = (n2,−n1)T , respectively. Consider the following matrices:

Ns(X̃) =
⎡⎢⎢⎢⎣
(𝜆s + 2𝜇s)ñ1(X̃) 𝜇sñ2(X̃) 𝜇sñ2(X̃) 𝜆sñ1(X̃)

𝜆sñ2(X̃) 𝜇sñ1(X̃) 𝜇sñ1(X̃) (𝜆s + 2𝜇s)ñ2(X̃)
−ñ2(X̃) 0 ñ1(X̃) 0

0 −ñ2(X̃) 0 ñ1(X̃)

⎤⎥⎥⎥⎦ , s = ±, (3.1)

Ns =
⎡⎢⎢⎢⎣
(𝜆s + 2𝜇s)n1 𝜇sn2 𝜇sn2 𝜆sn1

𝜆sn2 𝜇sn1 𝜇sn1 (𝜆s + 2𝜇s)n2

−n2 0 n1 0
0 −n2 0 n1

⎤⎥⎥⎥⎦ , s = ±. (3.2)

By straightforward calculation, we have

Det(Ns(X̃)) = Det(Ns) = 𝜇s(𝜆s + 2𝜇s), s = ±. (3.3)

Hence both the matrices Ns(X̃) and Ns
are nonsingular, and we can use them to define

M−(X̃) = (N+(X̃))−1N−(X̃), M+(X̃) = (N−(X̃))−1N+(X̃), (3.4)

M− = (N+)−1N−
, M+ = (N−)−1N+

. (3.5)

These matrices have the following properties.



1248 GUO ET AL.

Lemma 3.1 For every u ∈ PC2
𝑖𝑛𝑡(T) and X̃ ∈ Γ ∩ T, there holds

Vec(𝛻u+(X̃)) = M−(X̃)Vec(𝛻u−(X̃)), Vec(𝛻u−(X̃)) = M+(X̃)Vec(𝛻u+(X̃)). (3.6)

Proof. To simplify the notations, we denote n(X̃) = (ñ1, ñ2)T in this proof. By direction

calculations, we have

𝜎s(u(X̃)) n(X̃) =
[(𝜆s + 2𝜇s)ñ1𝜕x1

u1 + 𝜇sñ2𝜕x2
u1 + 𝜇sñ2𝜕x1

u2 + 𝜆sñ1𝜕x2
u2

𝜆sñ2𝜕x1
u1 + 𝜇sñ1𝜕x2

u1 + 𝜇sñ1𝜕x1
u2 + (𝜆s + 2𝜇s)ñ2𝜕x1

u2

]
. (3.7)

From the continuity jump (1.5), we have 𝛻u+
i t(X̃) = 𝛻u−

i t(X̃), i= 1, 2. Combining this

with the stress jump (1.6) leads to N−(X̃)Vec(𝛻u−(X̃)) = N+(X̃)Vec(𝛻u+(X̃)) from which

we have (3.6) because of (3.4). ▪

Lemma 3.2 The vectors 𝛼1 = [−n2, 0, n1, 0]T and 𝛼2 = [0,−n2, 0, n1]T are eigenvectors
of (Ms)T , s = +, or −, such that

(Ms)T𝛼i = 𝛼i, i = 1, 2. (3.8)

Proof. The identities in (3.8) follow from direct calculations. ▪

As proved in the following lemma, the matrices Ms
constructed on l can be used to approximate

the matrices Ms constructed on the interface Γ∩T , s=+ or −.

Lemma 3.3 There exists a constant C independent of the interface location such that
for every interface element T ∈  i

h and every point X̃ ∈ Γ ∩ T , s = ±, we have‖Ms(X̃)‖ ≤ C, ‖Ms‖ ≤ C, (3.9)

and ‖Ms(X̃) − Ms‖ ≤ 𝐶ℎ. (3.10)

Proof. We only prove the case for s=−, and the argument for s=+ is similar. Since‖n‖ = 1 and ‖n(X̃)‖ = 1, we have ‖N−‖ ≤ C and ‖N−(X̃)‖ ≤ C. Besides, we note that

‖(N+(X̃))−1‖ = 1

Det(N+(X̃))
‖adj(N+(X̃))‖ ≤ C, and ‖(N+)−1‖ = 1

Det(N+)
‖adj(N+)‖ ≤ C,

because Det(N−(X̃)) = Det(N−) = 𝜇−(𝜆− + 2𝜇−) and each term of the adjugate matrices

is bounded by some constants C. Then, (3.9) follows from applying these estimates in the

inequalities below:‖M−(X̃)‖ ≤ ‖(N+(X̃))−1‖ ‖N−(X̃)‖ and ‖M−‖ ≤ ‖(N+)−1‖ ‖N−‖.
For (3.10), we note that‖M−(X̃) − M−‖ = ‖(N+(X̃))−1N−(X̃) − (N+)−1N−‖

= ‖(N+(X̃))−1(N−(X̃) − N−) + (N+(X̃))−1(N+ − N+(X̃))(N+)−1N−‖
≤ C‖N−(X̃) − N−‖ + C‖N+ − N+(X̃)‖
≤ 𝐶ℎ

in which we have used the estimate ‖n(X̃) − n‖ ≤ 𝐶ℎ given in Lemma 3.2 of [48]. ▪
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In addition, we consider the following set

T𝑖𝑛𝑡 = ∪{lt ∩ T ∶ lt is a tangent line to Γ ∩ T}, (3.11)

which is the subelement swept by the tangent lines to Γ∩T . We note that this set is equivalent to the

one considered in [50]. Following an idea similar to that used in [48], we can show that this is actually

a small set in the following lemma.

Lemma 3.4 Assume h is small enough, then there exists a constant C independent of
the interface location, such that ∣Tint ∣ ≤Ch3.

Proof. Let 𝜅 be the maximal curvature of Γ∩T . By the assumption, we can follow the

idea in [48] to assume h is sufficiently small such 𝜅h≤ 𝜀 for some 𝜀∈ (0, 1/2). Let D and

E be the intersection points of Γ and 𝜕T , and recall l is the line connecting D and E. Let X
be one point in Tint. According to the definition (3.11), there exists a point Y ∈Γ such that

𝑋𝑌 is tangent to Γ. Denote X⊥ and Y⊥ as the projection of X and Y onto l, respectively.

Let 𝜃 ∈ [0, 𝜋/2] be the angle between 𝑋𝑌 and l. According to Lemma 3.2 in [48], we

have ∣ 𝑌 𝑌 ⊥ ∣≤ 2(1 − 2𝜀2)−3∕2𝜅h2. Using the fact ∣ 𝑋𝑌 ∣≤ 𝐶ℎ and simply geometry, we

obtain ∣ 𝑋𝑋⊥ ∣=∣ 𝑌 𝑌 ⊥ ∣ + ∣ 𝑋𝑌 ∣ sin(𝜃) ≤ 𝐶ℎ2 + 𝐶ℎ sin(𝜃). In addition, using (3.5) in

[48], there holds

sin(𝜃) = (1 − (n ⋅ n(Y))2)1∕2

≤ (1 + (1 − 2𝜀2)−3∕2)𝜅ℎ(4 − (1 + (1 − 2𝜀2)−3∕2)2𝜅2h2)1∕2

≤ (1 + (1 − 2𝜀2)−3∕2)(4 − (1 + (1 − 2𝜀2)−3∕2)2𝜀2)1∕2𝜅ℎ (3.12)

where we have used h𝜅 ≤ 𝜀. It shows that ∣ 𝑋𝑋⊥ ∣≤ C(1 + 𝜅)h2 with C depending on 𝜀,

that is, the distance between X and 𝐷𝐸 is bounded by C(1+ 𝜅)h2. Since ∣ 𝐷𝐸 ∣≤ 𝐶ℎ,

we have ∣Tint ∣ ≤C(1+ 𝜅)h3. ▪

4 MULTI-POINT TAYLOR EXPANSION

In this section, we present a multi-point Taylor expansion for the piecewise smooth vector functions

satisfying (1.5) and (1.6) on interface elements and derive the estimates of the remainders in the expan-

sion. The multi-point Taylor expansion idea was first employed in [29] for showing the approximation

capabilities of the linear IFE spaces for the elliptic interface problems through the Lagrange type inter-

polation operator. Similar ideas were then used to study approximation capabilities for the bilinear IFE

spaces [27, 56] and nonconforming IFE spaces [32, 50]. Recently, by generalizing this technique, the

authors in [48] developed a unified framework to show the approximation capabilities of various IFE

spaces, and we now extend this technique to IFE spaces of vector functions for solving the elasticity

interface problems.

In the following discussion, for every T ∈  i
h , let Γ partition T into T± and let l partition T into

T
±

. Define T̃ = (T+ ∩T−)∪ (T− ∩T+) which is the subelement sandwiched by Γ and l. From [29], we

know ∣ T̃ ∣≤ 𝐶ℎ3. In addition, as in [50], for every X ∈T∖Tint, the segment AiX intersects with Γ∩T
either at only one point when Ai and X are on different sides of Γ∩T or no point when Ai and X are

on the same side. Then, we define Ts
∗ = (Ts ∩ Ts) ⧵ T𝑖𝑛𝑡), s = ±, and let T∗ = T ⧵ (T−

∗ ∪ T+
∗ ).

We further partition  into two sub index sets + = {i : Ai ∈T+} and − = {i : Ai ∈ T−}. For

every X ∈T , we let Yi(t, X)= tAi + (1− t)X, t∈ [0, 1], i∈. Let t̃i = t̃i(X) ∈ [0, 1] be such that

Ỹi = Yi (̃ti, X) is on the curve Γ∩T if X and Ai are on different sides of T . We start from the following
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theorem that gives the expansion of u(Ai) about X if Ai and X are the same side of Γ, that is, Ai ∈ Ts

and X ∈ Ts
∗, s = ±.

Theorem 4.1 For every interface element T ∈  i
h and u ∈ PC2

𝑖𝑛𝑡(T), assume Ai ∈Ts,
s=±, then

us(Ai) = us(X) + ((Ai − X)T ⊗ I2)𝑉 𝑒𝑐(𝛻us(X)) + Rs
i (X), i ∈ s, ∀X ∈ Ts

∗, (4.1)

where Rs
i (X) = ∫

1

0

(1 − t) 𝑑
2

𝑑𝑡2
us(Yi(t, X))𝑑𝑡, i ∈ s, ∀X ∈ Ts

∗. (4.2)

Proof. Since Ai ∈Ts and X ∈ Ts
∗, we know that Yi(t, X)∈Ts,∀ t∈ [0, 1]. Apply-

ing the standard Taylor expansion with integral remainder to the components of

u(X)= (u1(X), u2(X))T , we have

us(Ai) =us(X) + 𝛻us(X)(Ai − X) + Rs
i (X), i ∈ s, ∀X ∈ Ts

∗, s = ±. (4.3)

Then, we obtain (4.1) by applying the vectorization on each side of (4.3) and using the

(2.7) with C = I2, E =Ai −X, and D=𝛻us(X). ▪

In the discussion from now on, we denote s=± and s′ =∓, which means s and s′
always take

opposite signs when they appear in the same formula. And in the following theorem, we describe how

to expand u(Ai) about X if they are the different sides of Γ, that is, Ai ∈Ts but X ∈ Ts′
∗ .

Theorem 4.2 On every interface element T ∈  i
h and u ∈ PC2

𝑖𝑛𝑡(T), assume Ai ∈Ts′ ,
then

us′ (Ai) =us(X) + ((Ai − X)T ⊗ I2)Vec(𝛻us(X))

+ ((Ai − Ỹi)T ⊗ I2)(Ms − I4)Vec(𝛻us(X)) + Rs
i (X), i ∈ s′ ,∀X ∈ Ts

∗, s = ±, (4.4)

where Rs
i = Rs

i1 + Rs
i2 + Rs

i3, with⎧⎪⎪⎨⎪⎪⎩
Rs

i1(X) = ∫ t̃i
0
(1 − t) 𝑑2

𝑑𝑡2
us(Yi(t, X))𝑑𝑡,

Rs
i2(X) = ∫ 1

t̃i
(1 − t) 𝑑2

𝑑𝑡2
us′(Yi(t, X))𝑑𝑡,

Rs
i3(X) = (1 − t̃i)((Ai − X)T ⊗ I2)(Ms(Ỹi) − I4) ∫ t̃i

0

𝑑

𝑑𝑡
𝑉 𝑒𝑐(𝛻us(Yi(t, X)))𝑑𝑡.

(4.5)

Proof. Without loss of generality, we only discuss the case Ai ∈T+ and X ∈ T−
∗ .

Following a procedure similar to that used in [29], we have

u+(Ai) = u−(X) + ∫
t̃i

0

𝑑

𝑑𝑡
u−(Yi(t, X))𝑑𝑡 + ∫

1

t̃i

𝑑

𝑑𝑡
u+(Yi(t, X))𝑑𝑡

= u−(X) + 𝛻u−(X)(Ai − X) − 𝛻u−(Ỹi)(Ai − Ỹi) + 𝛻u+(Ỹi)(Ai − Ỹi)

+ ∫
t̃i

0

(1 − t) 𝑑
2

𝑑𝑡2
u−(Yi(t, X))𝑑𝑡 + ∫

1

t̃i
(1 − t) 𝑑

2

𝑑𝑡2
u+(Yi(t, X))𝑑𝑡, (4.6)

where the last two terms are actually R−
i1 and R−

i2. For the second and the third term on

the right hand side of (4.6), by applying (2.7), we have

𝛻u−(X)(Ai − X) = ((Ai − X)T ⊗ I2)Vec(𝛻u−(X)),

𝛻u−(Ỹi)(Ai − Ỹi) = ((Ai − Ỹi)T ⊗ I2)Vec(𝛻u−(Ỹi)). (4.7)
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For the fourth term on the right hand side of (4.6), by applying (2.7) and Lemma 3.1, we

have

𝛻u+(Ỹi)(Ai − Ỹi) = ((Ai − Ỹi)T ⊗ I2)Vec(𝛻u+(Ỹi))

= (1 − t̃i)((Ai − X)T ⊗ I2)M−(Ỹi)Vec(𝛻u−(Ỹi)). (4.8)

Moreover we note that

𝛻u−(Ỹi) = ∫
t̃i

0

𝑑

𝑑𝑡
𝛻u−(Yi(t, x))𝑑𝑡 + 𝛻u−(X). (4.9)

Finally, expansion (4.4) follows from substituting (4.9), (4.8), (4.7) into (4.6). ▪

For X ∈T*, we consider another group of expansion which only involves the first derivative of u.

Theorem 4.3 On every interface element T ∈  i
h , u ∈ PC2

𝑖𝑛𝑡(T), for each X∈T*, we
have

u(Ai) = u(X) + R̃i(X), with R̃i(X) = ∫
1

0

𝑑

𝑑𝑡
u(Yi(t, X))𝑑𝑡. (4.10)

Proof. The proof follows from a straightforward application of the same arguments

used in [50] that only relies on the continuity of u. ▪

We proceed to estimate the remainders in (4.2) and (4.5) in terms of the Hilbert norms associated

with PH2
𝑖𝑛𝑡(T). For every scalar function u, let 𝛻2u be its Hessian matrix. Then we note that

𝑑2

𝑑𝑡2
u(Yi(t, X)) =

[
(Ai − X)T𝛻2u1 (Ai − X)
(Ai − X)T𝛻2u2 (Ai − X)

]
, (4.11)

𝑑

𝑑𝑡
(𝛻u(Yi(t, X))) =

[
(Ai − X)T𝛻2u1

(Ai − X)T𝛻2u2

]
. (4.12)

Therefore, we have

Lemma 4.1 Let u ∈ PC2
𝑖𝑛𝑡(T), there exist constants C > 0 independent of interface

location such that‖Rs
i‖0,Ts

∗
≤ 𝐶ℎ2|u|2,T , i ∈ s, s = ±,‖Rs

i1‖0,Ts
∗
≤ 𝐶ℎ2|u|2,T , ‖Rs

i2‖0,Ts
∗
≤ 𝐶ℎ2|u|2,T , i ∈ s′ , s = ±. (4.13)

Proof. Let Rs
i = (R1s

i , R2s
i )T , then according to (4.11), using Minkowski inequality and

the fact ‖Ai −X‖≤ h, we have

R𝑗𝑠
i (X) =

(
∫Ts

∗

(
∫

1

0

(1 − t)(Ai − X)T𝛻2us
j (Yi(t, X))(Ai − X)𝑑𝑡

)2

𝑑𝑋

) 1

2

≤ 𝐶ℎ2 ∫
1

0

(
∫Ts

∗

(1 − t)2
2∑

k,l=1

|𝜕xkxl u
s
j |2

) 1

2

𝑑𝑡 ≤ 𝐶ℎ2|uj|2,T , j = 1, 2,

where we have used arguments similar to those used for the Lemma 4.1 in [48], and these

estimates lead to the first estimate in (4.13). The derivations for the estimates of Rs
i1 and

Rs
i2 are similar. ▪
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Lemma 4.2 Let u ∈ PC2
𝑖𝑛𝑡(T), there exist constants C> 0 independent of interface

location such that ‖Rs
i3‖0,Ts

∗
≤ 𝐶ℎ2|u|2,T , i ∈ s′ , s = ±. (4.14)

Proof. Let Rs
i3 = (R1s

i3 , R2s
i3 )T . Using (4.12), (3.9), the fact ‖Ai −X‖≤ h and 0 ≤ 1 −

t̃i(X) ≤ 1 − t, we have

‖R𝑗𝑠
i3‖0,Ts

∗
≤ 𝐶ℎ2

⎛⎜⎜⎝∫Ts
∗

(
∫

t̃i

0

(1 − t)
2∑

k,l=1

2∑
j=1

|𝜕xkxl uj|𝑑𝑡)2

𝑑𝑋

⎞⎟⎟⎠
1

2

.

Then, applying the Minkowski inequality and Lemma 4.1 in [48] to the inequality above

yields

‖R𝑗𝑠
i3‖0,Ts

∗
≤ 𝐶ℎ2 ∫

t̃i

0

(
2∑

k,l=1

2∑
j=1

∫Ts
∗

(1 − t)2|𝜕xkxl uj|2𝑑𝑋

) 1

2

𝑑𝑡 ≤ 𝐶ℎ2(|u1|2,T + |u2|2,T ),

from which (4.14) readily follows. ▪

In addition, since u∈ [H2(Ts)]2, the Sobolev embedding theorem indicates u∈ [W1, 6(Ts)]2, s=±.

Therefore we can bound the remainder R̃i in (4.10) in terms of W1, 6-norm.

Lemma 4.3 There exists a constant C independent of the interface location such that
when h is small enough there holds‖R̃i‖0,T∗ ≤ 𝐶ℎ2‖u‖1,6,T . (4.15)

Proof. We note that T∗ = T̃ ∪ T𝑖𝑛𝑡, and it is a small set such that ∣T* ∣ ≤Ch3 when the

mesh is fine enough because |T̃| ≤ 𝐶ℎ3 [29] and ∣T* ∣ ≤Ch3 by Lemma 3.4. Note that

R̃i = (R̃1
i , R̃2

i )T , and, by using (4.12), we have

R̃j
i(X) = ∫

1

0

𝛻uj(Yi(t, X)) (Ai − X)𝑑𝑡, j = 1, 2.

Then, applying arguments similar to those used for Lemma 3.2 in [50] and using the fact

∣T* ∣ ≤Ch3, we have ‖R̃j
i‖0,T∗ ≤ 𝐶ℎ2‖uj‖1,6,T for j= 1, 2 from which (4.15) follows. ▪

5 CONSTRUCTION OF IFE SPACES

In this section, we construct local IFE spaces corresponding to their related finite element spaces

(T ,𝚷T ,𝚺T ) described in Section 2. As usual the local IFE space on every noninterface element T is

the standard vector polynomial space, that is,

Sh(T) = Span{𝝍 i,T , 𝝍 i+||,T ∶ i ∈ }, (5.1)

where 𝝍 i, T are given by (2.4). We note that a procedure to construct the local IFE spaces formed by

piecewise linear polynomials on interface elements is discussed in [43, 45], and a similar procedure

is presented in [45] for the local IFE spaces formed by piecewise bilinear polynomials. However,

according to the example presented in [45], the linear system for determining an IFE shape function in

these procedures can be singular in some cases. We now propose a new procedure so that the bilinear
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5 (f) Case 5

FIGURE 1 Typical nonconforming linear elements [Color figure can be viewed at wileyonlinelibrary.com]

(a) Case 1 (b) Case 2

FIGURE 2 Typical conforming linear elements [Color figure can be viewed at wileyonlinelibrary.com]

(a) Case 1 (b) Case 2

FIGURE 3 Typical bilinear elements [Color figure can be viewed at wileyonlinelibrary.com]

or the rotated Q1 IFE shape functions on every interface element can always be uniquely determined

by the local degrees of freedom 𝚺T .

5.1 Local IFE spaces

Without loss of generality, we consider a typical interface element T ∈  i
h with A1 = (0, 0)T ,

A2 = (h, 0)T , A3 = (0, h)T when the conforming linear polynomials are discussed on a triangular T ,

A1 = (h/2, 0)T , A2 = (h/2, h/2)T , A3 = (0, h/2)T when the nonconforming linear polynomials are dis-

cussed on a triangular T , A1 = (0, 0)T , A2 = (h, 0)T , A3 = (0, h)T , A4 = (h, h)T for the bilinear case on

a rectangular T , and A1 = (h/2, 0)T , A2 = (h, h/2)T , A3 = (h/2, h)T , A4 = (0, h/2)T for the rotated Q1

case on a rectangular T . We further denote the vertices of the rectangular element by M1 = (0, 0)T ,

M2 = (h, 0)T , M3 = (0, h)T , and M4 = (h, h)T , when the rotated Q1 elements are considered. According

to [48], by considering rotation, there are six possible cases of the interface element configuration for

the nonconforming linear case, two possible cases for the conforming linear and bilinear cases, and

five possible cases for the rotated Q1 case, as illustrated in Figures 1–4.

On an interface element T , we consider the elasticity IFE functions as piecewise vector polynomials

in the following format:

𝜙T (X) =

{
𝜙−

T (X) ∈ 𝚷T , if X ∈ T−
,

𝜙+
T (X) ∈ 𝚷T , if X ∈ T+

,
(5.2)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

FIGURE 4 Typical rotated Q1 elements [Color figure can be viewed at wileyonlinelibrary.com]

with 𝜙+
T (X) and 𝜙−

T (X) satisfying that{
𝜙−

T |l = 𝜙+
T |l, (for the linear case),

𝜙−
T |l = 𝜙+

T |l, 𝑑(𝜙−
T ) = 𝑑(𝜙+

T ), (for the bilinear∕rotated Q1 case),
(5.3)

𝜎+(𝜙+
T )(F) n = 𝜎−(𝜙−

T )(F) n, (5.4)

where F is a point on l which will be specified later and d(𝝍) is a vector formed by the coefficients

of the second degree term of 𝝍 ∈𝚷T , that is, the coefficient of xy for a bilinear polynomial or the

coefficient of x2 − y2 for a rotated Q1 polynomial. Given a set of nodal-value vectors vi, i∈, we

further impose the nodal value condition:

𝜙T (Ai) = vi. (5.5)

Let Ψi, T = [𝝍 i, T ,𝝍 i+ ∣ ∣ , T ], i∈ which is a 2-by-2 matrix basis function and let L(X)= 0 be the

equation of the line l with L(X) = n ⋅ (X − D). It is easy to see that Ψi, T (Aj)= 𝛿i, jI2, i, j∈. Without

loss of generality, we assume that |+|≥ |−|. Then by (5.5), (5.3), we can express (5.2) as

𝜙T (X) =
⎧⎪⎨⎪⎩
𝜙−

T (X) = 𝜙+
T (X) + L(X)c0 if X ∈ T−

,

𝜙+
T (X) =

∑
i∈+

Ψi,T (X)vi +
∑

i∈−
Ψi,T (X)ci if X ∈ T+

,
(5.6)

where c0 = (c1
0, c2

0)T and ci = (c1
i , c2

i )T , i ∈ − are to be determined. Applying the jump condition for

the stress tensor (5.4)–(5.6), we obtain

𝜎−(Lc0)(F)n = 𝜎(𝜙+
T )(F)n, (5.7)

where 𝜎(v)(X) for a vector function v is defined as follows:

𝜎(v) = (𝜎𝑖𝑗(v))1≤i,j≤2, 𝜎𝑖𝑗(v) = 𝜆(𝛻 ⋅ v)𝛿i,j + 2𝜇𝜀𝑖𝑗(v), with 𝜆 = 𝜆+ − 𝜆−, 𝜇 = 𝜇+ − 𝜇−. (5.8)

Also, in 𝜎(𝜙+
T )(X), the function 𝜙+

T is a polynomial so that it can be evaluated for any X, and this

meaning applies to similar situations from now on. By direct calculations, we have

𝜎−(Lc0)(F) =
[

n2
1(𝜆− + 𝜇−) + 𝜇− n1n2(𝜆− + 𝜇−)
n1n2(𝜆− + 𝜇−) n2

2(𝜆− + 𝜇−) + 𝜇−

] [
c1

0

c2
0

]
≔ Kc0. (5.9)

Then we note that

K = Q−QT , with − =
[
(𝜆− + 2𝜇−) 0

0 𝜇−

]
, Q = [n, t], (5.10)

which is obviously nonsingular. Hence c0 is determined by

c0 = K−1𝜎(𝜙+
T )(F)n. (5.11)

http://wileyonlinelibrary.com
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Next we apply the nodal value (5.5) for j∈− and (5.11) to (5.6) to obtain

Kcj + L(Aj)
∑
i∈−

𝜎(Ψi,Tci)(F)n = Kvj − L(Aj)
∑
i∈+

𝜎(Ψi,Tvi)(F)n, j ∈ −. (5.12)

We now put equations in (5.12) into a matrix form. To this end, we first let (j1, j2, …, j| |) be a permu-

tation of (1, 2, …, | |) such that jk ∈− for 1≤ k≤ |−| but jk ∈+ for |−|+ 1≤ k≤ | |. Consider three

vectors c, v−, and v+ such that

c = [cjk ]
|−|
k=1 ∈ R

2|−|, v− = [vjk ]
|−|
k=1 ∈ R

2|−|, v+ = [vjk ]
||
k=|−|+1 ∈ R

2|+|.
We adopt the following notations:

K = I∣−∣ ⊗ K ∈ R
2∣−∣×2∣−∣, L = [L(Ajk )I2]|−|

k=1 ∈ R
2∣−∣×2, (5.13a)

Ψ− = [Ψjk ]
|−|
k=1 ∈ R

2∣−∣×2, Ψ+ = [Ψjk ]
||
k=|−|+1 ∈ R

2∣+∣×2, (5.13b)

with Ψj =
[
𝜎(𝝍 j,T )(F)n 𝜎(𝝍 j+∣∣,T )(F)n

]T ∈ R
2×2, 1 ≤ j ≤ ||. (5.13c)

For any vector r∈R2× 1, we note the identity 𝜎(Ψi,Tr)(F)n = ΨT
i r. Hence by using the matrices defined

in (5.13a)–(5.13c), we can represent equations in (5.12) as follows:

(K + L Ψ−T )c = b, (5.14)

with b = Kv− − L Ψ+Tv+. (5.15)

We note that the coefficient matrix in (5.14) is a generalized Sherman–Morrison matrix formed by

matrices K, L and Ψ. Here, we proceed to discuss the unisolvence for the bilinear and the rotated Q1

IFE functions, that is, the invertibility of the matrix in (5.14), which can be always guaranteed with a

suitable choice for F through the proposed new construction procedure. The discussion for the linear

case will be left to Remark 5.3.

First, for the rotated Q1 IFE functions in Case 1 as illustrated in Figure 4a, we note that there is

no ci, i∈− coefficients in the formulation (5.6) and c0 is uniquely determined by (5.11), and this

means that the unisolvence for this case is always guaranteed. To discuss other cases, we define two

parameters d and e for describing the interface-element intersection points D and E for those typical

rectangular interface elements illustrated in Figures 3 and 4:

• We let d = ‖D−A1‖/h, e= ‖E −A1‖/h for Case 1 in Figure 3 and d = ‖D−M1‖/h,

e= ‖E −M1‖/h for Case 2 and Case 3 in Figure 4.

• We let d = ‖D−A1‖/h, e= ‖E −A3‖/h for Case 2 in Figure 3 and d = ‖D−M1‖/h,

e= ‖E −M3‖/h for Case 4 and Case 5 in Figure 4.

We start from some estimates for the following two auxiliary functions:

gn(X) =
∑
i∈−

L(Ai)𝛻𝜓i,T (X) ⋅ n, gt(X) =
∑
i∈−

L(Ai)𝛻𝜓i,T (X) ⋅ t. (5.16)

Lemma 5.1 On each rectangular interface element T ∈  i
h , let F0 = t0D+ (1− t0)E

such that

• when it is a bilinear element in Case 1 illustrated in Figure 3, assume t0 = e/(d+ e),
• when it is a bilinear element in Case 2 illustrated in Figure 3, assume t0 = 1− e if d≥ e,

t0 = 1− d if e> d,
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• when it is a rotated Q1 element in Case 2 or Case 3 illustrated in Figure 4, assume t0 = 1
when d≥ e or t0 = 0 when e> d,

• when it is a rotated Q1 element in Case 4 or Case 5 illustrated in Figure 4, assume t0 = 1/2.

Then
(1 − gn(F0))2 − g2

t (F0) ≥ 0, g2
n(F0) − g2

t (F0) ≥ 0, (5.17a)

gn(F0) ∈ [0, 1], gt(F0) ∈ [−1, 1]. (5.17b)

Proof. Here, we only provide a proof for the Case 1 of the bilinear elements and similar

arguments can be applied to other cases, see more details provided in the appendix. By

direct calculation, we can verify that

g2
n(F0) − g2

t (F0) =
4𝑑3e3(𝑑 + e − 𝑑𝑒)2
(𝑑2 + e2)2(𝑑 + e)2

⩾ 0;

(1 − gn(F0))2 − g2
t (F0) =

−𝑑2e2(e2(1−𝑑) − 𝑑2(1 − e))2 + (e2(1 − 𝑑) + 𝑑2(1 − e + e2))2(𝑑 + e)2
(𝑑2 + e2)2(𝑑 + e)2

≥ 0,

which lead to (5.17a). For (5.17b), the first inequality is just a special case of Lemma 5.1

in [48] and the second inequality is a consequence of (5.17a). ▪

Lemma 5.2 The matrix in the linear system (5.14) is nonsingular if and only if the
following matrix is nonsingular:

Ξ(F) = − +
[
(𝜆 + 2𝜇)gn(F) 𝜆gt(F)

𝜇gt(F) 𝜇gn(F)

]
. (5.18)

Proof. Note that the matrix in (5.14) is in a generalized Sherman–Morrison format.

Since K is invertible, the linear system (5.14) is nonsingular if and only if the matrix

I2 + Ψ−TK−1L = I2 +
∑
j∈−

L(Aj)Ψ
T
j K−1 =

(
K +

∑
j∈−

L(Aj)Ψj

)
K−1 (5.19)

is invertible. Then by using (5.10), we can directly verify that

Q

(
K +

∑
j∈−

L(Aj)Ψj

)
QT = P− +

[
(𝜆 + 2𝜇)gn(F) 𝜆gt(F)

𝜇gt(F) 𝜇gn(F)

]
(5.20)

which leads to the conclusion of this lemma because Q is invertible. ▪

Lemma 5.3 With the F0 specified in Lemma 5.1, we have

Det(Ξ(F0)) > 2(min{𝜇+, 𝜇−})2. (5.21)

Proof. By (5.18) and direct calculations, we have

Det(Ξ(F0)) =𝜆+𝜇+(g2
n − g2

t ) + 𝜆−𝜇−((1 − gn)2 − g2
t )

+ 𝜆−𝜇+((1 − gn)gn + g2
t ) + 𝜆+𝜇−(gn(1 − gn) + g2

t )
+ 2(𝜇+)2g2

n + 2(𝜇−)2(1 − gn)2 + 4𝜇+𝜇−(1 − gn)gn,

in which gn = gn(F0) and gt = gt(F0). Then, applying estimates in Lemma 5.1 to the above,

we have Det(Ξ(F0)) ≥ 2(𝜇+)2g2
n + 2(𝜇−)2(1 − gn)2 > 2(min{𝜇+, 𝜇−})2. ▪

Finally we can prove the following main theorem in this section.
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Theorem 5.1 (Unisolvence). Let T ∈  i
h be a rectangular interface element with F= F0

specified in Lemma 5.1. Then given any vector v ∈ R2∣−∣×1, for the bilinear and rotated
Q1 elements, there exists one and only one IFE shape function satisfying (5.2)–(5.5).

Proof. The proof is directly based on Lemmas 5.2 and 5.3. ▪

Remark 5.1 According to the generalized Sherman–Morrison formula and (5.19),

(5.20), we can give an analytical formula for the coefficients c in (5.14) as

c = K−1b − K−1L(I2 + Ψ−TK−1L)−1Ψ−TK−1b

= K−1b − K−1L𝐾𝑄TΞ−1QΨ−TK−1b. (5.22)

Here it is important to note that K is a diagonal block matrix formed only by the 2-by-2

matrix K and Ξ is also a 2-by-2 matrix so that their inverses are easy to calculate

analytically. Hence, if preferred, there is no need to solve for c numerically because

of (5.22).

Remark 5.2 When F = (D+E)/2, the linear and bilinear IFE shape functions given by

(5.6) with the coefficients determined by (5.11) and (5.14) coincide with those in [45].

Remark 5.3 For the linear IFE functions, because each side in (5.4) is a constant vector

which is therefore independent of the location of F, the new construction procedure pro-

posed above is the same as the one considered in [43, 45], that is, the one in Remark 5.2,

regardless of the choice of F0. In this case, the authors in [45] identified a specific inter-

face element configuration such that the conforming linear IFE shape functions cannot

be uniquely determined by the Lagrange type degrees of freedom, that is, the nodal val-

ues, and they also showed that the unisolvence can be conditionally guaranteed by some

assumptions on the Lamé parameters (Theorem 4.7 in [45]). The immersed noncon-

forming linear elements, that is, the linear Crouzeix–Raviart IFE elements, also have a

conditional unisolvence, which can be discussed similarly as Theorem 4.7 in [45].

Remark 5.4 In the bilinear and rotated Q1 cases, the unisolvence of the IFE shape func-

tions depends on suitable choices of the point F0 stated in Lemma 5.1. It is easy to see

that a small perturbation of a suitable choice of F =F0 given in Lemma 5.1 can also yield

det(Ξ(F)) > 0 since the Ξ(F) in (5.18) is a continuous function of F for a fixed interface

location in an element. This means that each choice of F0 is not unique and Lemma 5.1

only provides sufficient conditions for the unisolvence. We also note that, because of the

continuous dependence of c given in (5.22) and c0 given in (5.11) on F, a small perturba-

tion of F =F0 should lead to a small change of the coefficients, and thus the corresponding

IFE shape functions will not change much.

By taking the nodal value vector v to be unit vectors, we construct the IFE shape functions

satisfying the weak jump (5.3) and (5.4) and

𝜙i,T (Aj) =

{
𝛿i,j,

0,
i = 1,… , ∣  ∣, and 𝜙i,T (Aj) =

{
0,

𝛿i−∣∣,j,
i =∣  ∣ +1,… , 2 ∣  ∣ . (5.23)

The local IFE spaces on interface elements T ∈  i
h are then defined as

Sh(T) = Span{𝜙i,T , 𝜙i+||,T ∶ i ∈ }. (5.24)
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The local IFE spaces defined by (5.1) and (5.24) can be used to construct an IFE space over the whole

domain Ω according to the need of a finite element scheme. For example, by enforcing the continuity

at the mesh nodes, we can consider the following global IFE space:

Sh(Ω) ={v ∈ [L2(Ω)]2 ∶ v|T ∈ Sh(T);
v|T1

(N) = v|T2
(N)∀N ∈ h,∀T1, T2 ∈ h such that N ∈ T1 ∩ T2}. (5.25)

5.2 Properties of IFE shape functions

In this subsection, we discuss some fundamental properties of the proposed IFE shape functions. We

tacitly assume that, on each interface element T ∈  i
h , 𝜙i,T , 1 ≤ i ≤ 2 ∣  ∣ are the bilinear or

the rotated Q1 IFE shape functions constructed according to Theorem 5.1 or they are the conform-

ing/nonconforming linear IFE shape functions which uniquely exist according to their degrees of

freedom under some conditions on the Lamé parameters, see Remark 5.3.

Theorem 5.2 (Boundedness). There exists a constant C such that the following
estimates are valid for IFE shape functions on each interface element:|𝜙i,T |k,∞,T ≤ 𝐶ℎ−k, k = 0, 1, 2, 1 ≤ i ≤ 2 ∣  ∣, ∀T ∈  i

h . (5.26)

Proof. For the bilinear or the rotated Q1 IFE shape functions, we note that (5.10) yields‖K‖ ≤ C. And (5.13a) shows ‖L‖ ≤ 𝐶ℎ because |L|0,∞ , T ≤Ch and ‖Ψs‖ ≤ 𝐶ℎ−1. So we

have ‖b‖≤C, of which the constants C only depends on Lamé parameters. Next (5.17b),

(5.21) suggest ‖Ξ−1‖≤C. So by the (5.22), we have ‖c‖≤C and then use (5.11) to show‖c0‖≤Ch−1. Therefore, ‖c0L‖0,∞ , T ≤C and |c0L|1,∞ , T ≤Ch−1 because |L|0,∞ , T ≤Ch
and |L|1,∞ , T ≤C. In addition, it is easy to see |c0L|2,∞ , T = 0, since L is a linear function.

Finally, applying these estimates and (2.5) to (5.6) leads to (5.26). Similar arguments can

be used for the linear IFE shape functions. ▪

For simplicity of presentation, we denote the following matrix shape functions:

Φi,T (X) = [𝜙i,T (X), 𝜙i+∣∣,T (X)], i ∈ . (5.27)

Theorem 5.3 (Partition of unity). On each interface element T ∈  i
h , we have∑

i∈
Φi,T (X) = I2,

∑
i∈

𝜕xjΦi,T (X) = 02×2,
∑
i∈

𝜕xjxkΦi,T (X) = 02×2, j, k = 1, 2. (5.28)

Proof. By direct verifications, we can see that vector functions 𝝓1 = (1, 0)T and

𝝓2 = (0, 1)T satisfy the weak jump (5.3) and (5.4) exactly; hence, they are in the IFE space

Sh(T). Then the unisolvence of the IFE function leads to the first identity in (5.28). And

the second and third identity in (5.28) are just the derivatives of the first one. ▪

Remark 5.5 The first identity in (5.28) is proved in [45] for the linear and bilinear IFE

shape functions by direct verifications.

For the proposed IFE shape functions, we consider the following 2-by-4 matrix functions:

Λ−(X) =
∑
i∈

((Ai − X)T ⊗ (Φ−
i,T (X))) +

∑
i∈+

((Ai − Xi)T ⊗ (Φ−
i,T (X)))(M

− − I4), (5.29a)
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Λ+(X) =
∑
i∈

((Ai − X)T ⊗ (Φ+
i,T (X))) +

∑
i∈−

((Ai − Xi)T ⊗ (Φ+
i,T (X)))(M

+ − I4), (5.29b)

where Xi, i ∈  are arbitrary points on l, and we further use them to define

Λ+(X) = Λ+(X), Λ−(X) = Λ−(X)M
+
. (5.30)

First we show that both Λ−(X) and Λ+(X) are well defined that is, they are independent of Xi ∈ l,
i ∈ .

Lemma 5.4 The matrix functions Λ−(X) and Λ+(X) are independent with the points
Xi ∈ l, i ∈ .

Proof. Let Xi and X′
i be two points on l. Then, by Lemma 3.2, we have

((Ai − Xi)T ⊗ (Φs
i (X)))(M

s − I4) − ((Ai − X′
i)T ⊗ (Φs

i (X)))(M
s − I4)

= ‖Xi − X′
i‖[Φs

i ,Φs
i ] [𝛼1, 𝛼2](M

s − I4) = 0, s = ±, (5.31)

where, as in Lemma 3.2, 𝛼1 = (−n2, 0, n1, 0)T and 𝛼2 = (0,−n2, 0, n1)T . Hence, by (5.29)

and (5.30), functions Λ−(X) and Λ+(X) are independent of Xi, i ∈ . ▪

Lemma 5.4 allows us to consolidate Xi, i ∈  in Λ−(X) and Λ+(X) into a single point X ∈ l. Then,

by using (5.28), we rewrite these two functions as follows:

Λ−(X) =
∑
i∈−

(Ai − X)T ⊗Φ−
i (X)M

+ +
∑
i∈+

(Ai − X)T ⊗Φ−
i (X) − ((X − X)T ⊗ I2)M

+
. (5.32a)

Λ+(X) =
∑
i∈−

(Ai − X)T ⊗Φ+
i (X)M

+ +
∑
i∈+

(Ai − X)T ⊗Φ+
i (X) − (X − X)T ⊗ I2, (5.32b)

For every fixed X, we consider the following piecewise 2-by-4 matrix function:

V(X) =

{
(X − X)T ⊗ I2 if X ∈ T+

,

((X − X)T ⊗ I2)M
+

if X ∈ T−
.

(5.33)

Lemma 5.5 On every interface element T ∈  i
h , each column of V(X) is in the local

IFE space Sh(T).

Proof. Clearly, each column of V(X) restricted on either T+
or T−

is in the correspond-

ing polynomial space 𝚷T . Furthermore, we note that V−(X) = V+(X) and[
𝜕x1

V+

𝜕x2
V+

]
= I4 = M+M− =

[
𝜕x1

V−

𝜕x2
V−

]
M−

,

which, together with the fact d(V)= 02× 4, shows each column of V satisfies (5.3) and

(5.4) simultaneously; thus, it is in the corresponding IFE space. ▪

Theorem 5.4 For every interface element T ∈ h, we have the identities Λ+ = 02× 4
and Λ− = 02× 4. And let I1 = [I2, 02× 2], I2 = [02× 2, I2], for j, k= 1, 2, s=±, we also have∑

i∈
((Ai − X)T ⊗ (𝜕xjΦ

s
i (X))) +

∑
i∈s′

((Ai − Xi)T ⊗ (𝜕xjΦ
s
i (X)))(M

s − I4) = Ij, (5.34a)

∑
i∈

((Ai − X)T ⊗ (𝜕xjxkΦ
s
i (X))) +

∑
i∈s′

((Ai − Xi)T ⊗ (𝜕xjxkΦ
s
i (X)))(M

s − I4) = 02×4. (5.34b)
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Proof. We construct a piecewise defined 2-by-4 matrix function:

Λ(X) =

{
Λ−(X) if X ∈ T−

,

Λ+(X) if X ∈ T+
.

(5.35)

According to (5.32b) and (5.32a), the first two terms in Λ−(X) and Λ+(X) are the linear

combination of the IFE shape functions with the same coefficients. Lemma 5.5 shows

that their last terms together form a function in the local IFE space. So each column of

the piecewise defined matrix function (5.35) belongs to Sh(T) for every interface element

T . In addition, by (5.29b) and (5.29a), we can see that Λ(Ai)= 02× 4, i∈. Hence, by the

unisolvence of IFE functions, we know that each column of Λ(X) must be 02× 1 which

leads to Λ±(X)= 02× 4 because M+
is nonsingular. Furthermore, (5.34a) and (5.34b) can

be obtained by differentiating (5.29b) and (5.29a). ▪

5.3 Interpolation error analysis

In this subsection, we use the results above to show the optimal approximation capabilities of the

proposed IFE spaces by estimating the errors of the Lagrange type interpolation operators. Again, we

assume the conditions for the unisolvence of IFE shape functions are satisfied, that is, F =F0 given in

Lemma 5.1 in the construction of the bilinear and rotated Q1 IFE shape functions and the conditions on

Lamé parameters are satisfied, see Remark 5.3, in the construction of the conforming/nonconforming

linear IFE shape functions. We also assume the mesh size h is small enough such that the geometric

estimates in Section 3 hold. To study the approximation capabilities, we consider the following local

Lagrange type interpolation operator: Ih, T : C0(T)→Sh(T) with

Ih,Tu(X) =
⎧⎪⎨⎪⎩
∑
i∈

Ψi,T (X)u(Ai), if T ∈  n
h ,∑

i∈
Φi,T (X)u(Ai), if T ∈  i

h ;
∀u ∈ C0(T). (5.36)

The global interpolation operator Ih on C0(Ω) can be defined in a usual piecewise manner such that

(Ihu)|T = Ih,Tu, ∀T ∈ h, ∀u ∈ C0(Ω). (5.37)

Applying the standard scaling argument [10, 52, 54] onto each component of the vector function

u= (u1, u2)T ∈H2(T), we can show that for all the noninterface elements, there holds‖Ih,Tui − ui‖0,T + h|Ih,Tui − ui|1,T + h2|Ih,Tui − ui|2,T ≤ 𝐶ℎ2|ui|2,T , i = 1, 2, ∀T ∈  n
h . (5.38)

To estimate the interpolation errors on an interface element T ∈  i
h , the two components of u have

to be treated together with the jump (1.5) and (1.6). In the following two theorems, we derive some

expansions of the interpolation on T ∈  i
h , and one key idea is to use the second-order expansion on

Ts
∗ (a major subelement) and the first order expansion on T* (a small subelement).

Theorem 5.5 On each interface element T ∈  i
h , assume u ∈ PC2

𝑖𝑛𝑡(T), then, for any
Xi ∈ l, the following expansions hold for every X ∈ Ts

∗:

Ih,Tu(X) − u(X) =
∑
i∈s′

Φi,T (X)(Es
i (X) + Fs

i (X)) +
∑
i∈

Φi,T (X)Rs
i (X), s = ±, (5.39a)

𝜕xj (Ih,Tu(X) − u(X)) =
∑
i∈s′

𝜕xjΦi,T (X)(Es
i (X) + Fs

i (X)) +
∑
i∈

𝜕xjΦi,T (X)Rs
i (X), s = ±, (5.39b)
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𝜕xjxk Ih,Tu(X) =
∑
i∈s′

𝜕xjxkΦi,T (X)(Es
i (X) + Fs

i (X)) +
∑
i∈

𝜕xjxkΦi,T (X)Rs
i (X), s = ±, (5.39c)

where j, k = 1, 2, Rs
i (X) are given in (4.2), (4.5) and

Es
i (X) = ((Ai − Ỹi)T ⊗ I2)(Ms(Ỹi) − Ms)𝑉 𝑒𝑐(𝛻us(X)),

Fs
i (X) = −((Ỹi − Xi)T ⊗ I2)(M

s − I4)𝑉 𝑒𝑐(𝛻us(X)). (5.40)

Proof. The argument is similar to [48] by applying the fundamental identity Theorem

5.4 onto the interpolation operator (5.36). Expanding the nodal values u(Ai), i∈, about

X ∈ Ts
∗ in the interpolation operator (5.36) by (4.1) and (4.4), we obtain

Ih,Tu(X) =
∑
i∈

Φi,T (X)u(X) +

(∑
i∈

Φi,T (X)((Ai − X)T ⊗ I2)

)
Vec(𝛻us(X))

+

(∑
i∈s′

Φi,T (X)((Ai − Ỹi)T ⊗ I2)(Ms − I4)

)
Vec(𝛻us(X)) +

∑
i∈

Φi,T (X)Rs
i . (5.41)

Note that for any vector r∈R2× 1, there holds

Φi,T (X)(rT ⊗ I2) = rT ⊗Φi,T (X). (5.42)

Then we apply Theorem 5.4 onto the second term in (5.41) to have

Ih,Tu(X) =
∑
i∈

Φi,T (X)u(X) −

(∑
i∈s′

((Ai − Xi)T ⊗Φi,T (X))(M
s − I4)

)
Vec(𝛻us(X))

+

(∑
i∈s′

((Ai − Ỹi)T ⊗Φi,T (X))(Ms − I4)

)
Vec(𝛻us(X)) +

∑
i∈

Φi,T (X)Rs
i . (5.43)

Then, (5.39a) follows by applying partition of unity, the fact Ai−Xi = (Ai− Ỹi)+(Ỹi−Xi),
and the identity (5.42) and (5.43). For (5.39b), we apply (4.1) and (4.4) to 𝜕xj Ih,Tu(X) =∑
i∈

𝜕xjΦi,T (X)u(Ai) to obtain

𝜕xj Ih,Tu(X) =
∑
i∈

𝜕xjΦi,T (X)u(X) +

(∑
i∈

𝜕xjΦi,T (X)((Ai − X)T ⊗ I2)

)
Vec(𝛻us(X))

+

(∑
i∈s′

𝜕xjΦi,T (X)((Ai − Ỹi)T ⊗ I2)(Ms − I4)

)
Vec(𝛻us(X)) +

∑
i∈

𝜕xjΦi,T (X)Rs
i .

By using (5.28), (5.34a) and (5.42) in the above, we have

𝜕xj Ih,Tu(X) = IjVec(𝛻us(X)) −

(∑
i∈s′

((Ai − Xi)T ⊗ 𝜕xjΦi,T (X))(M
s − I4)

)
Vec(𝛻us(X))

+

(∑
i∈s′

((Ai − Ỹi)T ⊗ 𝜕xjΦi,T (X))(Ms − I4)

)
Vec(𝛻us(X)) +

∑
i∈

𝜕xjΦi,T (X)Rs
i ,

which is in the same format as (5.43) because IjVec(𝛻us(X) = 𝜕xj u(X). Therefore, (5.39b)

follows from arguments used to derive (5.39a) from (5.43). Finally, (5.39c) can be derived

very similarly by applying (4.1) and (4.4) in 𝜕xjxk Ih,Tu(X) =
∑

i∈𝜕xjxkΦi,T (X)u(Ai) and

then using (5.28), (5.34b) and (5.42). ▪
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Remark 5.6 We note that (5.39c) is trivial for the linear IFE shape functions Φi, T since

each side is simply a zero vector. And the nontrivial one is the bilinear case with j= 1,

k= 2 and the rotated-Q1 case with j= k= 1 or j= k= 2.

In addition, for X ∈T*, we consider a simpler expansion as the following.

Theorem 5.6 On each interface element T ∈  i
h , assume u ∈ PC2

𝑖𝑛𝑡(T), the following
expansions hold for every X∈T*:

Ih,Tu(X) − u(X) =
∑
i∈

Φi,T (X)R̃i(X), (5.44a)

𝜕xj (Ih,Tu(X) − u(X)) = −𝜕xj u(X) +
∑
i∈

𝜕xjΦi,T (X)R̃i(X), (5.44b)

𝜕xjxk (Ih,Tu(X) − u(X)) = −𝜕xjxk u(X) +
∑
i∈

𝜕xjxkΦi,T (X)R̃i(X), (5.44c)

where j, k= 1, 2 and R̃i is given in (4.10).

Proof. They can be directly verified by applying (4.10) to the interpolation operator

(5.36). ▪

Now we are ready to derive estimates for the interpolation error.

Theorem 5.7 There exists a constant C independent of the interface location such that
the following estimate holds for every u ∈ PH2

𝑖𝑛𝑡(T):‖Ih,Tu − u‖0,Ts
∗
+h|Ih,Tu − u|1,Ts

∗
+h2|Ih,Tu − u|2,Ts

∗
≤ 𝐶ℎ2(|u|1,T + |u|2,T ), s = ±, ∀T ∈  i

h . (5.45)

Proof. First by (3.10) and ‖Ai− Ỹi‖ ≤ 𝐶ℎ, we have ‖Es
i‖0,Ts

∗
≤ 𝐶ℎ2|u|1,T , i ∈ , s =

±. Noticing ‖Ỹi−Xi‖ ≤ 𝐶ℎ2 from Lemma 3.2 in [48], we have ‖Fs
i‖0,Ts

∗
≤ 𝐶ℎ2|u|1,T , i ∈

, s = ±. Now putting these estimates, Lemmas 4.1, 4.2 and Theorem 5.2 into (5.39a)

and (5.39b), for s=±, j= 1, 2, we have‖Ih,Tu − u‖0,Ts
∗
≤ ∑

i∈s′

C(‖Es
i‖0,Ts

∗
+ ‖Fs

i‖0,Ts
∗
) +

∑
i∈

C‖Rs
i‖0,Ts

∗
≤ 𝐶ℎ2(|u|1,T + |u|2,T ),

‖𝜕xj Ih,Tu − 𝜕xj u‖0,Ts
∗
≤ ∑

i∈s′

Ch−1(‖Es
i‖0,Ts

∗
+ ‖Fs

i‖0,Ts
∗
) +

∑
i∈

Ch−1‖Rs
i‖0,Ts

∗
≤ 𝐶ℎ(|u|1,T + |u|2,T ).

In addition, by (5.39c), for j, k= 1, 2, we have‖𝜕xjxk Ih,Tu − 𝜕xjxk u‖0,Ts
∗
≤ ‖𝜕xjxk u‖0,Ts

∗
+

∑
i∈s′

Ch−2(‖Es
i‖0,Ts

∗
+ ‖Fs

i‖0,Ts
∗
) +

∑
i∈

Ch−2‖Rs
i‖0,Ts

∗

≤ C(|u|1,T + |u|2,T ).

These estimates lead to the desired result for u ∈ PC2
𝑖𝑛𝑡(T). Then the estimation for u ∈

PH2
𝑖𝑛𝑡(T) can be obtained from the density Hypothesis 4. ▪

Theorem 5.8 There exists a constant C independent of the interface location such that
the following estimate holds for every u ∈ PH2

𝑖𝑛𝑡(T):‖Ih,Tu − u‖0,T∗ + h|Ih,Tu − u|1,T∗ + h2|Ih,Tu − u|2,T∗ ≤ 𝐶ℎ2(‖u‖1,6,T + ‖u‖2,T ), ∀T ∈  i
h . (5.46)
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Proof. By the same arguments used for the proof of Lemma 4.3, we know that

∣T* ∣ ≤Ch3 for a mesh fine enough. Then, according to (2.5), Lemma 4.3 and Theorem

5.6, for j, k= 1, 2, we have‖Φi,TR̃i‖0,T∗ ≤ 𝐶ℎ2‖u‖1,6,T , ‖𝜕xjΦi,TR̃i‖0,T∗ ≤ 𝐶ℎ‖u‖1,6,T and ‖𝜕xjxkΦi,TR̃i‖0,T∗ ≤ C‖u‖1,6,T .

Besides, the Hölder’s inequality implies(
∫T∗

(𝜕xj um)2𝑑𝑋
) 1

2 ≤
(
∫T∗

1
3

2 𝑑𝑋

) 1

3
(
∫T∗

(𝜕xj um)6𝑑𝑋
) 1

6 ≤ 𝐶ℎ‖um‖1,6,T , m = 1, 2,

where we have used the fact ∣T* ∣ ≤Ch3. For the second term, it is easy to see that(
∫T∗

(𝜕xjxk uj)2𝑑𝑋
) 1

2 ≤ C‖uj‖2,T , j, k = 1, 2.

By applying the estimates above to (5.44a)–(5.44c), we have (5.46) for all u ∈ PC2
𝑖𝑛𝑡(T).

Again the result for u ∈ PH2
𝑖𝑛𝑡(T) follows from the density Hypothesis 4. ▪

Finally, by combing the results above, we can prove the optimal approximation capabilities for the

proposed IFE space through the following error estimation for the global interpolation operator.

Theorem 5.9 There exists a constant C independent of the interface location such that
the following estimate holds for every u ∈ PH2

𝑖𝑛𝑡(T):‖Ihu − u‖0,Ω + h|Ihu − u|1,h,Ω + h2|Ihu − u|2,h,Ω ≤ 𝐶ℎ2‖u‖2,Ω, (5.47)

where | ⋅ |1, h, Ω and | ⋅ |2, h, Ω are the usual discrete semi-norms defined according to the
mesh h.

Proof. By putting (5.45) and (5.46) together over all the elements T , we have‖Ihu − u‖0,Ω + h|Ihu − u|1,h,Ω + h2|Ihu − u|2,h,Ω ≤ 𝐶ℎ2(‖u‖2,Ω + ‖u‖1,6,Ω).

Then using the inequality ‖w‖2
1,p,Ω ≤ C‖w‖2

2,Ω for any w∈W1, p(Ω) from [57],

we have (5.47). ▪

6 NUMERICAL EXAMPLES

In this section we demonstrate the optimal approximation capabilities of the IFE spaces by numer-

ical examples. We use an example similar to that given in [45] in which the solution domain

is Ω= [−1, 1]× [−1, 1] and the exact solution u to the elasticity interface problem described by

(1.2)–(1.6) is

u(x1, x2) =
[

u1(x1, x2)
u2(x1, x2)

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
u−

1 (x1, x2)
u−

2 (x1, x2)

]
=

⎡⎢⎢⎣
a2b2

𝜆−
r𝛼1

a2b2

𝜆−
r𝛼2

⎤⎥⎥⎦ if X ∈ Ω−,

[
u+

1 (x1, x2)
u+

2 (x1, x2)

]
=

⎡⎢⎢⎢⎣
a2b2

𝜆+
r𝛼1 +

(
1

𝜆−
− 1

𝜆+

)
a2b2

a2b2

𝜆+
r𝛼2 +

(
1

𝜆−
− 1

𝜆+

)
a2b2

⎤⎥⎥⎥⎦ if X ∈ Ω+,

(6.1)
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TABLE 1 IFE interpolation errors and rates for the bilinear IFE functions

h ‖u− Ihu‖0, 𝛀 Rate |u− Ihu|1, 𝛀 Rate

1/10 5.6990E-1 6.8680E+0

1/20 1.4528E-1 1.9719 3.4933E+0 0.9753

1/40 3.6502E-2 1.9928 1.7544E+0 0.9936

1/80 9.1372E-3 1.9981 8.7822E-1 0.9984

1/160 2.2851E-3 1.9995 4.3924E-1 0.9996

1/320 5.7132E-4 1.9999 2.1964E-1 0.9999

1/640 1.4283E-4 2.0000 1.0982E-1 1.0000

1/1280 3.5709E-5 2.0000 5.4911E-2 1.0000

TABLE 2 IFE solution errors and rates for the bilinear IFE functions

h ‖u− uh‖0, 𝛀 Rate |u−uh |1, 𝛀 Rate

1/10 6.6120E-1 6.8668E+0

1/20 1.6880E-1 1.9698 3.4932E+0 0.9751

1/40 4.2380E-2 1.9938 1.7545E+0 0.9935

1/80 1.0599E-2 1.9995 8.7833E-1 0.9982

1/160 2.6485E-3 2.0007 4.3933E-1 0.9995

1/320 6.6160E-4 2.0011 2.1972E-1 0.9997

1/640 1.6493E-4 2.0041 1.0991E-1 0.9994

1/1280 4.1100E-5 2.0047 5.4990E-2 0.9990

where 𝜆− = 1, 𝜆+ = 5, 𝜇− = 2 and 𝜇+ = 10, a= b=𝜋/6.28, 𝛼1 = 5, 𝛼2 = 7 and r(x1, x2) =
(x2

1∕a2 + x2
2∕b2)1∕2, the interface Γ is a circle defined by the zero level set r(x1, x2)− 1= 0 and

Ω− = {(x1, x2)T : r(x1, x2) < 1}, Ω+ = {(x1, x2)T : r(x1, x2) > 1}. We note that the exact solution (6.1) is

simply a constant multiplier of the one used in [45], and here we used a circle with different radius

as the interface. All the numerical results presented below are generated by the proposed bilinear IFE

space on Cartesian meshes. The errors are measured in both the L2 and semi-H1 norms over a sequence

a meshes with the size specified by h.

We first present the numerical results for the interpolation operator Ihu defined by (5.36) and (5.37)

in Table 1. The convergence rate r is estimated from the errors computed on two consecutive meshes.

As expected, the numerical results clearly show that the interpolation errors converge optimally.

Next, for the IFE solution to the elasticity interface problem, we consider an IFE Galerkin scheme

discussed in [43, 45]: find uh ∈Sh(Ω) such that uh = Ihg on 𝜕Ω,

a(uh, vh) = L(vh), ∀vh ∈ Sh,0(Ω), (6.2)

where Sh, 0 = {vh ∈ Sh : v|𝜕Ω = 0} and

a(uh, vh) =
∑
T∈h

∫T
2𝜇𝜀(uh) ∶ 𝜀(vh) + 𝜆𝑑iv(uh)𝑑iv(vh)𝑑𝑋, and L(vh) =

∑
T∈h

∫T
f ⋅ vh𝑑𝑋. (6.3)

Errors of the IFE solution are listed in Table 2 in which, again, we use the errors generated from two

consecutive meshes to estimate the convergence rate. The data in this table clearly demonstrate that

the IFE solutions uh also converge to the exact solution u optimally.
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APPENDIX A: SOME TECHNICAL DETAILS FOR THE PROOF
OF LEMMA 5.1

The proof is based on direct calculation of which we provide the detailed results for all the cases in

Figures 3 and 4. Note that the first inequality in (5.17b) is just a special case of Lemma 5.1 in [48] and

the second inequality is a consequence of (5.17a). So we only need to discuss (5.17a).

Bilinear elements

Case 2. Because of the symmetry, we assume d ≥ e and take t0 = 1− e.

g2
n(F0) − g2

t (F0) =
1

(1 + 𝑑2 − 2𝑑𝑒 + e2)2
(−(2𝑑2(−1 + e) + 𝑑(1 + 2e − 4e2) + e(−1 + 2e2))2

+ (𝑑3(−1 + e) + 𝑑2(1 + 2e − 3e2) − e2(−2 + e2) + 𝑑(1 − 3e − e2 + 3e3))2) ⩾ 0;

(1 − gn(F0))2 − g2
t (F0) =

1

(1 + 𝑑2 − 2𝑑𝑒 + e2)2
(−(2𝑑2(−1 + e) + 𝑑(1 + 2e − 4e2) + e(−1 + 2e2))2

+ (−1 + 𝑑3(−1 + e) + 𝑑2(2 − 3e)e + e2 − e4 + 𝑑(1 − e − e2 + 3e3))2) ≥ 0.

Rotated Q1 elements

Case 1 in Figure 4 is trivial since there are no unknown coefficients involved.

Case 2 Note that 1≥ d ≥ 1/2≥ e≥ 0. Then

g2
n(F0) − g2

t (F0) =
(e − 2𝑑𝑒)2(4𝑑3 − 4𝑑4 − 3e2 − 4𝑑𝑒(2 + e) + 𝑑2(3 + 16e + 4e2))

4(𝑑2 + e2)2
≥ 0;

(1 − gn(F0))2 − g2
t (F0) =

1

4(𝑑2 + e2)2
(32𝑑5e2 − 16𝑑6e2 − 3e4 + 24𝑑𝑒4 + 𝑑2e2(7 + 32e − 8e2)

+ 8𝑑3e(1 + e − 12e2 − 4e3) + 4𝑑4(1 − 4e − 6e2 + 16e3 + 4e4)) ≥ 1

4
.

Case 3 Note that 1≥ d ≥ e≥ 1/2. Then

g2
n(F0) − g2

t (F0) =
1

4(𝑑2 + e2)2
(8𝑑5 − 4𝑑6 + 8𝑑(−1 + e)e3 − 3e4 − 8𝑑3e(1 + 6e)

+ 2𝑑2e2(13 + 4e − 2e2) + 𝑑4(−3 + 8e + 24e2)) ≥ 0;

(1 − gn(F0))2 − g2
t (F0) =

1

4(𝑑2 + e2)2
(8𝑑5 − 4𝑑6 + 8𝑑3(1 − 6e)e − 3e4 + 8𝑑𝑒3(1 + e)

− 2𝑑2e2(−13 + 4e + 2e2) + 𝑑4(−3 − 8e + 24e2)) ≥ 1

4
.

Case 4 Note that 1≥ d ≥ 1/2≥ e≥ 0. Then

g2
n(F0) − g2

t (F0) =
1

4(1 + 𝑑2 − 2𝑑𝑒 + e2)2
(−𝑑6 + 2𝑑5(1 + e) + 𝑑4(10 − 6e + e2) − 4𝑑3(4 + 2e − e2 + e3)

+ 𝑑2(11 + 24e − 12e2 + 4e3 + e4) + e(6 + 3e − 8e2 + 2e3 + 2e4 − e5)

+ 2𝑑(−1 − 9e + 4e3 − 3e4 + e5)) ≥ 1

16
;
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(1 − gn(F0))2 − g2
t (F0) =

1

4(1 + 𝑑2 − 2𝑑𝑒 + e2)2
(−𝑑6 + 2𝑑5(1 + e) + 𝑑4(2 − 6e + e2) − 4𝑑3(2 − 2e − e2 + e3)

+ 𝑑2(3 − 12e2 + 4e3 + e4) + 2𝑑(3 − 9e + 12e2 − 4e3 − 3e4 + e5)

− e(2 − 11e + 16e2 − 10e3 − 2e4 + e5)) ≥ 1

16
.

Case 5 Note that 1/2≥ d ≥ 0 and 1/2≥ e≥ 0. Then

g2
n(F0) − g2

t (F0) =
(𝑑2 + 2𝑑(−1 + e) + (−2 + e)e)2(1 − (𝑑 − e)2)

4(1 + 𝑑2 − 2𝑑𝑒 + e2)2
≥ 0;

(1 − gn(F0))2 − g2
t (F0) =

−(𝑑3 + 𝑑2(−2 + e) − 𝑑𝑒2 − (−2 + e)e2)2 + (2 + 3𝑑2 − 2e + 3e2 − 2𝑑(1 + e))2
4(1 + 𝑑2 − 2𝑑𝑒 + e2)2

≥ 1

4
.


