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We present a unified framework for developing and analyzing immersed finite-element (IFE) spaces for
solving typical elliptic interface problems with interface-independent meshes. This framework allows us to
construct a group of new IFE spaces with either linear, or bilinear, or the rotated-Q1 polynomials. Functions
in these IFE spaces are locally piecewise polynomials defined according to the subelements formed by
the interface itself instead of its line approximation. We show that the unisolvence for these IFE spaces
follows from the invertibility of the Sherman–Morrison matrix. A group of estimates and identities are
established for the interface geometry and shape functions that are applicable to all of these IFE spaces.
These fundamental preparations enable us to develop a unified multipoint Taylor expansion procedure
for proving that these IFE spaces have the expected optimal approximation capability according to the
involved polynomials.
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1. Introduction

This article presents a unified framework for developing and analyzing a group of immersed finite-element
(IFE) spaces that use interface-independent meshes (such as highly structured Cartesian meshes) to solve
interface problems of the typical second-order elliptic partial differential equations:

−∇ · (β∇u) = f , in Ω− ∪Ω+, (1.1)

u = g, on ∂Ω , (1.2)

where, without loss of generality, the domain Ω ⊆ R
2 is separated by an interface curve Γ into two

subdomains Ω+ and Ω−, the diffusion coefficient β(X) is discontinuous such that

β(X) =
{
β− if X ∈ Ω−,
β+ if X ∈ Ω+,

where β± are positive constants. In addition, the solution u is assumed to satisfy the jump conditions:

[u]Γ = 0, (1.3)[
β∇u · n

]
Γ

= 0, (1.4)

where n is the unit normal vector to the interface Γ , and for every piecewise function v defined as

v =
{

v−(X) if X ∈ Ω−,
v+(X) if X ∈ Ω+,

we adopt the notation [v]|Γ = v+|Γ − v−|Γ .
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It is well known that the standard finite-element method can be applied to interface problems, provided
that the mesh is formed according to the interface (see Babuška, 1970; Bramble & Thomas King, 1996;
Chen & Zou, 1998, and references therein). Many efforts have been made to develop alternative finite-
element methods based on unfitted meshes for solving interface problems. The advantages of using
unfitted meshes are discussed in Bordas et al. (2010), Moumnassi et al. (2011, 2014) and Nadal et al.
(2013). A variety of finite-element methods that can use interface-independent meshes to solve interface
problems have been reported in the literature (see Barrett & Elliott, 1987; Melenk & Babuška, 1996;
Babuška & Zhang, 1998; Dolbow et al., 2001; Babuška et al., 2003; Bastian & Engwer, 2009; Efendiev
& Hou, 2009; Guyomarc’h et al., 2009; Guzmán et al., 2017) for a few examples. In particular, instead
of modifying the shape functions on interface elements, which is an approach to be discussed in this
article, methods in Burman et al. (2015, 2017), Hansbo & Hansbo (2002) and Wang et al. (2016) employ
standard finite-element functions, but use the Nitsche’s penalty along the interface in the finite-element
schemes.

This article focuses on the IFE methods, whose basic idea was introduced by Li (1998), for those
applications where it is preferable to solve interface problems with a mesh independent of the interface,
e.g., the particle-in-cell method for simulating plasma particles (Lin & Wang, 2002; Kafafy et al., 2005;
Kafafy & Wang, 2007), the problems with moving interfaces (He et al., 2013; Lin et al., 2013a) and the
electroencephalography forward problem (Vallaghé & Papadopoulo, 2010). IFE methods for interface
problems of other types of partial differential equations can be found in Adjerid et al. (2015), He et al.
(2013), Hou et al. (2012), Li & Yang (2005), Lin et al. (2011, 2013a,b), Moon (2016) and Yang et al.
(2003).

The IFE spaces developed in this article are extended from the IFE spaces constructed with linear
polynomials (Li et al., 2003, 2004; Gong et al., 2007/08; Kwak et al., 2010), bilinear polynomials (Lin
et al., 2001; He et al., 2008; He, 2009) and rotate-Q1 polynomials (Zhang, 2013; Lin et al., 2013b) using
the standard Lagrange-type local degrees of freedom imposed either at element vertices as usual, or at
midpoints of element edges in the Crouzeix–Raviart way (Crouzeix & Raviart, 1973). We note that the
local linear IFE space on each triangular interface element constructed here with the Lagrange local
degrees of freedom imposed at vertices is very similar to the one recently introduced in Guzmán et al.
(2015). The IFE spaces in this article are new because, locally on each interface element, they are Hsieh–
Clough–Tocher-type macro finite-element functions (Clough & Tocher, 1966; Braess, 2001) defined with
subelements formed by the interface curve itself in contrast to those IFE spaces in the literature defined
with subelements formed by a straight line approximating the interface curve.

Our research presented here is motivated by two issues. The first issue concerns the general O(h2)

order accuracy for a line to approximate a curve which is a fundamental ingredient for the optimal
approximation capability of those IFE spaces in the literature. We hope the study of IFE spaces based on
curve subelements can shed light on the development of higher-degree IFE spaces for which the O(h2)

order is not sufficient. For examples, those techniques incorporating the exact geometry for constructing
basis functions (Sevilla et al., 2008; Lian et al., 2012; Nguyen et al., 2015) may be considered. The second
issue is the attempt to unify the fragmented framework for developing and analyzing the IFE spaces in
the literature. For IFE spaces based on different meshes, different polynomials and different local degrees
of freedom, we show that their unisolvence, i.e., the existence and uniqueness of IFE shape functions,
can be established through a uniform procedure related with the invertibility of the Sherman–Morrison
matrix. We have derived a group of identities for the interface geometry and shape functions that are
applicable to all of these IFE spaces, and this enables us to derive error estimates for the interpolation in
these new IFE spaces in a general unified multipoint Taylor expansion approach, in which IFE functions
defined according to the given interface actually simplify the analysis because we only need to apply the
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same arguments to two subelements formed by the interface, while the analysis for the IFE spaces in
the literature has to use a different set of arguments to handle the subelements sandwiched between the
interface curve and its approximate line. Also inspired by Guzmán et al. (2015), we have made an effort
to show how the error bounds explicitly depend on the maximum curvature of the interface curve and
the ratio between β− and β+, which are two important problem-dependent characteristics affecting the
approximation capability of IFE spaces. We note that the dependence of constants in the error bounds on
the ratio between β− and β+ in our article is similar to the one discussed in Chu et al. (2010), and we
think this coincidence follows from the fact that we analyze the approximation capability of finite-element
spaces with Lagrange-type degrees of freedom.

This article consists of five additional sections. In the next section, we describe common notations and
some basic assumptions used in this article. In Section 3, we derive estimates and identities associated with
the interface and the jump conditions in an element. From these estimates, we can see how their bounds
explicitly depend on curvature of the interface and the ratio between β− and β+, and how the mesh size
h is subject to the interface curvature. In Section 4, we present generalized multipoint Taylor expansions
for piecewise C2 functions in an interface element. Estimates for the remainders in these expansions are
derived in terms of pertinent Sobolev norms. In Section 5, first, we establish the unisolvence of immersed
finite-element functions constructed with linear, bilinear, Crouzeix–Raviart and rotated-Q1 polynomials,
i.e., we show that the standard Lagrange local degrees of freedom imposed at the nodes of an interface
element can uniquely determine an IFE function that satisfies the interface jump conditions in a suitable
approximate sense. Then, we show that the IFE shape functions have several desirable properties such as
the partition of unity and the critical identities in Theorem 5.11. Finally, with a unified analysis, we show
that the IFE spaces have the expected optimal approximation capability. In Section 6, we demonstrate
features of these IFE spaces by numerical examples.

2. Preliminaries

Throughout the article, Ω ⊂ R
2 denotes a bounded domain as a union of finitely many rectangles. The

interface curve Γ separates Ω into two subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω− ∪ Γ . For
every measurable subset, Ω̃ ⊆ Ω , let Wk,p(Ω̃) be the standard Sobolev spaces on Ω̃ associated with the
norm ‖ · ‖k,p,Ω̃ and the seminorm |v|k,p,Ω̃ = ‖Dαv‖0,p,Ω̃ , for |α| = k. The corresponding Hilbert space is
Hk(Ω̃) = Wk,2(Ω̃). When Ω̃ s = Ω̃ ∩Ω s 
= ∅, s = ±, we let

PHk
int(Ω̃) = {u : u|Ω̃s ∈ Hk(Ω̃ s), s = ±; [u]Γ = 0 and [β∇u · n]Γ = 0 on Γ ∩ Ω̃},

PCk
int(Ω̃) = {u : u|Ω̃s ∈ Ck(Ω̃ s), s = ±; [u]Γ = 0 and [β∇u · n]Γ = 0 on Γ ∩ Ω̃}.

The norms and seminorms to be used on PHk
int(Ω̃) are

‖ · ‖2
k,Ω̃

= ‖ · ‖2
k,Ω̃+ + ‖ · ‖2

k,Ω̃− , | · |2
k,Ω̃

= | · |2
k,Ω̃+ + | · |2

k,Ω̃− ,

‖ · ‖k,∞,Ω̃ = max(‖ · ‖k,∞,Ω̃+ , ‖ · ‖k,∞,Ω̃−), | · |k,∞,Ω̃ = max(| · |k,∞,Ω̃+ , | · |k,∞,Ω̃−).

Let Th be a Cartesian triangular or rectangular mesh of the domain Ω with the maximum length of
edge h. An element T ∈ Th is called an interface element, provided the interior of T intersects with
the interface Γ ; otherwise, we name it a noninterface element. We let T i

h and T n
h be the set of interface

elements and noninterface elements, respectively. Similarly, E i
h and En

h are sets of interface edges and
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noninterface edges, respectively. In addition, as in He et al. (2009), we assume that Th satisfies the
following hypotheses when the mesh size h is small enough:

(H1) The interface Γ cannot intersect an edge of any element at more than two points, unless the edge
is part of Γ .

(H2) If Γ intersects the boundary of an element at two points, these intersection points must be on
different edges of this element.

(H3) The interface Γ is a piecewise C2 function, and the mesh Th is formed such that the subset of Γ
in every interface element T ∈ T i

h is C2.

(H4) The interface Γ is smooth enough so that PC2
int(T) is dense in PH2

int(T) for every interface element
T ∈ T i

h .

On an element T ∈ Th, we consider the local finite-element space (T ,ΠT ,ΣP
T ) with

ΠT =

⎧⎪⎨⎪⎩
Span{1, x, y}, for P1 or Crouzeix–Raviart (C–R) finite-element functions,

Span{1, x, y, xy}, for Q1 (bilinear) finite-element functions,

Span{1, x, y, x2 − y2}, for rotated-Q1 finite-element functions,

(2.1)

ΣP
T = {ψP

T (Mi) : i ∈ I, ∀ψP
T ∈ ΠT }, (2.2)

where I = {1, 2, · · · , DOF(T)}, DOF(T) = 3 or 4 depending on whether T is triangular or rectangular,
Mi, i ∈ I are the local nodes to determine shape functions on T and the superscript P is to empha-
size the Lagrange-type degrees of freedom imposed at the points Mis. For P1 and Q1 finite elements,
Mi = Ai, i ∈ I, where Ai’s are vertices of T . For C-R and rotated-Q1 finite elements, Mi is the midpoint
of the ith edge of T for i ∈ I. It is well known (Crouzeix & Raviart, 1973; Ciarlet, 1978; Rannacher &
Turek, 1992; Brenner & Scott, 1994) that (T ,ΠT ,ΣP

T ) has a set of shape functionsψP
i (X), i ∈ I such that

ψP
i,T (Mj) = δij,

∥∥ψP
i,T

∥∥
∞,T

≤ C,
∥∥∇ψP

i,T

∥∥
∞,T

≤ Ch−1, i, j ∈ I, (2.3)

where δij is the Kronecker delta function.
Throughout this article, without loss of generality, we assume that β+ � β− and let ρ = β−/β+ � 1.

In addition, on any T ∈ T i
h , we use D, E to denote the intersection points of Γ and ∂T , and let l be the

line connecting DE.

3. Geometric properties of the interface

In this section, we discuss geometric properties on interface elements that are useful for developing and
analyzing IFE spaces. Let T be an interface element. As illustrated in Fig. 1, for a point X̃ on Γ ∩ T ,
we let n(X̃) = (ñx(X̃), ñy(X̃)) be the normal of Γ at X̃, and we let X̃⊥ ∈ l be the orthogonal projection
of X̃ ∈ Γ ∩ T onto the line l. Also, for the line l, we let n̄ = (n̄x, n̄y) be its unit normal vector and,
consequently, t̄ = (n̄y, −n̄x) is the vector tangential to l. Without loss of generality, we assume the
orientation of all the normal vectors are from T− to T+. In addition, we let κ be the maximum curvature
of the curve Γ .

For T ∈ T i
h , without loss of generality, we can introduce a local coordinate system such that the point

on Γ ∩ T can be expressed as (ξ , η) = (ξ ,ω(ξ)) for a suitable function ω such that, in this local system,
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Fig. 1. The local system.

D

E

ξ

η

Γ

X = (ξ, ω(ξ))

Fig. 2. The geometry of an interface element.

D is origin and its x-axis is aligned with l, as shown in Fig. 2. We start from the following lemma, which
extends similar results in Li et al. (2004):

Lemma 3.1 Given any ε ∈ (0,
√

2
2 ), assume hκ � ε, then for any interface element T ∈ T i

h , there hold

|w(ξ)| � 2(1 − 2ε2)−3/2κh2, (3.1)

|w′(ξ)| �
√

2(1 − 2ε2)−3/2κh. (3.2)

Proof. In the local system, let ξE be the coordinate of the point E. And by the mean value theorem, there
is some ξ0 ∈ [0, ξE] such that ω′(ξ0) = 0. Consider a function g as well as its derivative

g(ξ) = ω′(ξ)√
1 + (ω′(ξ))2

and g′(ξ) = ω′′(ξ)
(1 + (ω′(ξ))2)3/2

.
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Note that g′(ξ) is the curvature of Γ at ξ ; hence, we have |g′(ξ)| ≤ κ . Then, by g(ξ0) = 0, we have

|g(ξ)| =
∣∣∣∫ ξξ0 g′(s) ds

∣∣∣ �
∫ ξ
ξ0

|g′(s)| ds �
√

2κh = √
2ε, which implies |ω′(ξ)| �

√
2ε√

1−2ε2
. By the

definition of κ , we have |ω′′(ξ)| � (1 − 2ε2)−3/2κ .
Now using the Taylor expansion for ω around D leads to ω(ξ) = ω′(0)ξ + 1

2ω
′′(ξ̄ )ξ 2 for some

ξ̄ ∈ [0, ξE]. Note that ω(ξE) = 0 shows ω′(0) = − 1
2ω

′′(ξ̄E)ξE . Thus, we have ω(ξ) = − 1
2ω

′′(ξ̄E)ξEξ +
1
2ω

′′(ξ̄ )ξ 2 and therefore, |ω(ξ)| � 2‖ω′′‖∞h2 � 2(1 − 2ε2)−3/2κh2, which yields (3.1). Using the Taylor
expansion again for ω′ around ξ0, we have ω′(ξ) = ω′′(ξ̃ )(ξ − ξ0) for some ξ̃ between ξ0 and ξ . Finally,
we obtain |ω′(ξ)| �

√
2‖ω′′‖h �

√
2(1 − 2ε2)−3/2h. �

We note that the argument in the lemma above is similar to Chu et al. (2010, Assumption 3.14) with a
minor difference that a local polar coordinate system is used on the interface element in Chu et al. (2010).
The following lemmas provide estimates about various geometric quantities defined at points on Γ ∩ T .

Lemma 3.2 Given any ε ∈ (0,
√

2
2 ), assume hκ � ε, then for any interface element T ∈ T i

h and any point
X̃ ∈ Γ ∩ T , the following inequality holds:

‖X̃ − X̃⊥‖ � 2(1 − 2ε2)−3/2κh2, (3.3)

and for any X̃1, X̃2 ∈ Γ ∩ T , we have

‖n(X̃1)− n(X̃2)‖ �
√

2(1 + (1 − 2ε2)−3/2)κh, (3.4a)

n(X̃1) · n(X̃2) � 1 − 2(1 + (1 − 2ε2)−3/2)2κ2h2. (3.4b)

Proof. Estimate (3.3) directly follows from (3.1). For (3.4a), we assume X̃1 = (ξ1, w(ξ2)) and X̃2 =
(ξ2, w(ξ2)) in the local system, respectively. Then, we have

n(X̃1) = 1√
1 + (w′(ξ1))2

(−w′(ξ1)

1

)
, n(X̃2) = 1√

1 + (w′(ξ2))2

(−w′(ξ2)

1

)
.

By the calculation in Lemma 3.1 and mean value theorem, there is some ξ̄ ∈ [0, ξE] such that∣∣∣∣∣ w′(ξ1)√
1 + (w′(ξ1))2

− w′(ξ2)√
1 + (w′(ξ2))2

∣∣∣∣∣ = |ω′′(ξ̄ )|
(1 + (ω′(ξ̄ ))2)3/2

|ξ1 − ξ2| �
√

2κh,

and ξ̃ ∈ [0, ξE] such that∣∣∣∣∣ 1√
1 + (w′(ξ1))2

− 1√
1 + (w′(ξ2))2

∣∣∣∣∣ = |ω′(ξ̃ )||ω′′(ξ̃ )|
(1 + (ω′(ξ̃ ))2)3/2

|ξ1 − ξ2| � 2(1 − 2ε2)−3/2εκh.

Then, (3.4a) follows by applying these estimates in the local coordinate forms of n(X̃1) and n(X̃2).
Furthermore, by (3.4a) and

‖n(X̃1)− n(X̃2)‖2 = ‖n(X̃1)‖2 + ‖n(X̃2)‖2 − 2n(X̃1) · n(X̃2) = 2 − 2n(X̃1) · n(X̃2),
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we have (3.4b). �

Remark 3.3 Note that there exists a point X̃1 = (ξ1, w(ξ1)) ∈ Γ ∩ T such that w′(ξ1) = 0, which means
n(X̃1) = n̄. Hence, by Lemma 3.2, we have the following estimates for an arbitrary point X̃ ∈ Γ ∩ T :

‖n(X̃)− n̄‖ �
√

2(1 + (1 − 2ε2)−3/2)κh, (3.5a)

n(X̃) · n̄ � 1 − 2(1 + (1 − 2ε2)−3/2)2κ2h2. (3.5b)

The two lemmas above have suggested a criteria about how small h should be according to the
maximum curvature κ of Γ so that the related analysis is valid. Therefore, for all discussions from now
on, we further assume that

• h is sufficiently small such that for some fixed parameter ε ∈ (0,
√

2/2) and κ̄ ∈ (0, 1] of one’s own
choice, there holds

h < min

{ √
κ̄√

2(1 + (1 − 2ε2)−3/2)κ
,
ε

κ

}
. (3.6)

Obviously ε is the proportion by which we should choose the mesh size h according to the interface
curvature κ . Also, by (3.6) and (3.5b), we have

n(X̃) · n̄ ≥ 1 − κ̄ , (3.7)

which shows how much the angle between the normal of Γ ∩ T and n̄ can vary in an interface element
T ∈ T i

h , a larger value of κ̄ ∈ (0, 1] allows n(X̃) to vary more from n̄ up to, but not equal to, 90 degrees.
Therefore, we will call κ̄ the angle allowance.

In the rest of this article, all the generic constants C are assumed to possibly depend only on the
parameter ε and κ̄ , but they are independent of the interface location, β± and the curvature κ .

We now consider some matrices associated with the normal of interface Γ and the normal of l. First,
for any X̃ ∈ Γ ∩ T , we use the normal n(X̃) to form two matrices:

Ns(X̃) =
(

ñy(X̃) −ñx(X̃)
βsñx(X̃) βsñy(X̃)

)
, s = ±.

Since Det(Ns(X̃)) = βs, s = ±, these matrices are nonsingular; therefore, we can define another two
matrices at the point X̃ ∈ Γ ∩ T :

M−(X̃) = (
N+(X̃)

)−1
N−(X̃) =

(
ñ2

y(X̃)+ ρñ2
x(X̃) (ρ − 1)ñx(X̃)ñy(X̃)

(ρ − 1)ñx(X̃)ñy(X̃) ñ2
x(X̃)+ ρñ2

y(X̃)

)
, (3.8)

M+(X̃) = (
N−(X̃)

)−1
N+(X̃) =

(
ñ2

y(X̃)+ 1/ρñ2
x(X̃) (1/ρ − 1)ñx(X̃)ñy(X̃)

(1/ρ − 1)ñx(X̃)ñy(X̃) ñ2
x(X̃)+ 1/ρñ2

y(X̃)

)
. (3.9)

For matrices M−(X̃) and M+(X̃), we recall from Li et al. (2004) the following results:

∇u+(X̃) = M−(X̃)∇u−(X̃), ∇u−(X̃) = M+(X̃)∇u+(X̃), ∀X̃ ∩ T ∈ Γ , ∀u ∈ PC2
int(T). (3.10)

488 R. GUO AND T. LIN

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/39/1/482/4742251 by Virginia Tech user on 30 April 2019



In addition, for X̃ ∈ Γ ∩T , we can use the normal vectors n(X̃) and n̄ to form the following matrices:

N
s
(X̃) =

(
n̄y −n̄x

βsñx(X̃) βsñy(X̃)

)
, s = ±.

By Remark 3.3, we have

Det(N
s
(X̃)) = βsn(X̃) · n̄ � βs(1 − κ̄), s = ±,

which means N
s
(X̃) are nonsingular when h is small enough; hence, we can use them to form

M
+
(X̃) = (N

−
(X̃))−1N

+
(X̃), M

−
(X̃) = (N

+
(X̃))−1N

−
(X̃). (3.11)

Lemma 3.4 For the mesh Th with h sufficiently small, there exists a constant C independent of interface
location, β± and κ , such that for two arbitrary points X̃i, i = 1, 2 on Γ ∩ T , we have

‖M
−
(X̃1)‖ � C, ‖M

+
(X̃1)‖ � C

ρ
, ‖M−(X̃2)‖ � C, ‖M+(X̃2)‖ � C

ρ
(3.12)

and

‖M
−
(X̃1)− M−(X̃2)‖ � Cκh, ‖M

+
(X̃1)− M+(X̃2)‖ � Cκ

ρ
h. (3.13)

Proof. (3.12) can be verified directly. We only prove (3.13) for the − case and the arguments for the +
case are similar. For simplicity, we denote n(X̃i) = (ñix, ñiy), i = 1, 2. Then, by direct calculations, we
have

M
−
(X̃1)− M−(X̃2) =

(
ñ1yn̄y − ñ2

2y + ρ(ñ1xn̄x − ñ2
2x) (ρ − 1)(ñ1yn̄x − ñ2xñ2y)

(ρ − 1)(ñ1xn̄y − ñ2xñ2y) ñ1xn̄x − n2
2x + ρ(ñ1yn̄y − ñ2

2y)

)
+ 1 − n̄ · n(X̃1)

n̄ · n(X̃1)

(
ñ1yn̄y + ρñ1xn̄x (ρ − 1)ñ1yn̄x

(ρ − 1)ñ1xn̄y ñ1xn̄x + ρñ1yn̄y

)
.

By the triangular inequality, (3.4a), (3.5b), (3.6) andρ � 1, we can verify that‖M
−
(X̃1)−M−(X̃2)‖ � Cκh

for a constant C independent of interface location, β± and κ . �

The following lemmas provide a group of identities on interface elements.

Lemma 3.5 For the mesh Th with h sufficiently small, the following results hold for all X̃ ∈ Γ :

• M
−
(X̃) and M

+
(X̃) are inverse matrices to each other, i.e.,

M
−
(X̃)M

+
(X̃) = I , M

+
(X̃)M

−
(X̃) = I . (3.14)
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• Matrix (M
−
(X̃))T has two eigenvalues 1 and ρ with the corresponding eigenvectors t̄ and n(X̃), i.e.,(

M
−
(X̃)

)T

t̄ = t̄,
(

M
−
(X̃)

)T

n(X̃) = ρn(X̃). (3.15)

• Similarly, matrix (M
+
(X̃))T has two eigenvalues 1 and 1/ρ with the corresponding eigenvectors t̄

and n(X̃), respectively, i.e.,(
M

+
(X̃)

)T

t̄ = t̄,
(

M
+
(X̃)

)T

n(X̃) = 1

ρ
n(X̃). (3.16)

Proof. First it is easy to see that M
−
(X̃)M

+
(X̃) = (N

−
(X̃))−1N

+
(X̃)(N

+
(X̃))−1N

−
(X̃) = I . Next by

direct calculation, we have

M
−
(X̃) = 1

n̄xñx(X̃)+ n̄yñy(X̃)

(
n̄yñy(X̃)+ ρn̄xñx(X̃) −n̄xñy(X̃)+ ρn̄xñy(X̃)

−n̄yñx(X̃)+ ρn̄yñx(X̃) n̄xñx(X̃)+ ρn̄yñy(X̃)

)

from which we can easily verify that (M
−
(X̃))T t̄ = t̄ and (M

−
(X̃))T n(X̃) = ρ n(X̃). The results about

(M
+
(X̃))T follow from the fact (M

−
(X̃))T (M

+
(X̃))T = I . �

Lemma 3.6 Let Th be a mesh with h sufficiently small. Let P ∈ Ω and X̃ be an arbitrary point on Γ ∩ T .
Then, the following vectors are independent of X ∈ l:

(M
+
(X̃)− I)T (P − X) and (M

−
(X̃)− I)T (P − X).

Proof. For two arbitrary points Xi ∈ l, i = 1, 2, X1 − X2 is a scalar multiple of t̄. Hence, by Lemma 3.5,

(M
−
(X̃)− I)T (P − X1)− (M

−
(X̃)− I)T (P − X2) = (M

−
(X̃)− I)T (X1 − X2) = 0,

which leads to (M
−
(X̃)− I)T (P − X1) = (M

−
(X̃)− I)T (P − X2). Therefore, (M

−
(X̃)− I)T (P − X) does

not change when X ∈ l varies. The result for (M
+
(X̃)− I)T (P − X) can be proved similarly. �

4. Multipoint Taylor expansions on interface elements

In this section, extending those in He (2009), He et al. (2008), Li et al. (2004), Xu (1982) and Zhang
(2013), we derive multipoint Taylor expansions in more general formats for a function u ∈ PC2

int(T) over
an arbitrary interface element T ∈ T i

h , in which u(Mi), i ∈ I is described in terms of u and its derivatives
at x ∈ T s, s = ±. We also estimate the remainders in these expansions. As in He et al. (2008), we call a
point X ∈ T an obscure point if one of the lines XMi, 1 ≤ i ≤ DOF(T) can intersectΓ more than once. To
facilitate a clear expository presentation of the main ideas in our analysis, we carry out error estimation
only for interface elements without any obscure points. For the case containing obscure points, we can
use a first-order expansion for u and use the argument that the measure of obscure points is bounded by
O(h3).

First, we partition I into two index sets: I+ = {i : Mi ∈ T+} and I− = {i : Mi ∈ T−} according to
the locations of Mi, i ∈ I. For every X ∈ T , we let Yi(t, X) = tMi + (1 − t)X. When X and Mi are on
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Fig. 3. The expansion of u in a rectangular interface element.

different sides of Γ , we let t̃i = t̃i(X) ∈ [0, 1] such that Ỹi = Yi(t̃i, X) is on the curve Γ ∩ T , see Fig. 3
for an illustration in which the rotated-Q1 finite elements are considered. When Mi and X are on the same
side of Γ , by the standard second-order Taylor expansion of u ∈ PC2

int(T), we have

us(Mi) = us(X)+ ∇us(X) · (Mi − X)+ Rs
i (X), i ∈ Is, s = ± ∀X ∈ T s, (4.1)

with Rs
i (X) =

∫ 1

0
(1 − t)

d2

dt2
us(Yi(t, X)) dt, i ∈ Is ∀X ∈ T s. (4.2)

In the following discussion, we denote s = ±, s′ = ∓, i.e., s and s′ take opposite signs whenever a
formula have them both. When, Mi and X are on different sides ofΓ , the expansions in He (2009), He et al.
(2008), Li et al. (2004) and Zhang (2013) can be generalized to the following format for u ∈ PC2

int(T):

us′(Mi) = us(X)+ ∇us(X) · (Mi − X)+ ((
Ms(Ỹi)− I

)∇us(X)
) · (Mi − Ỹi)

+ Rs
i (X), i ∈ Is′ ∀X ∈ T s, (4.3)

with⎧⎪⎨⎪⎩
Rs

i (X) = Rs
i1(X)+ Rs

i2(X)+ Rs
i3(X), i ∈ Is′ , X ∈ T s,

Rs
i1(X) = ∫ t̃i

0 (1 − t) d2us

dt2
(Yi(t, X)) dt, Rs

i2(X) = ∫ 1
t̃i
(1 − t) d2us′

dt2
(Yi(t, X)) dt, i ∈ Is′ , X ∈ T s,

Rs
i3(X) = (1 − t̃i)

∫ t̃i
0

d
dt

(
(Ms(Ỹi)− I)∇us(Yi(t, X)) · (Mi − X)

)
dt, i ∈ Is′ , X ∈ T s,

(4.4)

where Ms(Ỹi) are from (3.8) and (3.9). We proceed to estimate remainders in (4.1) and (4.3).

Lemma 4.1 Assume u ∈ PC2
int(T). Then, there exist constants C > 0 independent of the interface

location and β± such that∫
Ts
(1 − t)2|ud1d2(Yi(t, X))|2 dX � C|u|22,T , s = ± ∀t ∈ [0, 1], (4.5)
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where d1, d2 = x or y.

Proof. Let Mi = (xi, yi), i ∈ I and let ξ = txi + (1 − t)x and η = tyi + (1 − t)y. For each fixed t ∈ [0, 1],
define

T s(t) = {tMi + (1 − t)X | X ∈ T s}. (4.6)

Since T s(t) ⊆ T , s = ±, we have∫
Ts
(1 − t)2|ud1d2(Y(t, X))|2 dX =

∫
Ts(t)

(1 − t)2u2
d1d2
(ξ , η)(1 − t)−2 dξ dη � |u|22,T ,

which leads to (4.5). �

By a direct calculation, we have

d2

dt2
us(Yi(t, X)) = (Mi − X)T Hs

u(Yi(t, X))(Mi − X), s = ±, (4.7)

where

Hs
u(Yi(t, X)) =

(
us

xx(Yi(t, x)) us
xy(Yi(t, x))

us
yx(Yi(t, x)) us

yy(Yi(t, x))

)
, s = ±,

is the Hessian matrix of us. We are now ready to derive bounds for the remainders in the following
lemmas.

Lemma 4.2 Assume u ∈ PC2
int(T), there exist constants C > 0 independent of the location of the interface

and β± such that

‖Rs
i ‖0,Ts � Ch2|u|2,T , i ∈ Is, s = ±, (4.8)

‖Rs
i1‖0,Ts � Ch2|u|2,T , ‖Rs

i2‖0,Ts � Ch2|u|2,T , i ∈ Is′ , s = ±. (4.9)

Proof. According to (4.2) and (4.7), for s = ±, we have

‖Rs
i ‖0,Ts =

(∫
Ts

(∫ 1

0
(1 − t)(Mi − X)Hs

u(Yi(t, X))(Mi − X) dt

)2

dX

) 1
2

� Ch2

∫ 1

0

(∫
Ts
(1 − t)2(|us

xx(Yi(t, X))|2 + |us
xy(Yi(t, X))|2 + |us

yy(Yi(t, X))|2) dX

) 1
2

dt.

Then (4.8) follows from Lemma 4.1. Estimate (4.9) can be derived similarly. �

Moreover, note that for i ∈ Is′ , X ∈ T s and t ∈ [0, t̃i(X)], it can be verified that

d

dt

(
(Ms(Ỹi)− I)∇us(Yi(t, X)) · (Mi − X)

) = (Mi − X)T Hs
u(Yi(t, X))(Ms(Ỹi)− I)T (Mi − X). (4.10)
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Lemma 4.3 Assume u ∈ PC2
int(T), there exist constants C > 0 independent of the interface location and

β± such that

‖R−
i3‖0,T− � Ch2|u|2,T , i ∈ I+, ‖R+

i3‖0,T+ � C

ρ
h2|u|2,T , i ∈ I−. (4.11)

Proof. We only provide the proof of ‖R−
i3‖0,T− and the argument for ‖R+

i3‖0,T+ is similar. According to
(4.10) and the fact 0 � 1 − t̃i(X) � 1 − t for any t ∈ [0, t̃i(X)], we have

‖R−
i3‖0,T− =

⎛⎝∫
T−
(1 − t̃i(X))

2

(∫ t̃i(X)

0
(Mi − X)T H−

u (Yi(t, X))(M−(Ỹi)− I)T (Mi − X) dt

)2

dX

⎞⎠
1
2

� Ch2

(∫
T−

(∫ 1

0
|1 − t| ( ∣∣u−

xx(Yi(t, X))
∣∣ + ∣∣u−

xy(Yi(t, X))
∣∣ + ∣∣u−

yy(Yi(t, X))
∣∣ ) dt

)2

dX

) 1
2

� Ch2

∫ 1

0

(∫
T−
(1 − t)2

(|u−
xx(Yi(t, X))|2 + |u−

xy(Yi(t, X))|2 + |u−
yy(Yi(t, X))|2) dX

) 1
2

dt,

where we use the fact ρ � 1. Then, applying the estimates in Lemma 4.1 to the above leads to (4.11). �

5. IFE spaces and their properties

In this section, we discuss IFE spaces constructed from the related finite elements (T ,ΠT ,ΣP
T ) for T ∈ Th

described in (2.1) and (2.2). We will first address the unisolvence of the IFEs on interface elements. We
will then present a few fundamental properties of IFE functions. Moreover, we will show that these IFE
spaces have the optimal approximation capability according to the polynomials used to construct them.

5.1 Local IFE spaces

First, on each element T ∈ Th, the standard finite element (T ,ΠT ,ΣP
T ) leads to the following local

finite-element space:

SP
h (T) = Span{ψP

i,T : i ∈ I}, (5.1)

where ψP
i,T , i ∈ I are the shape functions satisfying (2.3). This local finite-element space is then naturally

used as the local IFE space on every noninterface element T ∈ T n
h . Therefore, our effort here focuses

on the local IFE space on interface elements. We will discuss the unisolvence, i.e., we will show that
the local degrees of freedom ΣP

T can uniquely determine an IFE function with a suitable set of interface
jump conditions. The unisolvence guarantees the existence and uniqueness of IFE shape functions that
can span the local IFE space on interface elements.

Let T ∈ T i
h be a typical interface element with vertices Ai, i ∈ I. Without loss of generality, we

assume

A1 = (0, 0), A2 = (h, 0), A3 = (h, h), (T is a triangular element),
A1 = (0, 0), A2 = (h, 0), A3 = (h, h), A4 = (0, h), (T is a rectangular element),

(5.2)
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and the edges of T are denoted as

b1 = A1A2, b2 = A2A3, b3 = A3A1, (T is a triangular element),
b1 = A1A2, b2 = A2A3, b3 = A3A4, b4 = A4A1, (T is a rectangular element).

(5.3)

On each interface element T , we consider IFE functions in the following piecewise polynomial format:

φP
T (X) =

{
φP −

T (X) = φ−
T (X) ∈ ΠT if X ∈ T−,

φP +
T (X) = φ+

T (X) ∈ ΠT if X ∈ T+,
(5.4)

such that it can satisfy the jump conditions (1.3) and (1.4) in an approximate sense as follow:{
φ−

T |l = φ+
T |l, (T is a triangular element),

φ−
T |l = φ+

T |l, d(φ−
T ) = d(φ+

T ), (T is a rectangular element),
(5.5)

β−∇φ−
T (F) · n(F) = β+∇φ+

T (F) · n(F), (5.6)

where d(p) denotes the coefficient in the second-degree term for p ∈ ΠT and F is an arbitrary point on
Γ ∩ T . For an IFE function φP

T such that

φP
T (Mi) = vi, i ∈ I, (5.7)

we can first expand φP
T on the subelement with more degrees of freedom, i.e., on T+ with the assumption

that
∣∣I+∣∣ ≥ ∣∣I−∣∣ without loss of generality, and the condition (5.5) then implies that

φP
T (X) =

{
φP −

T (X) = φP +
T (X)+ c0L(X) if X ∈ T−,

φP +
T (X) = ∑

i∈I− ciψ
P
i,T (X)+ ∑

i∈I+ viψ
P
i,T (X) if X ∈ T+,

(5.8)

where the function

L(X) = n̄ · (X − D) (5.9)

is such that L(X) = 0 is the equation of the line l and ∇L(X) = n̄.
Recall from Remark 3.3, ∇L(F) · n(F) = n̄ · n(F) � 1 − κ̄ > 0, when h is small enough; hence,

μ =
(

1

ρ
− 1

)
1

n̄ · n(F)
(5.10)

is well defined, and, by ρ � 1, we have

0 � μ �
(

1

ρ
− 1

)
1

1 − κ̄
. (5.11)
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By condition (5.6), we then have

c0 = μ

(∑
i∈I−

ci∇ψP
i,T (F) · n(F)+

∑
i∈I+

vi∇ψP
i,T (F) · n(F)

)
. (5.12)

Putting this formula for c0 in formula (5.8) for φP
T (X) and setting φP −

T (Mj) = vj for j ∈ I− leads to the
following linear system for ci, i ∈ I−:∑

i∈I−

(
ψP

i,T (Mj)+ μ∇ψP
i,T (F) · n(F)L(Mj)

)
ci

= vj −
∑
i∈I+

(
ψP

i,T (Mj)+ μ∇ψP
i,T (F) · n(F)L(Mj)

)
vi, j ∈ I−. (5.13)

Since ψP
i,T (Mj) = δij, for i, j ∈ I−, we can write the linear system (5.13) in the following matrix form:

(I + μ δγ T )c = b, (5.14)

where c = (ci)i∈I− ,

γ = (∇ψP
i,T (F) · n(F)

)
i∈I− , δ = (L(Mi))i∈I− (5.15)

and

b =
⎛⎝vi − μL(Mi)

∑
j∈I+

∇ψP
j,T (F) · n(F)vj

⎞⎠
i∈I−

(5.16)

are all column vectors. We proceed to show that φP
T (X), i.e., its coefficients c0, c are uniquely determined.

We need the following two lemmas. Let γ̄ = (∇ψi,T (F⊥) · n̄
)

i∈I− .

Lemma 5.1 For all the interface elements, we have γ̄ Tδ ∈ [0, 1]. And for the linear and bilinearψi,T , i ∈ I,
there holds

|L(Mi)| < 2h
√

γ̄ Tδ ∀i ∈ I−. (5.17)

Furthermore, for the bilinear ψi,T , i ∈ I, if F is chosen to be such that F⊥ is the midpoint of the line DE,
then

|L(Mi)| < 2h γ̄ Tδ ∀i ∈ I−. (5.18)

Proof. We only give the proof for the case in whichΠT is the rotated-Q1 polynomial space, the interface
element T is such that I− = {1} and I+ = {2, 3, 4} with D = (hd, 0) and E = (0, he) for some
d ∈ [1/2, 1] and e ∈ [0, 1/2]. Similar arguments apply to all other cases. First, n̄ = (e, d)/

√
d2 + e2.

Hence, F⊥ = (td, e(h − t)) for some t ∈ (0, h). By direct calculation, we have

γ̄ Tδ = 1

h(d2 + e2)
[h(e − 2d)− 2(2t − h)de]

(
1

2
− d

)
e. (5.19)
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Note that

γ̄ Tδ = e − 2d + 2de

d2 + e2

(
1

2
− d

)
e ∈ [0, 1] if t = 0 and

γ̄ Tδ = e − 2d − 2de

d2 + e2

(
1

2
− d

)
e ∈ [0, 1] if t = h,

which leads to γ̄ Tδ ∈ [0, 1] because γ̄ Tδ is a linear function of t according to (5.19). And (5.17) and
(5.18) follow from similar calculation. �

Lemma 5.2 For h small enough, we have

1 + μ γ Tδ � 1 − 4μ
√
κ̄ . (5.20)

And for the linear and Crouzeix–Raviart ψi,T , i ∈ I, if F is chosen such that n(F) = n̄, then

1 + μγ Tδ = 1 + μγ̄ Tδ � 1. (5.21)

In addition, for the bilinear ψi,T , i ∈ I, if F is chosen such that F⊥ is the midpoint of DE, then

1 + μγ Tδ � 1 + μγ̄ Tδ(1 − 4
√

2
√
κ̄). (5.22)

Proof. By Lemma 3.2, (2.3) and Remark 3.3, we have

|∇ψP
i,T (F) · n(F)− ∇ψP

i,T (F⊥) · n̄|
� |(∇ψP

i,T (F)− ∇ψP
i,T (F⊥)) · n(F)| + |∇ψP

i,T (F⊥) · (n(F)− n̄)|
� ‖(∇ψP

i,T (F)− ∇ψP
i,T (F⊥))‖ · ‖n(F)‖ + ‖∇ψP

i,T (F⊥)‖ · ‖(n(F)− n̄)‖
� 4(1 + (1 − 2ε2)−3/2)κ , i ∈ I,

which implies ‖γ − γ̄ ‖ ≤ 2(1 + 2(1 − 2ε2)−3/2)κ . For all the types of finite elements considered in this
article, by ‖L‖∞,T ≤ √

2h, we have ‖δ‖ ≤ √
2h and therefore,

μγ Tδ = μγ̄ Tδ + μ(γ T − γ̄ T )δ ≥ μγ̄ Tδ − 4
√

2(1 + (1 − 2ε2)−3/2)κμh,

which yields (5.20) by the Assumption (3.6). Furthermore, for linear finite elements, if F is chosen such
that n(F) = n̄, then γ̄ = γ ; thus Lemma 5.1 and (5.11) imply 1 + μ γ̄ Tδ � 1. For the bilinear finite
elements, if F is chosen such that F⊥ is the midpoint of DE, then by (5.18), we have

μγ Tδ = μγ̄ Tδ + μ(γ T − γ̄ T )δ ≥ μγ̄ Tδ − μ4(1 + (1 − 2ε2)−3/2)κ(2hγ̄ Tδ)

≥ μγ̄ Tδ(1 − 8(1 + (1 − 2ε2)−3/2)κh),

which leads to (5.22) by the Assumption (3.6). �
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Theorem 5.3 (Unisolvence) Let Th be a mesh satisfying (3.6) with κ̄ specified therein for linear and
Crouzeix–Raviart ψi,T , i ∈ I and

√
κ̄ <

1

4
√

2
, for bilinear ψi,T , i ∈ I, (5.23)

and for some λ ∈ (0, 1)

√
κ̄ ≤ ρ(1 − λ)

4 − (3 + λ)ρ
, for rotated-Q1 ψi,T , i ∈ I. (5.24)

In addition, we assume F and F⊥ are chosen such that estimates given by Lemma 5.2 hold. Then, given
any vector v = (v1, v2, v3, v4) ∈ R

4 for the bilinear and rotated-Q1 case (or v = (v1, v2, v3) ∈ R
3 for the

linear and Crouzeix–Raviart case), there exists one and only one IFE function φP
T in the form of (5.4)

satisfying (5.5)–(5.7).

Proof. For linear and Crouzeix–Raviart ψi,T , i ∈ I, by (5.21) in Lemma 5.2, we have 1 + μγ Tδ 
= 0.
For bilinear ψi,T , i ∈ I, by (5.23), we have 1 − 4

√
2
√
κ̄ > 0, which leads to 1 + μγ Tδ 
= 0 because of

(5.22) in Lemma 5.2. Similarly, for rotated-Q1 ψi,T , i ∈ I, by (5.24), we have

1 − 4μ
√
κ̄ ≥ 1 − 4

√
κ̄

1 − κ̄

(
1

ρ
− 1

)
≥ λ, (5.25)

which, by (5.20) in Lemma 5.2, leads to 1+μγ Tδ 
= 0 again. Hence, by the well-known results about the
Sherman–Morrison formula, the matrix in the linear system (5.14) is nonsingular, which together with
(5.12) lead to the existence and uniqueness for coefficients ci, i ∈ I− and c0 of φP

T (X). �

Remark 5.4 Theorem 5.3 provides guidelines on the choice for the angle allowance parameter κ̄ needed
in (3.6) for bilinear and rotated-Q1 ψi,T , i ∈ I. In the bilinear case, condition (5.23) suggests an upper
bound for κ̄ which is nevertheless independent of ρ. In the rotated-Q1 case, condition (5.24) leads to the
following upper bound for κ̄:

√
κ̄ < ρ

4−3ρ which depends on ρ, and this restriction on κ̄ becomes more
severe when ρ approaches 0.

Remark 5.5 Under the conditions given in Theorem 5.3, we can apply the Sherman–Morrison formula
to express the solution to (5.14) explicitly as

c = b − μ
(γ T b)δ

1 + μγ Tδ
(5.26)

which facilitates both analysis and computation for these IFE spaces.

On each interface element T , Theorem 5.3 guarantees the existence and uniqueness of the IFE shape
functions φP

i,T , i ∈ I satisfying (5.4)–(5.6) such that

φP
i,T (Mj) = δij, i, j ∈ I, (5.27)
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where δij is the Kronecker delta function. Therefore, we can define the local IFE space on each interface
element T ∈ T i

h as

SP
h (T) = Span{φP

i,T : i ∈ I}. (5.28)

5.2 Properties of the IFE shape functions

In this section, we present some fundamental properties of IFE shape functions.

Theorem 5.6 (Bounds of IFE shape functions) Under the conditions given in Theorem 5.3, we have the
following estimates:

• For rotated-Q1 and Crouzeix–Raviart φP
i,T , i ∈ I ∀ T ∈ T i

h ,

|φP
i,T |k,∞,T � C

ρ
h−k , k = 0, 1, (5.29)

where C depends also on λ for rotated-Q1 case.

• For linear φP
i,T , i ∈ I ∀ T ∈ T i

h ,

|φP
i,T |k,∞,T+ � C√

ρ
h−k , |φP

i,T |k,∞,T− � C

ρ
h−k , k = 0, 1. (5.30)

• For bilinear φP
i,T , i ∈ I ∀ T ∈ T i

h ,

|φP
i,T |k,∞,T+ � Ch−k , |φP

i,T |k,∞,T− � C

ρ
h−k , k = 0, 1. (5.31)

Proof. For convenience, we let e = (ej)j∈I be the unit vector constructing the basis functions φP
i,T , which

could be (1, 0 · · · , 0), (0, 1 · · · , 0), · · · , (0, 0 · · · , 1) and e− = (ej)j∈I− . Let w = ∑
j∈I+ ∇ψP

j,T (F)·n(F)ej.
Then, (5.16) implies b = e− −μwδ and plugging it into the Sherman–Morrison formula (5.26) leads to

c = e− − μ
(w + γ T e−)δ

1 + μγ Tδ
(5.32)

and plugging (5.32) into (5.12) yields

c0 = μ(w + γ T e−)
1 + μγ Tδ

. (5.33)

Since ‖∇ψP
i,T‖∞,T � Ch−1, i ∈ I, ‖L‖∞,T < Ch, |∇L‖∞,T < C for some constants C independent of

the location of the interface and β±, we have ‖γ ‖ ≤ Ch−1, ‖δ‖ ≤ Ch, ‖b‖ ≤ C and |w| � Ch−1.

When φP
i,T , i ∈ I are rotated-Q1 polynomials, we can apply (5.11) and (5.24) to (5.32) to obtain:

‖c‖ ≤ ‖e−‖ + 1

1 − κ̄

(
1

ρ
− 1

)
(|w| + ‖γ ‖‖e−‖)‖δ‖

1 − 4
√
κ̄

1−κ̄
(

1
ρ

− 1
) ≤ C

ρ
. (5.34)
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Applying similar arguments to (5.33), we have ‖c0‖ < C/ρ. Constant C in these inequalities depends
on λ. Finally, (5.29) follows from applying these bounds for c and c0 and the bounds for standard finite-
element basis functions ψi,T to the formula of φP

i,T given in (5.8). When φP
i,T , i ∈ I are Crouzeix–Raviart

polynomials, we apply (5.11) and (5.21) to (5.32) and (5.33) to obtain:

‖c‖ ≤ ‖e−‖ + 1

1 − κ̄

(
1

ρ
− 1

)
(|w| + ‖γ ‖‖e−‖)‖δ‖ ≤ C

ρ
,

|c0| ≤ 1

1 − κ̄

(
1

ρ
− 1

)
(|w| + ‖γ ‖‖e−‖)‖δ‖ ≤ C

ρ
. (5.35)

Then, (5.29) in this case follows from the same arguments used above for the rotated-Q1 case.
When φP

i,T , i ∈ I are linear polynomials, using (5.17) and Lemma 5.2 in (5.32), we have

‖c‖ ≤ C + C
μ
√

γ̄ Tδ

1 + μγ̄ Tδ
≤ C + C max (1,

√
μ) ≤ C√

ρ
. (5.36)

Also, estimate in (5.35) is valid. Then, estimates in (5.30) follow from applying (5.36) and (5.35) to (5.8).
Finally, when φP

i,T , i ∈ I are bilinear polynomials, we can apply (5.18) and Lemma 5.2 in (5.32) to
have

‖c‖ < C + C
μγ̄ Tδ

1 + (1 − 4
√

2
√
κ̄)μγ̄ Tδ

< C, (5.37)

because 1 − 4
√

2
√
κ̄ is a positive constant by the condition (5.23). Also, the estimate for c0 is similar to

(5.35). Then, (5.31) follows from applying these bounds for c and c0 to (5.8). �

Lemma 5.7 (Partition of Unity) On every interface element T ∈ T i
h , we have

∑
i∈I
φP

i,T (X) = 1 ∀X ∈ T , (5.38)

∇
(∑

i∈I
φP

i,T (X)

)
=

∑
i∈I

∇φP
i,T (X) = 0 ∀X ∈ T . (5.39)

Proof. Let p(X) = ∑
i∈I φ

P
i,T (X) and q(X) = 1. Obviously both p(X) and q(X) are in the format of (5.4)

and they satisfy (5.5) and (5.6). Furthermore, it is easy to verify that p(Mi) = 1 = q(Mi), i ∈ I. Hence,

∑
i∈I
φP

i,T (X) = p(X) = q(X) = 1

according to the unisolvence stated in Theorem 5.3. Property (5.39) follows from (5.38) directly. �
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Now, on every T ∈ T i
h , choosing arbitrary points Xi ∈ l, i ∈ I, we can construct two vector functions

as follows:

Λ1(X) =
∑
i∈I
(Mi − X)φP +

i,T (X)+
∑
i∈I−

(M
+
(F)− I)T (Mi − Xi)φ

P +
i,T (X), if X ∈ T+, (5.40a)

Λ2(X) =
∑
i∈I
(Mi − X)φP −

i,T (X)+
∑
i∈I+

(M
−
(F)− I)T (Mi − Xi)φ

P −
i,T (X), if X ∈ T−. (5.40b)

It follows from the Lemma 3.6 that the two functions in (5.40) are independent of the location of
Xi ∈ l, i ∈ I. Furthermore, from the partition of unity stated in Lemma 5.7, we have

Λ1(X) =
∑
i∈I

Miφ
P +
i,T (X)− X +

∑
i∈I−

(M
+
(F)− I)T (Mi − Xi)φ

P +
i,T (X), (5.41a)

Λ2(X) =
∑
i∈I

Miφ
P −
i,T (X)− X +

∑
i∈I+

(M
−
(F)− I)T (Mi − Xi)φ

P −
i,T (X), (5.41b)

which imply that each component of Λ1(X) and Λ2(X) is a polynomial in ΠT because φP s
i,T (X) ∈ ΠT ,

s = ±, for i ∈ I. We consider two auxiliary vector functions

Λ+(X) = Λ1(X), and Λ−(X) = (M
+
(F))TΛ2(X). (5.42)

Let d(Λs), s = ± be the vector of the coefficients of the second-degree term in each component of Λs.

Lemma 5.8 Λ+ and Λ− are such that d(Λ+) = d(Λ−).

Proof. Let d(φP +
i,T ) = d(φP −

i,T ) = di, i ∈ I. By the partition of unity,
∑

i∈I di = 0. By using (3.14) given
in Lemma 3.5 and using Lemma 3.6 to interchange Xi, i ∈ I with a fixed X ∈ l and, we have

d(Λ−) =
∑
i∈I
(M

+
(F))T Midi +

∑
i∈I+

(I − M
+
(F))T (Mi − X)di

=
∑
i∈I−

(M
+
(F))T Midi +

∑
i∈I+

Midi − (I − M
+
(F))T X

∑
i∈I+

di

=
∑
i∈I

Midi +
∑
i∈I−

(M
+
(F)− I)T Midi + (I − M

+
(F))T X

∑
i∈I−

di

=
∑
i∈I

Midi +
∑
i∈I−

(M
+
(F)− I)T (Mi − Xi)di,

which is exactly d(Λ+). �

Lemma 5.9 Λ+ and Λ− satisfy the condition (5.5), i.e., Λ+(X)|l = Λ−(X)|l.
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Proof. Since Λs(X), s = ± are independent of points Xi ∈ l, i ∈ I, we can replace these points by an
arbitrary X ∈ l without changing values of Λs(X), s = ±. Then, since φP

i,T satisfies (5.5), applying (3.14),
we have

Λ+(X) =
∑
i∈I
(Mi − X)φP −

i,T (X)+
∑
i∈I−

(M
+
(F)− I)T (Mi − X)φP −

i,T (X)

=
∑
i∈I+

(Mi − X)φP −
i,T (X)+ (M

+
(F))T

∑
i∈I−

(Mi − X)φP −
i,T (X)

= (M
+
(F))T

(
(M

−
(F))T

∑
i∈I+

(Mi − X)φP −
i,T (X)+

∑
i∈I−

(Mi − X)φP −
i,T (X)

)

= (M
+
(F))T

(∑
i∈I
(Mi − X)φP −

i,T (X)+ (M
−
(F)− I)T

∑
i∈I+

(Mi − X)φP −
i,T (X)

)
,

which is exactly Λ−(X). �

Lemma 5.10 Λ+ and Λ− satisfy the condition (5.6), i.e., β+∇Λ+(F) · n(F) = β−∇Λ−(F) · n(F), where
the gradient operator is understood as the gradient on each component.

Proof. Again, Lemma 3.6 allows us to exchange Xi, i ∈ I for an arbitrary point X ∈ l in the discussion
below. By (5.6), (5.39), (3.14) and (3.15), we have

β+∇Λ+(F) · n(F)

=
∑
i∈I

Miβ
−∇φP −

i,T (F) · n(F)+ (M
+
(F)− I)T

∑
i∈I−

(Mi − X)β−∇φP −
i,T (F) · n(F)− β+n(F)

=
∑
i∈I+

Miβ
−∇φP −

i,T (F) · n(F)+
∑
i∈I−

Xβ−∇φP −
i,T (F) · n(F)

+ (M
+
(F))T

∑
i∈I−

(Mi − X)β−∇φP −
i,T (F) · n(F)− β+n(F)

=
∑
i∈I+

(Mi − X)β−∇φP −
i,T (F) · n(F)+ (M

+
(F))T

∑
i∈I−

(Mi − X)β−∇φP −
i,T (F) · n(F)− β+n(F)

= (M
+
(F))T

(
(M

−
(F))T

∑
i∈I+

(Mi − X)β−∇φP −
i,T (F) · n(F)

+
∑
i∈I−

(Mi − X)β−∇φP −
i,T (F) · n(F)− β+(M

−
(F))T · n(F)

)
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= (M
+
(F))T

(
(M

−
(F))T

∑
i∈I+

(Mi − X)β−∇φP −
i,T (F) · n(F)

+
∑
i∈I−

(Mi − X)β−∇φP −
i,T (F) · n(F)− β− · n(F)

)
= β−∇Λ−(F) · n(F). �

Theorem 5.11 On every interface element T ∈ T i
h , we have∑

i∈I
(Mi − X)φP −

i,T (X)+
∑
i∈I+

(M
−
(F)− I)T (Mi − Xi)φ

P −
i,T (X) = Λ1(X) = 0 ∀X ∈ T−, (5.43a)

∑
i∈I
(Mi − X)φP +

i,T (X)+
∑
i∈I−

(M
+
(F)− I)T (Mi − Xi)φ

P +
i,T (X) = Λ2(X) = 0 ∀X ∈ T+, (5.43b)

and ∑
i∈I
(Mi − X)∂dφ

P −
i,T (X)+

∑
i∈I+

[
(M

−
(F)− I)T (Mi − Xi)∂sφ

P −
i,T (X)

]
− ed = 0 ∀X ∈ T−, (5.44a)

∑
i∈I
(Mi − X)∂dφ

P +
i,T (X)+

∑
i∈I−

[
(M

+
(F)− I)T (Mi − Xi)∂sφ

P +
i,T (X)

]
− ed = 0 ∀X ∈ T+, (5.44b)

where d = 1, 2, ∂1 = ∂x, ∂2 = ∂y are partial differential operators, and ed , d = 1, 2 is the standard dth
unit vector in R

2.

Proof. We define a piecewise vector polynomial on T as

Λ(X) =
{
Λ+(X) if X ∈ T+,
Λ−(X) if X ∈ T−.

First, the restriction of each component of Λ to T s, s = ± is a polynomial in ΠT . By Lemmas 5.8–5.10,
the components of Λ also satisfy (5.5) and (5.6). In addition, we can easily see that Λ(Mi) = 0, i ∈ I.
Therefore, by the unisolvence stated in Theorem 5.3, we have Λ+(X) = Λ1(X) ≡ 0 and Λ−(X) =
(M

+
(F))TΛ2(X) ≡ 0. Since (M

+
(F))T is nonsingular, we have Λ2(X) ≡ 0. Therefore, (5.43) is proved.

The proof for (5.44) can be accomplished by differentiating (5.43) and applying (5.41). �

5.3 Optimal approximation capabilities of IFE spaces

As usual, the local IFE spaces on elements can be employed to define the IFE function space globally on
Ω . As an example, we consider

Sh(Ω) = {
v ∈ L2(Ω) : v|T ∈ SP

h (T);

v|T1(M) = v|T2(M) ∀M ∈ Nh, ∀ T1, T2 ∈ Th such that M ∈ T1 ∩ T2

}
, (5.45)

where Nh is the set of nodes in the mesh Th, and this implies every IFE function in this space is continuous
at every node in the mesh. However, as observed in Lin et al. (2015), every v ∈ Sh(Ω) is usually
discontinuous across the interface edges. When the interface is a generic curve, the discontinuity of
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v ∈ Sh(Ω) also occurs along the interface curve because these IFE shape functions are defined according
to the actual interface. These features ensure the H1 regularity of v ∈ Sh(Ω) in the subdomain ofΩ minus
the union of interface elements.

We proceed to show that these IFE spaces formed above by linear, bilinear, CR and rotated-Q1

polynomials have the optimal approximation property from the point of view how well the interpolation
of a function u in these IFE spaces can approximate u. First, we define the interpolation operator on an
element T ∈ Th as the mapping Ih,T : C0(T) → SP

h (T) such that

IP
h,T u(X) =

{∑
i∈I u(Mi)ψ

P
i,T (X), if T ∈ T n

h ,∑
i∈I u(Mi)φ

P
i,T (X), if T ∈ T i

h .
(5.46)

Furthermore, the global IFE interpolation IP
h : C0(Ω) → Sh(Ω) can be defined piecewisely as

(IP
h u)|T = IP

h,T u ∀T ∈ Th. (5.47)

On every noninterface element T ∈ T n
h , the standard scaling argument (Ciarlet, 1978; Rannacher &

Turek, 1992; Brenner & Scott, 1994) yields the following error estimate for the local interpolation IP
h,T u

on T :

‖IP
h,T u − u‖0,T + h|IP

h,T u − u|1,T � Ch2|u|2,T ∀u ∈ H2(T). (5.48)

However, how to use the scaling argument to derive an error bound for the interpolation on an interface
element is unclear because the local IFE space SP

h (T) is interface dependent, and it is not even a subspace
of H1(T) in general. Instead, we will use the multipoint Taylor expansion method (Xu, 1982; Li et al.,
2004; He et al., 2008; He, 2009; Zhang, 2013) to derive estimates for the IFE interpolation error.

Theorem 5.12 Let T ∈ T i
h assume u ∈ PC2

int(T). Then, for any Xi ∈ l, i ∈ I, we have

IP
h,T u(X)− u(X) =

∑
i∈Is′

(Es
i + Fs

i )φ
P
i,T (X)+

∑
i∈I

Rs
iφ

P
i,T (X) ∀X ∈ T s, s = ±, (5.49a)

∂d(I
P
h,T u(X)− u(X)) =

∑
i∈Is′

(Es
i + Fs

i )∂dφ
P
i,T (X)+

∑
i∈I

Rs
i∂dφ

P
i,T (X) ∀X ∈ T s, s = ±, (5.49b)

where d = 1 or 2, Rs
i are given by (4.2) and (4.4), and

Es
i =

(
(Ms(Ỹi)− M

s
(F))∇us(X)

)
· (Mi − Ỹi), s = ±, i ∈ Is′ ,

Fs
i = −

(
(M

s
(F)− I)∇us(X)

)
· (Ỹi − Xi), s = ±, i ∈ Is′ . (5.50)

Proof. For X ∈ T s, s = ±, substituting the expansion (4.1) and (4.3) into the IFE interpolation (5.46),
we have

IP
h,T u(X) = us(X)

∑
i∈I
φP

i,T (X)+ ∇us(X) ·
∑
i∈I
(Mi − X)φP

i,T (X)

+
∑
i∈Is′

((
Ms(Ỹi)− I

)∇us(X)
) · (Mi − Ỹi)φ

P
i,T (X)+

∑
i∈I

Rs
iφ

P
i,T (X), X ∈ T s, s = ±. (5.51)
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From Theorem 5.11, we have∑
i∈I
(Mi − X)φP

i,T (X) = −
∑
i∈Is′

(M
s
(F)− I)T (Mi − Xi)φ

P
i,T (X) ∀X ∈ T s, s = ±. (5.52)

Then, applying (5.52) and the partition of unity to (5.51), leads to

IP
h,T u(X) = us(X)−

∑
i∈Is′

(
(M

s
(F)− I)∇us(X)

)
· (Mi − Xi)φ

P
i,T (X)

+
∑
i∈Is′

((
Ms(Ỹi)− I

)∇us(X)
) · (Mi − Ỹi)φ

P
i,T (X)+

∑
i∈I

Rs
iφ

P
i,T (X), X ∈ T s, s = ± (5.53)

from which (5.49a) follows by using Mi −Xi = (Mi −Ỹi)+(Ỹi −Xi). For (5.49b), applying the expansions
(4.1) and (4.3) in ∂dIP

h,T u(X) = ∑
i∈I u(Mi)∂dφ

P
i,T (X), d = 1, 2, we have

∂dIP
h,T u(X) = us(X)

∑
i∈I
∂dφ

P
i,T (X)+ ∇us(X) ·

∑
i∈I
(Mi − X)∂dφ

P
i,T (X)

+
∑
i∈Is′

((
Ms(Ỹi)− I

)∇us(X)
) · (Mi − Ỹi)∂dφ

P
i,T (X)+

∑
i∈I

Rs
i∂dφ

P
i,T (X) ∀X ∈ T s, s = ±.

(5.54)

Then, applying (5.39) and Theorem 5.11 to (5.54) we have

∂dIP
h,T u(X) = ∇us(X) · ed −

∑
i∈Is′

((
M

s
(F)− I

)
∇us(X)

)
· (Mi − Xi)∂dφ

P
i,T (X)

+
∑
i∈Is′

((
Ms(Ỹi)− I

)∇us(X)
) · (Mi − Ỹi)∂dφ

P
i,T (X)+

∑
i∈I

Rs
i∂dφ

P
i,T (X), ∀X ∈ T s, s = ±

which leads to (5.49b) because ∇us(X) · ed = ∂dus(X) and Mi − Xi = (Mi − Ỹi)+ (Ỹi − Xi). �

By an argument similar to that used in Zhang (2013), we can estimate Es
i and Fs

i in (5.50) by geometric
properties established in Section 3.

Lemma 5.13 There exist constants C > 0 independent of the interface location and β± such that the
following estimates hold for every T ∈ T i

h and u ∈ PC2
int(T):

‖E−
i ‖0,T− � Cκh2|u|1,T− , i ∈ I+, ‖E+

i ‖0,T+ � C
κ

ρ
h2|u|1,T+ , i ∈ I−. (5.55a)

‖F−
i ‖0,T− � Ch2|u|1,T− , i ∈ I+, ‖F+

i ‖0,T+ � C

ρ
h2|u|1,T+ , i ∈ I−. (5.55b)

Proof. By ‖Mi − Ỹi‖ � h and Lemma 3.4, we have

‖Es
i ‖0,Ts � ‖(Ms(Ỹi)− M

s
(F))‖ ‖∇us‖0,Ts ‖(Mi − Ỹj)‖ (5.56)
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which implies the (5.55a) by (3.13) in Lemma 3.4. By Lemma 3.6, Fs
i is independent of the choice of

Xi ∈ l. Hence, by taking Xi = Ỹi⊥ in Fs
i and applying Lemma 3.2, we have

‖Fs
i ‖0,Ts � ‖M

s
(F)− I‖ ‖∇us‖0,Ts ‖Ỹi − Ỹi⊥‖, (5.57)

which establishes (5.55b) by (3.12). �

Now we are ready to prove the main result in this section.

Theorem 5.14 Assume all the conditions required by Theorem 5.6 hold and u ∈ PH2
int(T). Then, on

every T ∈ T i
h the following hold.

• For rotated-Q1 and Crouzeix–Raviart finite elements,

‖IP
h,T u − u‖0,T− + h|IP

h,T u − u|1,T− � C
1 + κ

ρ
h2(|u|1,T + |u|2,T ), (5.58a)

‖IP
h,T u − u‖0,T+ + h|IP

h,T u − u|1,T+ � C
1 + κ

ρ2
h2(|u|1,T + |u|2,T ), (5.58b)

where C depends on λ chosen for rotated-Q1 case in (5.24).

• For linear finite elements,

‖IP
h,T u − u‖0,T− + h|IP

h,T u − u|1,T− � C
1 + κ

ρ
h2(|u|1,T + |u|2,T ), (5.59a)

‖IP
h,T u − u‖0,T+ + h|IP

h,T u − u|1,T+ � C
1 + κ

ρ3/2
h2(|u|1,T + |u|2,T ). (5.59b)

• For bilinear finite elements,

‖IP
h,T u − u‖0,T + h|IP

h,T u − u|1,T � C
1 + κ

ρ
h2(|u|1,T + |u|2,T ). (5.60)

Proof. On each T ∈ T i
h , by Theorem 5.12, for every u ∈ PC2

int(T), we have

|IP
h,T u − u|k,Ts �

∑
i∈Is′

(‖Es
i ‖0,Ts + ‖Fs

i ‖0,Ts
) |φP

i,T |k,∞,Ts +
∑
i∈I

‖Rs
i ‖0,Ts |φP

i,T |k,∞,Ts , (5.61)

where k = 0, 1. Then, applying Lemmas 4.2, 4.3, 5.13 and Theorem 5.6 for corresponding IFE functions
to the inequality above, we obtain (5.58)–(5.60) for u ∈ PC2

int(T). Finally, the density hypothesis (H4)
shows that (5.58)–(5.60) also hold for any u ∈ PH2

int(T). �

The local estimate in Theorem 5.14 leads to the following global estimate for the IFE interpolation
directly.
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Theorem 5.15 For any u ∈ PH2
int(Ω), the following estimate of interpolation error holds

‖IP
h u − u‖0,Ωs + h|IP

h u − u|1,Ωs � C̃sh2(|u|1,Ω + |u|2,Ω), s = ±. (5.62)

The constants C̃ depending on κ and ρ are specified as the following:

• for the rotated-Q1 and Crouzeix–Raviart IFE space,

C̃− = C
1 + κ

ρ
, C̃+ = C

1 + κ

ρ2
, (5.63)

where C depends on λ for rotated-Q1 case;

• for the linear IFE space,

C̃− = C
1 + κ

ρ
, C̃+ = C

1 + κ

ρ3/2
; (5.64)

• for the bilinear IFE space,

C̃− = C̃+ = C
1 + κ

ρ
. (5.65)

Proof. Estimate (5.62) follows directly from combining the estimates (5.58) to (5.60) and (5.48). �

6. Numerical examples

In this section, we use numerical examples to demonstrate the approximation capability of the IFE spaces
by IFE interpolation and IFE solutions. In generating numerical results, all computations involving
integrations on interface elements, such as the assemblage of local matrices and vectors with IFE shape
functions or assessing the errors with integral norms, are handled by the numerical quadratures based on
the transfinite mapping between the reference straight edge triangle/square and the physical curved edge
triangles/quadrilaterals. More details about quadrature techniques on curved-edge domains can be found
in Kopriva (2009) and Sevilla & Fernández-Méndez (2011).

All the numerical results to be presented are generated in the domainΩ = (−1, 1)× (−1, 1) in which
the interface curve Γ is a circle with radius r0 = π/6.28, which dividesΩ into two subdomainsΩ− and
Ω+ with

Ω− = {(x, y) : x2 + y2 < r2
0}.

The function to be approximated is

u(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1

β− rα , (x, y) ∈ Ω−,

1

β+ rα +
(

1

β− − 1

β+

)
rα0 , (x, y) ∈ Ω+,

(6.1)

where r = √
x2 + y2 and α = 5. It is easy to verify that u satisfies the interface jump condition (1.3) and

(1.4). We note that this is the same interface problem for the numerical examples given in Lin et al. (2015).
Numerical examples presented here are generated with the bilinear IFE space developed in Section 5,
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Table 1 Interpolation errors and rates for the bilinear IFE function,
β− = 1 and β+ = 10000

h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/40 2.7681E-4 1.4482E-2
1/80 7.2447E-4 1.9339 7.4468E-3 0.9596
1/160 1.8580E-5 1.9632 3.7827E-3 0.9772
1/320 4.7122E-6 1.9793 1.9061E-3 0.9888
1/640 1.1858E-6 1.9906 9.5723E-4 0.9937

1/1280 2.9744E-7 1.9952 4.7965E-4 0.9969

Table 2 Interpolation errors and rates for the bilinear IFE function,
β− = 10000 and β+ = 1

h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/40 9.0663E-3 4.3850E-1
1/80 2.2680E-3 1.9991 2.1939E-1 0.9991
1/160 5.6711E-4 1.9997 1.0971E-1 0.9998
1/320 1.4179E-4 1.9999 5.4859E-2 0.9999
1/640 3.5447E-5 2.0000 2.7430E-2 1.0000

1/1280 8.8618E-6 2.0000 1.3715E-2 1.0000

and we note that numerical results with other IFE spaces developed in Section 5 are similar, which are
therefore not presented to avoid redundancy.

Note that the curvature of the interface in this interface problem is κ ≈ 2. Condition (5.23) allows us
to use κ̄ ≈ 0.031. Then, using ε ≈ 0.4 in (3.6) leads to a suggested bound for the mesh size h ≈ 0.0273.
Therefore, our numerical experiments presented in this section are all on meshes whose sizes are not
larger than 1/40 = 0.025, which can sufficiently satisfy the conditions in the error estimation in the
previous section.

6.1 The convergence of IFE interpolation

Tables 1 and 2 present interpolation error u− Ihu in both the L2 and the semi-H1 norms over a sequence of
meshes whose mesh size is h. In these tables, the rate is the estimated values of r such that ‖u− Ihu‖0,Ω ≈
Chr or |u − Ihu|1,Ω ≈ Chr with numerical results generated on two consecutive meshes. The estimated
values for r clearly demonstrate the optimal convergence of Ihu. We note that this example involves a
coefficient β with a jump quite large. Our numerical experiments show that these IFE spaces converge
optimally also when β has a moderate jump such as β− = 1,β+ = 10.

6.2 The convergence of the IFE solution

Let uh be the IFE solution generated by the bilinear IFE space applied in the partially penalized method in
Lin et al. (2015) for the interface problem (1.1)–(1.4), where f and g are chosen such that u given by (6.1)
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Table 3 Errors in the bilinear IFE solution generated by the
symmetric partially penalized IFE method, β− = 1, β+ = 10000

SPP IFE SPP IFE

h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate
1/40 3.7917E-4 1.5276E-2
1/80 1.0409E-4 1.8650 7.9599E-3 0.9405

1/160 2.5628E-5 2.0220 3.9096E-3 1.0257
1/320 6.6828E-6 1.9392 1.9501E-3 1.0035
1/640 1.7806E-6 1.9081 9.7745E-4 0.9964
1/1280 4.0278E-7 2.1443 4.8374E-4 1.0148

Table 4 Errors in the bilinear IFE solution generated by the
symmetric partially penalized IFE method, β− = 10000, β+ = 1

SPP IFE SPP IFE

h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate
1/40 1.0734E-2 4.4052E-1
1/80 2.5715E-3 2.0616 2.1966E-1 1.0040

1/160 6.2918E-4 2.0310 1.0974E-1 1.0012
1/320 1.5709E-4 2.0019 5.4864E-2 1.0001
1/640 4.0137E-5 1.9686 2.7431E-2 1.0000
1/1280 9.8101E-6 2.0326 1.3715E-2 1.0000

is its exact solution. The errors in the bilinear IFE solution generated by the symmetric partially penalized
IFE (SPP IFE) method on a sequence of meshes are listed in Tables 3 and 4. The values of numerically
estimated rate r in these tables clearly indicate the optimal convergence of the bilinear IFE solution
gauged in either the L2-norm or H1-norm. We also have carried out extensive numerical experiments
by applying the IFE spaces developed in Section 5 to the partially penalized IFE methods in Lin et al.
(2015) with all the popular penalties, and we have observed similar optimal convergence in the related
IFE solution for this interface problem.
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