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This paper discusses a class of quadratic immersed finite element (IFE) spaces developed
for solving second order elliptic interface problems. Unlike the linear IFE basis functions,
the quadratic IFE local nodal basis functions cannot be uniquely defined by nodal values and
interface jump conditions. Three types of one dimensional quadratic IFE basis functions are
presented together with their extensions for forming the two dimensional IFE spaces based on
rectangular partitions. Approximation capabilities of these IFE spaces are discussed. Finite
element solutions based on these IFE for representative interface problems are presented to
further illustrate capabilities of these IFE spaces.
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1. Introduction

The main purpose of this paper is to present a class of quadratic immersed finite
element (IFE) spaces developed for solving the following second-order elliptic interface
problems whose coefficients are piecewise-constant functions: in a domain � ⊂ R

n

(n = 1 or 2), find the function u such that

−∇ · (
p(x)∇u(x)

) = f (x), x ∈ �, (1.1)
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with a certain boundary condition, say a Dirichlet boundary condition

u|∂� = g, (1.2)

and following jump conditions across an interface � ⊂ �:

[u]|� = 0, (1.3)

[pn · ∇u]|� = 0. (1.4)

Here, for the simplicity of presentation, the domain �, either an interval (in the one
dimensional case) or a rectangle (in the two dimensional case), is assumed to be split
into two separate regions �1 and �2 by an interface � so that � = �1 ∪ �2 ∪ �, see
figure 1. The coefficient p(x) is a piecewise constant function defined according to the
interface �

p(x) =
{

p1, x ∈ �1,

p2, x ∈ �2.
(1.5)

The notation [u](x) stands for the jump of u(x) across the interface � with the following
understanding: for any point x on the interface �,

[u](x) = lim
y→x,y∈�1

u(y) − lim
z→x,z∈�2

u(z).

The same definition applies to the scalar function p n · ∇u(x).
It is well known that efficiently solving interface problems of this type is critical

for numerical simulations in many applications of engineering and sciences. Many ap-
proaches have been taken for solving the interface problem (1.1)–(1.4). For example, fi-
nite difference (FD) methods [11,23,24], finite element (FE) method [1], and collocation
methods [22] have been developed to solve interface problems. Both finite difference and
finite element methods can yield satisfactory numerical results in many applications. For
example, it is well known (see [5,7] and the references therein) that the standard Galerkin
method with linear finite elements can be used to solve such elliptic interface problems
with the optimal O(h2) accuracy in the numerical solutions so long as the triangles in
the partition are aligned with the interface, i.e., the interface is allowed to pass a triangle

Figure 1. The domain � with an interface �.
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only through two of its vertices. One of the drawbacks of the finite difference approach
is its lack of versatility for handling the arbitrary variations of the interface curve, even
though many remedies have been developed, see for example [9,12,14,20,21].

Article [2] introduces a class of generalized finite element framework intended to
handle boundary value problems with rough coefficients including interface problems.
The basic idea of this generalized finite element framework is to design suitable finite
element spaces by modifying a standard finite element space according to a particular
problem under consideration. In particular, jump conditions are required in the construc-
tion of the finite element spaces for an interface problem. The immersed finite element
(IFE) methods [10,15–18] for interface problems can be considered as specific imple-
mentations of this general idea. For example, the implementation of this framework
with linear polynomials for the one-dimensional interface problem coincides with the
one dimensional IFE method [15], and the two-dimensional implementation with linear
polynomials in [3] is only slightly different from the IFE method discussed in [16,17].
However, how to satisfactorily implement this general framework with higher degree
polynomials for interface problems is still open for investigation. There are many ways
to realize this general idea with higher degree polynomials, and a particular implemen-
tation of this general idea is not necessarily the optimal from the point of view of the
accuracy expected from the higher-degree polynomials employed [2].

The central idea of immersed finite elements is to use a partition Th independent of
the interface � so that partitions with simple and efficient structures, such as a Cartesian
partition, can be used to satisfactorily solve an interface problem with a rather compli-
cated or varying interface. A partition used in an IFE method consists of two types of
elements: interface elements which are cut through by interface � and the rest are non-
interface elements. Then the standard FE basis functions are used in each of the non-
interface elements. However, in an interface element, the local nodal basis functions are
constructed with polynomials piece-wisely defined according to the interface such that
these functions can satisfy the jump conditions (either exactly or approximately) across
the interface and retain specified values at the nodes of this interface element. These
local nodal basis functions are also required to have the H 1 regularity such that they can
be used to construct IFE spaces for solving the interface problems. The idea is used in
[3] and is similar to that used for the Hsieh–Clough–Tocher macro C1 element [4] where
each basis function consists of three cubic polynomials on the subtriangles formed by
connecting the vertices and the center of gravity so that the required continuity can be
satisfied. In summary, the following are the two major differences between the IFE
methods and the standard FE methods for interface problems:

• To maintain the accuracy, the partition used in the standard FE method has to be
formed according to the interface � while the partition of an IFE method can be
formed independently of the interface.

• On the other hand, the basis functions in the standard FE method are formed inde-
pendent of the interface while some of the basis functions in the IFE method will
incorporate the interface location and the interface jump conditions.
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The IFE methods are therefore preferable alternatives for those applications, see for ex-
ample [8], in which an interface problem has to be solved repeatedly, each time with a
different interface � (either due to variation in its shape or the position), and for many
applications that may also prevent the usage of the standard finite element method be-
cause of the involved nontrivial interfaces, see for example [19] and references therein.

This paper aims to continue the development of the general framework of [2] via
IFE methods. There have been publications about IFE spaces using linear [3,15–17]
and bilinear [18] polynomials. The natural next step is to study the IFE spaces based
on quadratic polynomials because of both the academic and computational reasons. We
intend to explore how to develop quadratic IFE spaces with optimal approximation capa-
bility which, to our best knowledge, has not been addressed in literature. Since different
implementation ideas are employed, the IFE spaces presented here are therefore not in
the same class as those in [2]. Compared to the quadratic implementation in [2], the
approximation capability of these quadratic IFE spaces are of higher order, and they
are closely related to the standard quadratic FE space in the sense that they reduce to the
standard quadratic FE space when the discontinuity in the coefficient disappears or when
the discontinuity happens on the edges of the elements in the partition. Computationally,
a higher degree IFE space is often more efficient than its counterparts using polynomials
with a lower degree. In a typical numerical simulation with a specific error tolerance
tol > 0, the method with polynomials of a higher degree may generate a satisfactory
numerical result with a coarser partition which in turn involves an algebraic system with
fewer unknowns than the corresponding lower degree methods.

This paper is organized as follows. In Section 2, three types of one-dimensional
quadratic IFE spaces will be introduced. The first one is without any extra condition
explicitly imposed while each of the other two has one extra condition. We will then
further extend these spaces to two dimensions to form corresponding biquadratic IFE
spaces. In section 3, numerical experiments will be presented to investigate the inter-
polation approximation capabilities of these IFE spaces. Finite element solutions based
on these IFE spaces for typical interface problems will also be presented. We would
also like to point out that even though only homogeneous interface jump conditions are
considered here, the IFE spaces developed in this paper can also be used to handle those
interface problems with nonhomogeneous jump conditions through the usual homoge-
nization procedures.

2. Quadratic immersed finite element spaces

In this section, we will discuss three types of quadratic IFE spaces whose local
nodal basis functions are: (1) hierarchical basis functions formed as products of the
linear IFE basis fuctions, with no extra condition explicitly imposed on the interface;
(2) basis functions with one extra continuity requirement across the interface; (3) basis
functions which use a form of local refinement around the interface. Each of these
basis functions is discussed in detail in sections 2.1 and 2.2 below. As we can see
later, there are infinitely many ways to define the quadratic IFE nodal basis functions
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that can satisfy the nodal value specification and interface jump conditions. The three
IFE spaces presented here demonstrate what will happen if no extra condition is imposed
and how to add extra conditions suitably. In addition, we will show that these IFE spaces
possess many important properties similar to those of the standard FE spaces, such as
the partition of unity, and two of these IFE spaces even become the standard quadratic
FE space when the interface curve coincides with a line used in the partition or when the
coefficient function has no discontinuity.

2.1. Quadratic immersed finite element spaces in one dimension

We start the discussion by considering one-dimensional quadratic IFE spaces. To
facilitate the discussion, we first introduce notations used in this and later sections.

In one dimension, we let � be the typical interval (0, 1), and the interface � con-
sists of just one point at x = α ∈ (0, 1). The interface problem (1.1)–(1.4) then becomes

−(
p(x)u′(x)

)′ = f (x), x ∈ � = (0, 1), (2.1)

u(0) = g0 and u(1) = g1, (2.2)

u(α−) = u(α+), (2.3)

p1u
′(α−) = p2u

′(α+). (2.4)

Here, the coefficient p is defined by

p(x) =
{

p1, x < α,

p2, x � α,
(2.5)

with two positive constants p1 and p2. All the discussions here can be readily extended to
the case in which the interface � consists of multiple interface points and the coefficient
function p(x) is formed by multiple constant functions.

Let Th = ⋃n
k=1 ek be a partition of � = [0, 1], where elements ek = [x2(k−1), x2k]

are intervals in � formed by node points

0 = x0 < x1 < x2 < x3 < x4 < · · · < x2n−1 < x2n = 1,

such that

x2k−1 = x2k + x2k−2

2
, k = 1, 2, . . . , n.

Without loss of generality, we consider a uniform partition such that x2k = x0 + kh

where x0 = 0 (the left endpoint of �) and h = 1/n. The local quadratic nodes on the
kth element ek will be denoted by tk,1 = x2(k−1), tk,2 = x2k−1 and tk,3 = x2k.

We categorize all the elements into two classes as follows.

Definition 2.1. An element ek of the partition Th is called an interface element if the
interface point α is in the interior of ek, i.e., x2(k−1) < α < x2k. Any element which is
not an interface element will be called a noninterface element.



86 B. Camp et al. / Quadratic immersed finite element spaces

If the kth element ek is a noninterface element, then we use the three standard
Lagrange type quadratic FE local nodal functions φk,i(x), i = 1, 2, 3, such that

φk,i(tk,j ) =
{

1, if i = j,

0, if i �= j,
j = 1, 2, 3. (2.6)

The formulae for the standard local nodal nodal basis functions φk,i(x), i = 1, 2, 3, are
easy to derive since each one is the unique quadratic Lagrange interpolant of the nodal
values given in (2.6).

In the next three subsections, we will give three different approaches for construct-
ing local nodal basis functions φk,i(x), i = 1, 2, 3, in an interface element ek that can
satisfy the same nodal value specifications (2.6) and interface jump conditions (2.3)
and (2.4). Then for each node xi, i = 0, 1, . . . , 2n, we will use these local basis func-
tions to form a global Lagrange type basis function, and our IFE spaces are defined as
the linear spaces spanned by these basis functions.

2.1.1. A one-dimensional hierarchical quadratic IFE space
Following the same idea used for local nodal basis functions of the standard

quadratic FE space, see [6,13] for example, we will demonstrate that the quadratic IFE
local nodal basis functions in an interface element ek can be constructed hierarchically
by multiplying together two linear IFE interpolation functions (to be defined in the next
paragraph) which are a generalization of the linear IFE local nodal basis functions [15].
This approach can yield quadratic IFE spaces without using any extra conditions and the
idea can be repeatedly used to generate IFE spaces of degree three, and so on.

First, we modify the linear IFE local nodal basis functions [15] such that its nodal
values can be specified at two points that may or may not be on both sides of the interface
point. Specifically, for each pair of indices (i, j) with i = 1, 2, 3, j = 1, 2, 3 but i �= j ,
we form a linear IFE interpolation function that is a piecewise linear function of the
following form

li,j (x) =
{

a1x + a0, if x < α,

b1x + b0, if x � α,
(2.7)

whose coefficients a0, a1, b0, b1 are chosen such that li,j (x) can satisfy the nodal value
specification and interface jump conditions as follows:

li,j (tk,i) = 1, li,j (tk,j ) = 0 (nodal value specification),

[li,j ]x=α = 0,
[
pl′i,j

]
x=α

= 0 (interface jump conditions).
(2.8)

Theorem 2.1. The linear immersed interpolating function li,j (x) (i �= j) is uniquely
determined.
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Proof. When α is not in the interval formed by tk,i and tk,j , say tk,i < tk,j and α < tk,i ,
then (2.8) leads to the following linear system about the coefficients a0, a1, b0 and b1:







0 0 tk,i 1
0 0 tk,j 1
α 1 −α −1
p1 0 −p2 0













a1

a0

b1

b0





 =







1
0
0
0





 . (2.9)

Since the determinant of coefficient matrix in (2.9) is −p1(tk,i − tk,j ) which is always
non-zero, (2.9) will always have a unique solution. Similar arguments apply to the sit-
uations where tk,i < α < tk,j and tk,i < tk,j < α. Hence the linear IFE interpolation
functions are uniquely determined. �

Note that the proof of theorem 2.1 provides a procedure to form li,j (x). The fol-
lowing lemma shows that lj,i(x) (where i < j ) and li,j (x) are related.

Lemma 2.1. The linear immersed interpolating functions li,j (x) and lj,i(x) (where
i < j ) are related by lj,i(x) = 1 − li,j (x) for all values of x.

Proof. We need to show that li,j (x) + lj,i(x) ≡ 1 where li,j (x) has the general form

li,j (x) =
{

a1x + a0, if x < α,

b0x + b0, if x � α,
(2.10)

and lj,i(x) has the general form

lj,i(x) =
{

ã1x + ã0, if x < α,

b̃0x + b̃0, if x � α.
(2.11)

Let α < tk,i . Then the function f (x) which is defined by f (x) = li,j (x) + lj,i(x) will
have the general form

f (x) =
{

(a1 + ã1)x + (a0 + ã0), if x < α,
(
b0 + b̃0

)
x + (

b0 + b̃0
)
, if x � α.

(2.12)

Since both li,j (x) and lj,i(x) satisfy the interface conditions (2.3) and (2.4) then f (x)

also satisfies the interface conditions. This leads to a linear system whose coefficient
matrix is the same as that in (2.9). Hence, this system has a unique solution such that

a1 + ã1 = b1 + b̃1 = 0 (2.13)

and

a0 + ã0 = b0 + b̃0 = 1. (2.14)

Therefore, f (x) ≡ 1 and so lj,i(x) = 1 − li,j (x). Similar arguments hold in the cases
where tk,i < α < tk,j or tk,j < α. �
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Figure 2. The linear immersed interpolating functions l1,2(x) and l2,1(x) on the element ek .

Remark 2.1. The linear immersed interpolation functions l1,3(x) and l3,1(x) are the usual
linear IFE local nodal basis functions [15] on the interface element ek. Consequently,
the above discussion has shown that linear IFE local nodal basis functions are unique
and that they satisfy a partition of unity since l1,3(x) + l3,1(x) ≡ 1.

The immersed linear interpolation functions l1,2(x) and l2,1(x) on the element ek can be
seen in figure 2 for the case where tk,1 < α < tk,2. The plots of l1,3(x), l3,1(x), l2,3(x)

and l3,2(x) are similar although they are omitted here due to space limitations.
Now we can define the three quadratic local nodal IFE basis functions as follows:

φ̃k,1(x) = l1,2(x)l1,3(x), φ̃k,2(x) = l2,1(x)l2,3(x), φ̃k,3(x) = l3,1(x)l3,2(x). (2.15)

First, it can be easily verified that these functions satisfy the nodal value specification
i = 1, 2, 3,

φ̃k,i(tk,j ) =
{

1, if i = j,

0, if i �= j,
j = 1, 2, 3.

The following theorem states some important properties of these functions including
satisfying the interface jump conditions (2.3) and (2.4). The proof of this theorem is a
matter of straightforward verifications, and is therefore omitted.

Theorem 2.2. The quadratic local nodal IFE basis functions φ̃k,i(x), i = 1, 2, 3,
in (2.15) have the following properties:

1. They satisfy the interface jump conditions (2.3) and (2.4).

2.
∑3

i=1 φ̃k,i(x) ≡ 1 for all x ∈ ek.

3. These local nodal IFE basis functions φ̃k,i(x), i = 1, 2, 3, are consistent with the
standard local nodal FE basis functions φk,i(x), i = 1, 2, 3, in the following sense:

(a) limα→tk,1 φ̃k,i(x) = φk,i(x) and limα→tk,3 φ̃k,i(x) = φk,i(x) for i = 1, 2, 3.

(b) If p1 = p2 > 0 then φ̃k,i(x) = φk,i(x).
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We now proceed to construct an IFE space using these local nodal basis functions.
First, for each element ek ∈ Th, we let

S̃h(ek) =
{

span{φk,i(x), i = 1, 2, 3}, if ek is a noninterface element,

span
{
φ̃k,i(x), i = 1, 2, 3

}
, if ek is an interface element.

Then, for each node xi, i = 1, 2, . . . , 2n, we let φ̃i(x) be a piecewise quadratic poly-
nomial such that φ̃i |ek

∈ S̃h(ek) for any ek ∈ Th, and

φ̃i(xj ) =
{

1, if i = j,

0, if i �= j .

Finally, we can form the IFE space over the whole domain by the hierarchical local nodal
basis functions as follows:

S̃h(�) = span
{
φ̃i, i = 0, 1, . . . , 2n

}
.

2.1.2. A one-dimensional quadratic IFE space with extra continuity
The approach presented in the previous section is not the only way to construct

quadratic local nodal IFE basis functions. In this section, following a similar idea pre-
sented in [15–17], we will form the quadratic local nodal IFE basis functions directly
from piecewise quadratic polynomials using an undetermined coefficient technique.

In a typical interface element ek, the interface point α separates ek into two subin-
tervals. We can use two quadratic polynomials defined on each of these subintervals to
form a quadratic local nodal IFE basis function with the following form:

φk,i(x) =
{

a2x
2 + a1x + a0, if x < α,

b2x
2 + b1x + b0, if x � α.

(2.16)

Here, as usual, we need to choose the coefficients a2, a1, a0, b2, b1 and b0 such that the
following conditions are satisfied:






φk,i(tk,j ) =
{

1, if i = j,

0, if i �= j
(nodal value specification),

[
φk,i

]
x=α

= 0,
[
pφ

′
k,i

]
x=α

= 0 (interface jump conditions).

(2.17)

However, (2.17) supplies only five conditions while φk,i(x) contains six coefficients to
be determined so one extra condition needs to be added.

Although any arbitrary condition may be used to provide a sixth condition, a natural
condition to impose is another continuity requirement at the interface. By definition, we
know that the solution u(x) to the one dimensional interface problem (2.1)–(2.4) and
its flux p(x)u′(x) are both continuous at the interface. Moreover, it often happens that
(p(x)u′(x))′ is continuous at the interface as well. For example, this is true when the
right-hand side function f (x) in (2.1) is continuous over �. This leads to one extra
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condition at the interface that requires the local nodal IFE basis functions to satisfy the
following:

[(
pφ

′
k,i

)′]
x=α

= 0, i = 1, 2, 3. (2.18)

Quadratic local nodal IFE basis functions that are constructed using (2.18) as an extra
continuity requirement will be referred to with the notation φk,i in order to distinguish
them from the other quadratic IFE local basis functions.

Theorem 2.3. The quadratic local nodal IFE basis functions, φk,i(x), i = 1, 2, 3, are
uniquely determined on an element ek.

Proof. Without loss of generality, we assume that β = p2/p1 > 1. Consider the
quadratic local nodal IFE basis function φk,1(x). If tk,1 < α < tk,2 then the coefficients
in (2.16) will satisfy the following system of equations:









t2
k,1 tk,1 1 0 0 0
0 0 0 t2

k,2 tk,2 1
0 0 0 t2

k,3 tk,3 1
α2 α 1 −α2 −α −1

2p1α p1 0 −2p2α −p2 0
2p1 0 0 −2p2 0 0

















a2

a1

a0

b2

b1

b0









=









1
0
0
0
0
0









. (2.19)

The determinant of the coefficient matrix is

−1

4
p1h

(
h2 + (β − 1)

(−2α2 + 3h(α − tk,1) − 2t2
k,1 + 4αtk,1

))
,

which is nonzero for tk,1 � α < tk,2. Hence (2.19) must have a unique solution, and
the coefficients of φk,1(x) are uniquely determined. The coefficients of φk,1(x) satisfy
a similar system with a nonsingular coefficient matrix when tk,2 � α � tk,3. So the
quadratic local nodal IFE basis function φk,1(x) is uniquely determined on the element
ek for the two possible locations of the interface point α. Similar arguments can be
applied to show that the quadratic local nodal IFE basis functions φk,2(x) and φk,3(x)

are also uniquely determined. �

The proof of theorem 2.3 provides a procedure for constructing the quadratic IFE
local basis functions φk,i(x). By their definition, these local nodal IFE basis functions
satisfy the interface jump conditions. In addition, they also have the important properties
stated in the following theorem which can be proved by direct verifications.

Theorem 2.4. The quadratic local nodal IFE basis functions φk,i(x), i = 1, 2, 3, defined
by (2.17) and (2.18) have the same properties as those of φ̃i(x), i = 1, 2, 3, stated in
theorem 2.2.
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Now, we are ready to construct an IFE space by these local nodal basis functions.
First, for each element ek ∈ Th, we let

Sh(ek) =
{

span{φk,i(x), i = 1, 2, 3}, if ek is a noninterface element,

span
{
φk,i(x), i = 1, 2, 3

}
, if ek is an interface element.

Then, for each node xi, i = 1, 2, . . . , 2n, we let φi(x) be a piecewise quadratic polyno-
mial such that φi |ek

∈ Sh(ek) for any ek ∈ Th, and

φi(xj ) =
{

1, if i = j,

0, if i �= j .

Finally, we can form the IFE space over the whole domain by the local nodal basis
functions with extra continuity condition as follows:

Sh(�) = span
{
φi, i = 0, 1, . . . , 2n

}
.

2.1.3. A one-dimensional IFE space with local mesh refinement
Another way of constructing quadratic IFE basis functions is through a local grid

refinement process. Note that each interface element ek is separated into two subele-
ments by the interface point α, [tk,1, α] and [α, tk,3]. We then introduce three nodes in
each of these subelements which correspond to their endpoints and the midpoints. For
example, the left subelement has the three nodes tk,1, (tk,1 + α)/2 and α. The quadratic
local nodal IFE basis functions (referred to as φ̂k,i) in the interface element ek are defined
as piecewise quadratic polynomials

φ̂k,i =
{

φ̂ 1
k,i(x), x ∈ [tk,1, α],

φ̂ 2
k,i(x), x ∈ [α, tk,3], i = 1, 2, 3, 4,

such that they satisfy the following interpolation conditions and interface requirements:

φ̂k,j

(
t̂k,i

) = 1, φ̂k,j

(
t̂k,j

) = 0 (nodal value specification),
[
φ̂k,j

]
x=α

= 0,
[
pφ̂′

k,j

]
x=α

= 0 (interface jump conditions),
j = 1, 2, 3, 4,

(2.20)
where t̂k,i are the the nodes of the new subelements excepting those that occur at the
interface: t̂k,1 = tk,1, t̂k,2 = (tk,1 + α)/2, t̂k,3 = (α + tk,3)/2 and t̂k,4 = tk,3.

Theorem 2.5. The quadratic local nodal IFE basis functions φ̂k,i(x), i = 1, 2, 3, 4, de-
fined by (2.20) are uniquely determined.

Proof. Let ek be an interface element so that tk,1 < α < tk,3. Consider the quadratic
IFE local basis function φ̂k,1(x) which is a piecewise quadratic function as in (2.16).
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Since φ̂k,1(x) is required to satisfy (2.20), then the coefficients a2, a1, a0, b2, b1, and b0

must satisfy the following system of linear equations:








(t̂k,1)
2 t̂k,1 1 0 0 0

(t̂k,2)
2 t̂k,2 1 0 0 0

0 0 0 (t̂k,3)
2 t̂k,3 1

0 0 0 (t̂k,4)
2 t̂k,4 1

α2 α 1 −α2 −α −1
2p1α p1 0 −2p2α −p2 0

















a2

a1

a0

b2

b1

b0









=









1
0
0
0
0
0









. (2.21)

The determinant of the coefficient matrix is a function of the interface location given by

q(α) = − 3

16
(α − tk,1)

2(α − tk,3)
2(R + p2tk,1 − p1tk,3), R = α(p1 − p2). (2.22)

Since (R + p2tk,1 − p1tk,3) �= 0 for α ∈ ek, we can see see that q(α) �= 0 for tk,1 < α <

tk,3. The system of linear equations above must have a unique solution for tk,1 < α <

tk,3, and so the coefficients of φ̂k,1(x) are determined uniquely. Similar arguments can
be applied to show that functions φ̂k,i(x), i = 2, 3, 4, are also uniquely determined. �

Remark 2.2. The quadratic local nodal IFE basis functions φ̂k,i(x) are not consistent
with standard local nodal FE basis functions. This means that if p1 = p2 or the interface
approaches the boundary of ek (i.e. α → tk,1 or α → tk,3), then φ̂k,i(x) do not transform
into the standard local nodal FE basis functions φk,i(x). This is because of the way in
which the interface element ek is divided into subelements, and subsequently there are
four local nodal basis functions φ̂k,i(x), i = 1, . . . , 4.

However, by definition, these local nodal basis functions do satisfy the interface
jump conditions, and they also satisfy a partition of unity as stated in the following
theorem.

Theorem 2.6. The quadratic local nodal IFE basis functions φ̂k,i(x), i = 1, 2, 3, 4,
introduced above have the following property:

4∑

i=1

φ̂k,i(x) ≡ 1 for all x ∈ ek. (2.23)

Proof. This result follows easily from an argument similar to that used for proving
lemma 2.1. �

Now, we can construct an IFE space by these local basis functions. First, for each
element ek ∈ Th, we let

Ŝh(ek) =
{

span{φk,i(x), i = 1, 2, 3}, if ek is a noninterface element,

span
{
φ̂k,i(x), i = 1, 2, 3, 4

}
, if ek is an interface element.
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Then, for each node xi, i = 1, 2, . . . , 2n + 1, we let φ̂i(x) be a piecewise quadratic
polynomial such that φ̂i |ek

∈ Ŝh(ek) for any ek ∈ Th, and

φ̂i(xj ) =
{

1, if i = j,

0, if i �= j .

Finally, we can form an IFE space over the whole domain by the local nodal basis func-
tions with extra continuity condition as follows:

Ŝh(�) = span
{
φ̂i, i = 0, 1, . . . , 2n

}
.

2.2. Two-dimensional immersed quadratic basis functions

In this section, we extend the one-dimensional quadratic IFE spaces based upon
φ̃k,i(x), φk,i(x) and φ̂k,i(x), to two-dimensional biquadratic IFE spaces with rectangular
partitions where the interface � is a line parallel to one of the coordinate axes. In this
configuration, a local biquadratic IFE basis function in an interface element can be con-
structed by taking the product of a standard FE local nodal basis function and an IFE
local nodal basis function.

Before constructing the IFE spaces, we first restate the model interface BVP in two
dimensions. We let the domain of the BVP problem (1.1)–(1.4) be the typical unit square
� = [0, 1] × [0, 1]. We assume that the interface � is a horizontal line at y = γ such
that �1 and �2 will be defined as

�1 = � ∩ {
(x, y) | y < γ

}
,

�2 = � ∩ {
(x, y) | y > γ

}
.

It should be noted that the methods for constructing biquadratic IFE spaces repre-
sented here can handle more general linear interfaces. For instance, the biquadratic IFE
spaces in this section will be able to handle an interface that is a piecewise linear func-
tion as long as each linear piece is parallel to one of the coordinate axes, and the pieces
in the y-direction occur along the grid-lines of the partition. In other words, all linear
pieces in the y-direction will not be allowed to pass through elements. Choosing the
y-direction for this restriction is arbitrary, however, and one could also restrict interface
pieces in the x-direction to be along the grid-lines, and consequently allow the interface
in the y-direction to be immersed.

Then the boundary value problem (1.1)–(1.4) becomes

−∇ · (
p(x)∇u(x)

) = f (x), x = (x, y)T ∈ �, (2.24)

u(x, 0) = g0(x), u(x, 1) = g1(x), u(0, y) = h0(y), u(1, y) = h1(y), (2.25)

[u]� = 0, (2.26)

[n · p∇u]� = 0, (2.27)
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Figure 3. An element ek ∈ Th with its nine local nodes.

where n = (n1, n2)
T is the unit normal at x ∈ � pointing from �1 to �2. The coefficient

p will then be defined by

p(x, y) =
{

p1 if y < γ,

p2 if y � γ.
(2.28)

Without loss of generality, we consider forming quadratic IFE spaces on a uniform
partition consisting of axially aligned rectangular elements. First, we introduce quadratic
node points of the partition in the x- and y-directions by letting

xi = x0 + i(h/2), i = 0, 1, . . . , 2N,

yj = y0 + j (h/2), j = 0, 1, . . . , 2N

with h = 1/N for an integer N . Then for each pair of integers (i, j), i, j = 1, 2, . . . , N ,
we let k = i + (j − 1)N , and let

ek = [x2(i−1), x2i] × [y2(j−1), y2j ], i, j = 1, 2, . . . , N.

Finally, we let Th = ⋃N2

k=1 ek to form a partition of �. We note that the kth element ek of
Th is located at the ith column and j th row of the partition.

Each biquadratic element has nine local nodes, and the following notations for the
local nodal points on the element ek is adopted:

sk,1 = x2(i−1), tk,1 = y2(j−1),

sk,2 = x2i−1, tk,2 = y2j−1,

sk,3 = x2i , tk,3 = y2j ,

(2.29)

where k = i + (j − 1)N . The nine local nodes on the element ek, vk,l for l = 1, . . . , 9
can be seen in figure 3 where the node vk,l is defined by vk,l = (sk,m, tk,n).

As before, to form an IFE spaces, specialized local nodal basis functions will only
be used on interface elements which are defined as follows:

Definition 2.2. Let the interface � occur along the horizontal line y = γ . The element
ek = [x2(i−1), x2i]×[y2(j−1), y2j ] (where k = i+(j −1)N ) of the partition Th is called an
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Figure 4. An interface element ek when the interface � is a horizontal line at y = γ .

interface element if y2(j−1) < γ < y2j . Any element which is not an interface element
will be called a noninterface element.

A typical interface element ek with a horizontal interface at y = γ is shown in figure 4.
Then, on a typical noninterface element, the nine biquadratic local nodal basis

functions will simply be the standard quadratic FE local basis function defined by

ψk,l(vk,j ) =
{

1 if j = l,

0 if j �= l,
(2.30)

for l = m+3(n−1) with 1 � m, n � 3 and k = i+(j−1)N . These local basis functions
ψk,l(x, y) can be defined in terms of the standard quadratic FE local basis functions in
one dimension as follows

ψk,l(x, y) = φi,m(x)φj,n(y), (2.31)

where x2(i−1) < x < x2i and y2(j−1) < y < y2j .
The three types of biquadratic IFE spaces to be introduced below will all be in

separable function form, i.e., each local basis function in these spaces will be a product
of a function in x variable and a function in y variable. More details will be given about
each type of local nodal IFE basis functions in the following subsections.

Additionally, each of these local nodal IFE basis functions will satisfy properties
similar to those satisfied by their counterparts of the one-dimensional IFE spaces, such
as a partition of unity and consistency with the standard FE local nodal basis functions.
Since each of the local nodal IFE basis functions will be a separable function, it is useful
to introduce some lemmas regarding these types of functions here.

By direct verifications, we can obtain the following lemma that describes how a
group of separable functions can satisfy a partition of unity.

Lemma 2.2. Let hi,j (x, y) for 1 � i � m, 1 � j � n, be a set of separable functions
defined by

hi,j (x, y) = fi(x)gj (y).
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If fi(x), i = 1, . . . , m, and gj (y), j = 1, . . . , n, are functions that satisfy

m∑

i=1

fi(x) ≡ 1 for all x ∈ Ix = [x1, x2]

and
m∑

j=1

gj (y) ≡ 1 for all y ∈ Iy = [y1, y2],

then
m∑

i=1

n∑

j=1

hi,j (x, y) ≡ 1, for all (x, y) ∈ �e = Ix × Iy. (2.32)

It is easy to obtain the following lemma that describes how a separable function
can satisfy the two-dimensional interface conditions (2.26) and (2.27).

Lemma 2.3. Let there be an interface � that occurs along the the line y = γ such that

p(x, y) =
{

p1, if y < γ,

p2, if y � γ.

Also, let h(x, y) = f (x)g(y) where g(y) is piecewise C1 function defined by

g(y) =
{

g1(y), if y < γ,

g2(y), if y � γ.

If g(y) satisfies the conditions

[g]y=γ = 0,
[
pg′(y)

]
y=γ

= 0,

then the function h(x, y) will satisfy (2.26)–(2.27).

Now we are ready to give details about the three two-dimensional biquadratic IFE
spaces developed from one dimensional local nodal IFE basis functions φ̃k,i(x), φk,i(x)

and φ̂k,i(x).

2.2.1. A two-dimensional hierarchical quadratic IFE space
The first type of biquadratic IFE space is formed by the one-dimensional hierarchi-

cal quadratic local nodal basis functions φ̃j,n(y) defined on the interval [y2(j−1), yj ]. If
the interface � occurs along the line y = γ and ek is an interface element, we defined
the biquadratic local nodal IFE basis function ψ̃k,l(x, y) by

ψ̃k,l(x, y) = φi,m(x)φ̃j,n(y), (2.33)

where k = i + (j − 1)N, 1 � i, j � N and l = m + 3(n − 1), 1 � m, n � 3.
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These two-dimensional biquadratic local nodal IFE basis functions ψ̃k,i(x, y) have
properties similar to those of their one-dimensional counterparts. The following theorem
establishes that ψ̃k,l(x, y) satisfies a partition of unity and that it satisfies the interface
conditions (2.26)–(2.27). Additionally, this theorem also points out how these local
nodal IFE basis functions are related to the standard FE basis functions. There is a
definite similarity between this theorem and theorem 2.2. This is largely due to the
fact that the basis function ψ̃k,l(x, y) is a separable function and one of its component
functions is an one-dimensional quadratic local nodal IFE basis function φ̃j,n(y), both
of which are crucial to the proof of this theorem.

Theorem 2.7. Let ek = [x2(i−1), x2i] × [y2(j−1), y2j ] ∈ Th (where k = i + (j − 1)N ) be
an interface element. The biquadratic IFE local basis functions ψ̃k,l(x, y), l = 1, . . . , 9,

have the following properties:

1. ψ̃k,l(x, y), l = 1, . . . , 9, satisfy the interface conditions (2.26)–(2.27).

2.
∑9

i=l ψ̃k,l(x, y) ≡ 1 for all (x, y) ∈ ek.

3. They are consistent with the standard biquadratic FE functions ψk,l(x, y), l =
1, . . . , 9 in the following ways:

lim
γ→y2(j−1)

(
ψ̃k,l(x, y)

) = ψk,l(x, y),

lim
γ→y2j

(
ψ̃k,l(x, y)

) = ψk,l(x, y),

lim
p2 → p1

(
ψ̃k,l(x, y)

) = ψk,l(x, y).

Proof. Properties 1 and 2 above following directly from lemmas 2.2 and 2.3. Property 3
can be directly verified by using the corresponding results from theorem 2.2. �

Following the same procedure used to construct the one-dimensional IFE space
S̃h(�), we can first defined the local IFE space S̃2

h(ek) for each element ek ∈ Th as
follows:

S̃2
h(ek) =

{
span{ψk,l(x, y), l = 1, 2, . . . , 9}, if ek is a noninterface element,

span
{
ψ̃k,l(x, y), l = 1, 2, . . . , 9

}
, if ek is an interface element.

Then we can use S̃2
h(ek) to form a global nodal basis function for each node in the

partition. Finally, we can define the hierarchical two-dimensional biquadratic IFE space
S̃2

h(�) as the linear space spanned by these global nodal basis functions.

2.2.2. A biquadratic IFE space with extra continuity
The next type of biquadratic IFE space is to be constructed from the one dimen-

sional quadratic local nodal IFE basis function with extra continuity properties, φj,n(y)
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defined on the interval [y2(j−1), yj ]. Specifically, for a typical interface element ek ∈ Th,
we define nine quadratic nodal basis functions as follows:

ψk,l(x, y) = φi,m(x)φj,n(y) (2.34)

where k = i + (j − 1)N, 1 � i, j � N and l = m + 3(n − 1), 1 � m, n � 3.
Like ψ̃k,l(x, y), the biquadratic local nodal IFE basis functions ψk,l(x, y) also have

properties similar to those of their one-dimensional counterparts φj,n(y) as stated in the
following theorem.

Theorem 2.8. Let ek = [x2(i−1), x2i] × [y2(j−1), y2j ] ∈ Th (where k = i + (j − 1)N ) be
an interface element. The biquadratic IFE local basis functions ψk,l, l = 1, . . . , 9, have
the same properties as those of ψ̃k,l, l = 1, . . . , 9, stated in theorem 2.7.

Now, we can define a local IFE space S
2
h(ek) for each element ek ∈ Th as follows:

S
2
h(ek) =

{
span{ψk,l(x, y), l = 1, 2, . . . , 9}, if ek is a noninterface element,

span
{
ψk,l(x, y), l = 1, 2, . . . , 9

}
, if ek is an interface element.

Then we can use S
2
h(ek) to form a global nodal basis function for each node in the

partition. Finally, we can define the two-dimensional biquadratic IFE space S
2
h(�) with

extra continuity as the linear space spanned by these global nodal basis functions.

2.2.3. A biquadratic IFE finite element space using local refinement
The last type of biquadratic finite element space considered here is derived by us-

ing the one dimensional quadratic local nodal IFE basis function φ̂j,n(y). Recall that, in
constructing the basis function φ̂j,n(y), the element ej = [y2(j−1), y2j ] is first subdivided
into two subelements, [y2(j−1), γ ] and [γ, y2j ], where y = γ is the interface. Then four
basis functions are introduced onto the element ej where each basis function satisfied
four local nodal value specifications (two on each subelement) and two interface con-
ditions. In two dimensions, when there is an interface at y = γ , the interface element
ek = [x2(i−1), x2i] × [y2(j−1), y2j ] (where k = i + (j − 1)N ) will have 12 local nodes.
Here, the nodal points in the x- and y-directions of a typical interface element are

sk,1 = x2(i−1), t̂k,1 = y2(j−1),

sk,2 = x2i−1, t̂k,2 = (y2(j−1) + γ )/2,

sk,3 = x2i , t̂k,3 = (γ + y2j )/2,

t̂k,4 = y2j .

(2.35)

See the illustration in figure 5.
Notice that there are four nodal points in the y-direction since four nodal value

specifications are needed in the direction that crosses the interface so that the inter-
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Figure 5. The local quadratic nodes v̂k,l for ψ̂k,l(x, y) on the interface element ek with interface y = γ .

face conditions may be satisfied. Then we define 12 local nodal IFE basis functions
ψ̂k,l(x, y), l = 1, . . . , 12, in an interface element ek as

ψ̂k,l(x, y) = φi,m(x)φ̂j,n(y) (2.36)

where k = i + (j − 1)N, 1 � i, j � N and l = m+ 4(n− 1), 1 � m � 3, 1 � n � 4.
While the construction of the local nodal IFE basis functions ψ̂k,l(x, y) is similar

to the construction used for both ψ̃k,l(x, y) and ψk,i(x, y), these local basis functions
do not satisfy all of the same properties as ψ̃k,l(x, y) and ψk,i(x, y). For example, these
local basis functions do not have a direct relationship with the standard quadratic finite
element local basis functions. However, since the construction does result in a separable
function, then lemmas 2.2 and 2.3 can again be used to prove the following theorem.

Theorem 2.9. Let ek = [x2(i−1), x2i] × [y2(j−1), y2j ] ∈ Th (where k = i + (j − 1)N )
be an interface element. The biquadratic IFE local basis functions ψ̂k,l, l = 1, . . . , 12,

have the following properties:

1. They satisfy the interface conditions (2.26)–(2.27).

2.
∑12

i=l ψ̂k,l(x, y) ≡ 1 for all (x, y) ∈ ek.

Now, we are ready to define the IFE space based on local refinement. We first
defined a local IFE space Ŝ2

h(ek) for each element ek ∈ Th as follows:

Ŝ 2
h (ek) =

{
span{ψk,l(x, y), l = 1, 2, . . . , 9}, if ek is a noninterface element,

span
{
ψ̂k,l(x, y), l = 1, 2, . . . , 12

}
, if ek is an interface element.

Then we can use Ŝ 2
h (ek) to form a global nodal basis function for each node in the

partition. Finally, we can define the two-dimensional biquadratic IFE space Ŝ 2
h (�) based

upon local refinement as the linear space spanned by these global nodal basis functions.
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3. Numerical experiments of the quadratic and biquadratic IFE spaces

In this section, we investigate numerically the approximation capability of the IFE
spaces introduced in the previous section. We consider errors in both the interpolants
and finite element solutions generated in these IFE spaces. These numerical experiments
can provide a guideline for the related error estimation of these IFE spaces that will be
presented in a forthcoming paper.

We use Ihu(x) to denote the interpolant of a function u(x) in an IFE space with
a mesh size h, and use uh(x) to denote the finite element solution of an interface value
problem in an IFE space with a mesh size h where the interface value problem has an
exact solution u(x). Similar notation will be used in the two-dimensional case. To
measure the errors, we use the following norms in the involved Sobolev spaces:

‖u‖∞ = ess sup
x∈�

∣∣u(x)
∣∣, ‖u‖0 =

(∫

�

u2 dx
)1/2

,

(3.1)
‖u‖1 = (‖u‖2

0 + ∥
∥u′∥∥2

0

)1/2
.

Using these norms, we can measure the magnitudes of the errors in the interpolants and
finite element solutions with the following quantities:

Eh,s(Ihu) = ‖u − Ihu‖s or Eh,s(uh) = ‖u − uh‖s (3.2)

with s = 0, 1, or s = ∞. When it is clear which norm is used, the error will simply be
referred to as Eh(Ihu) or Eh(uh). Similarly, if it is clear from the context whether we
consider the error in an interpolant or the error in a finite element solution, then the error
will be referred to as Eh or Eh,s . We say that an approximation (either Ihu or uh) is of
order r if

Eh ≈ Chr (3.3)

for some constant C.
In our numerical experiments, we identify the order approximately by carrying out

a least squares regression on a set of values of log Eh generated for various values of h.
To assess the errors numerically, we approximate L∞ error, Eh,∞, by evaluating |u−uh|
(or |u − Ihu|) t (an integer sufficiently large) times on each element and then using the
maximum of these values as of |u−uh|. However, an interface element is treated through
two natural subelements: the one contained in �1 and the other contained in �2.

3.1. Numerical results in one dimension

Recall that we use Sh(�), Ŝh(�) and S̃h(�) to denote that IFE spaces spanned by
the nodal basis functions φi(x), φ̂i(x) and φ̃i(x), respectively. Numerical results from
these IFE spaces are to be considered. First, we introduce two test functions emphasizing
different features in order to provide a good testing ground for these IFE spaces. Then
the errors in the interpolants of these test functions in the IFE spaces are presented.
Finally, we look at the errors in the Galerkin finite element solutions in these IFE spaces
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for the interface problems defined in the ways such that these test functions are their
exact solutions.

Even though all the functions in the three IFE spaces share some fundamental
properties such as being able to satisfy the jump conditions, functions in these IFE spaces
are indeed different in the continuity of their flux across the interface. It is therefore
interesting to see how the IFE spaces can perform in generating approximations to test
functions whose fluxes have different continuities.

Two test functions are considered. For the first one, u1(x), we let it be the ex-
act solution of the interface problem (2.1)–(2.4) with homogeneous Dirichlet boundary
conditions when the right hand side function is defined by

f1(x) = ex (3.4)

and the interface is located at α = 1/π . We can easily check that function u1(x) can be
given explicitly with the following formula:

u1(x) =






1

−D

(
ex(αp2 + p1) + α(p1 − p2) − p1

+ x
(
eα(p1 − p2) + p2 − ep1

))
, if x < α,

p1

p2D

(
exp1 − α

(
ex − e

)
(p1 − p2)

+ eα(p1 − p2)(x − 1) + p2(x − 1) − ep1x
)
, if x � α,

(3.5)

where D = p1 + α(p2 − p1).
The second function, u2(x), is defined as the exact solution of the interface problem

(2.1)–(2.4) with homogeneous Dirichlet boundary conditions when the right-hand side
function is defined by

f2(x) =
{

ex, x < 1/π,

−e1−x, x � 1/π,
(3.6)

and the interface is located at α = 1/π . The formula for the function u2(x) can also be
derived by using Green’s functions.

Since u1(x) and u2(x) are both solutions of the interface problem (2.1)–(2.4) with
corresponding right-hand side functions, then it follows that u1(x) and u2(x) both satisfy
the interface jump conditions (2.3)–(2.4). However, since f1(x) is continuous at the
interface α = 1/π while f2(x) is not, it follows that pu′′

1(x) is continuous at the interface
and pu′′

2(x) is not.

3.1.1. Interpolation accuracy of the one-dimensional IFE spaces
In this group of numerical experiments, we generate interpolants of the test func-

tions u1(x) and u2(x) in the IFE spaces S̃h(�), Sh(�) and Ŝh(�) respectively with a
sequence of partition sizes h = 1/8, 1/16, 1/32, 1/64, 1/128 and h = 1/256. The
errors in the interpolants Ihu1 and Ihu2 for the case in which the coefficient p has a ratio
of p2/p1 = 10 are presented in tables 8–10 of the appendix at the end of this article. We



102 B. Camp et al. / Quadratic immersed finite element spaces

Table 1
The orders of the IFE interpolants Ihui , i = 1, 2, generated in the IFE

spaces S̃h(�), Sh(�) and Ŝh(�) with p2/p1 = 10.

u1 u2

IFE space Error C r C r

S̃h(�) Eh,∞ 0.016 1.983 0.024 1.954
Eh,0 0.006 2.436 0.009 2.408
Eh,1 0.093 1.577 0.141 1.554

Sh(�) Eh,∞ 0.010 2.973 0.008 1.764
Eh,0 0.004 2.990 0.003 2.235
Eh,1 0.025 1.991 0.045 1.368

Eh,∞ 0.010 2.973 0.010 2.972
Ŝh(�) Eh,0 0.003 2.971 0.003 2.969

Eh,1 0.022 1.973 0.022 1.972

then apply linear regression on these data to estimate the orders of Ihu1 and Ihu2, the
related results are listed in table 1, where the parameters C and r are defined in (3.3).

From table 8, we can see the errors in Ihui ∈ S̃h(�), i = 1, 2, do not al-
ways decrease as h decreases. However, the errors do tend to decrease in an oscil-
latory fashion which becomes more apparent when we look at the numerical results
generated with a larger set of values of h. From table 1, we also see that the orders
of Ihui ∈ S̃h(�), i = 1, 2, are worse than would be expected for a FE space gen-
erated by quadratic polynomials. While the orders of Eh,0 and Eh,1 only appear to be
a little more than one fourth of an order less than what one would expect, the orders
of Eh,∞ appear to be a little more than three-fourths of an order less than what is ex-
pected.

The errors of the interpolants Ihui ∈ Sh(�), i = 1, 2, are shown in table 9.
According to table 9, the errors in the interpolant Ihu1 appear to decrease whenever h

decreases while the errors in the interpolant Ihu2 decrease only in an oscillatory fashion.
Also, the errors in Ihu1 appear to be much smaller than those for the interpolant Ihu2,
and the magnitude of the errors in Ihu2 are similar to those obtained when using the
hierarchical IFE space S̃h(�). From table 1, we see that the orders for the interpolant
Ihu1 agrees with our expectation for a FE space using quadratic polynomials, while the
orders of Ihu2 indicate that the IFE space S̃h(�) has a weaker approximation capability
than the usual quadratic FE space.

From table 10, we notice that the errors in Ihui ∈ Ŝh(�), i = 1, 2, decrease
monotonically as the partition size h becomes smaller, and the orders of Ihui ∈
Ŝh(�), i = 1, 2, are in agreement with those generated in the usual quadratic FE
space.

The satisfactory performance of interpolants from the IFE basis space Ŝh(�) is
not surprising because the IFE space is very close to a standard FE space based on a
usual body fit partition in which each element has to be on one side of the interface in
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Table 2
Approximation capability of interpolants in the three one-dimensional IFE spaces.

S̃h(�) Sh(�) Ŝh(�)

u1 weaker than expected as expected as expected
u2 weaker than expected weaker than expected as expected

a certain sense. Recall that the basis functions φ̂i(x) that span the IFE space Ŝh(�) are
fundamentally different from the basis functions that span either S̃h(�) or Sh(�) be-
cause of the way that the nodal values are handled on the interface element. Because
of the nodal value specifications used for the local basis functions φ̂k,i(x), their con-
struction is equivalent to forming quadratic functions on each half of the element such
that they are linear combinations of the standard FE quadratic basis functions on these
two subelements. In the formation of these linear combinations of quadratic functions,
it becomes apparent that instead of six basis functions being specified, only four are
needed due to the interface jump conditions given. Finally, because the interface oc-
curs at the “node” between the two subelements, this IFE space is essentially close to
a FE space based on a body fit partition where the interface is located at one of the
nodes.

Similar behaviors are observed in the errors of the interpolants of u1(x) and u2(x)

generated in the IFE spaces S̃h(�), Sh(�) and Ŝh(�) for the case in which the coeffi-
cient p has a larger ratio p2/p1 = 10000. The related datum are omitted to reduce the
presentation space.

In table 2, we summarize our observations about the approximation capabilities of
the iterpolants in the various IFE spaces.

3.1.2. Accuracy of IFE methods for one-dimensional interface problems
Now we look at errors in the approximate solution of the interface problem (2.1)–

(2.4) generated by the Galerkin method with the three one-dimensional IFE spaces in-
troduced in section 2. We will use the same test functions as in the previous section so
that u1(x) is the exact solution to (2.1)–(2.4) when the function on the right-hand side is
defined by (3.4) and u2(x) is the exact solution to (2.1)–(2.4) when the right-hand side
function is defined by (3.6).

The errors in the finite element solution u1h and u2h generated in the IFE spaces
S̃h(�), Sh(�) and Ŝh(�) for the case in which the coefficient p has a ratio p2/p1 = 10
are list 11–13. Applying linear regression generates the estimates of the orders of these
IFE solutions listed in table 3.

The behaviors of the errors in the IFE solutions u1h(x) and u2h(x) are similar to
their interpolation counterparts generated in the corresponding IFE spaces. The esti-
mates on the orders of these IFE solutions also have values similar to those of the IFE
interpolants reported in the previous section.

To achieve the optimal order of accuracy in the IFE solution generated from Sh(�),
the interface problem needs to have one extra continuity across the interface. However,
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Table 3
The orders of IFE solutions uih, i = 1, 2, generated in the IFE spaces

S̃h(�), Sh(�) and Ŝh(�) with p2/p1 = 10.

u1 u2

IFE space Error C r C r

S̃h(�) Eh,∞ 0.010 2.042 0.016 2.022
Eh,0 0.008 2.594 0.012 2.570
Eh,1 0.073 1.663 0.111 1.641

Sh(�) Eh,∞ 0.010 2.971 0.007 1.842
Eh,0 0.004 2.981 0.003 2.291
Eh,1 0.024 1.983 0.046 1.408

Ŝh(�) Eh,∞ 0.010 2.971 0.010 2.971
Eh,0 0.003 2.971 0.003 2.969
Eh,1 0.022 1.973 0.022 1.972

Table 4
The order of the IFE solutions uih, i = 1, 2, generated in IFE space S̃h(�) with

p2/p1 = 10000.

u1 u2

IFE space Error C r C r

S̃h(�) Eh,∞ 0.010 2.971 0.010 2.971
Eh,0 0.003 2.961 0.003 2.969
Eh,1 0.022 1.971 0.022 1.971

this is not an essential limitation of this IFE space because we can always transform the
interface problem to an equivalent problem that has the required continuity in the flux
by applying the pertinent homogenization.

For the case in which the coefficient p has a larger ratio p2/p1 = 10000, the
errors in the IFE solutions u1h(x) and u2h(x) generated in the IFE spaces Sh(�) and
Ŝh(�) behave in a way similar to what observed for the case in which p has a smaller
ratio p2/p1 = 10. However, see table 14, we note that the errors of the IFE solution
uih(x) generated in the IFE space S̃h(�) appear to decrease steadily as h decreases.
The estimates of the orders of these IFE solutions are listed in table 4 from which we
can see that the IFE solutions generated from this space have orders comparable to the
standard quadratic FE solutions. In this case, the IFE solutions seem to have a better
approximation capability than interpolants from this IFE space, and it is interesting to
carry out pertinent analysis to understand this phenomenon.

We finally summarize the approximation capability of the IFE solutions of the one-
dimensional test interface problems in table 5.
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Table 5
Approximation capability of the IFE solutions of the one-dimensional test in-

terface problems.

S̃h(�) Sh(�) Ŝh(�)

u1 weaker than expected as expected as expected
u2 weaker than expected weaker than expected as expected

3.2. Numerical results in two dimensions

As was mentioned in section 2, we will restrict our attention to the case when the
interface is a horizontal line and the domain � is the unit square (i.e., see the BVP (2.24)–
(2.27) for a more thorough description). We start by choosing suitable test functions.
Since each IFE space introduced in the previous sections is made up of basis functions
which satisfy the interface conditions (2.26)–(2.27), we naturally need to make sure
that the test functions will also satisfy these conditions. In two dimensions, when the
interface is a horizontal line, this means that a function u will satisfy (2.26)–(2.27) if
u ∈ C(�) and p∂u/∂y ∈ C(�). Then we would like also consider the continuity

of (∂/∂y)(p∂u/∂y) across the interface because of the way the IFE space S
2
h(�) is

constructed. This extra continuity leads us to consider two test functions u3(x, y) and
u4(x, y) in order to explore the all the possibilities. In addition, these two functions will
also be chosen so that they satisfy the BVP (2.24)–(2.27) with the right-hand functions
suitably chosen, and with homogeneous Dirichlet boundary conditions and the interface
occurring along the horizontal line y = e−1.

Specifically, the general form for the test function uj , j = 3, 4, is

uj (x, y) =
{

sin(πx)
(
a5y

5 + a4y
4 + a3y

3 + a2y
2 + a1y + a0

)
, y < e−1,

sin(πx)
(
b5y

5 + b4y
4 + b3y

3 + b2y
2 + b1y + b0

)
, y � e−1.

(3.7)

The coefficients ai, i = 0, . . . , 5, and bi, i = 0, . . . , 5, will be chosen so that
(∂/∂y)(p∂uj/∂y), j = 3, 4 will be discontinuous and continuous across the interface,
respectively.

3.2.1. Interpolation accuracy of the two-dimensional IFE spaces
In this section we will investigate the approximation capability of the interpolants

from the IFE spaces for the two test functions. The errors in the interpolants Ihu3 and
Ihu4 are listed in tables 15–17. Applying linear regression to these data, we obtain
estimates of orders of these interpolants listed in table 6.

From these numerical estimates of the orders in the interpolants, we can see that
from the point of view of approximating the test functions u3 and u4 as L2 functions
by their interpolants, the IFE space S̃2

h(�) behaves like the usual quadratic FE space.
However, when trying to approximate u3 and u4 either as L∞ or H 2 functions, this IFE
space does not seem to be able to generate interpolants with accuracies up to those from
the usual quadratic FE space.
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Table 6
The orders of the IFE interpolants Ihui(x, y), i = 3, 4, generated in IFE spaces

S̃h(�), Sh(�) and Ŝh(�) with p2/p1 = 10.

u3 u4

IFE space Error C r C r

S̃h(�) Eh,∞ 8.789 2.633 4.720 2.234
Eh,0 7.405 2.980 9.595 2.934
Eh,1 35.985 1.876 25.053 1.606

Sh(�) Eh,∞ 3.112 2.172 37.933 3.001
Eh,0 6.247 2.898 11.131 2.988
Eh,1 16.171 1.563 73.998 1.993

Ŝh(�) Eh,∞ 25.555 3.000 37.933 3.001
Eh,0 7.458 2.985 10.980 2.985
Eh,1 50.038 1.992 73.668 1.992

We note that these orders indicate that the interpolant Ihu3 ∈ S
2
h(�) can not ap-

proximate u3 as well as the interpolant generated from the standard quadratic FE space
even rough the error of Ihu3 in the L2 norm seems to be up to our expectation. On the

other hand, for the test function u4, the IFE space S
2
h(�) seems to have an approximation

capability comparable to that of the standard quadratic FE space.
The performance of the interpolants generated from the IFE space Ŝ2

h(�) for both
test functions is obviously comparable to those from the standard FE space. Overall,
from these numerical experiments, we notice that the biquadratic IFE spaces behave
very much like their corresponding one dimensional IFE spaces.

3.2.2. Accuracy of IFE methods for two-dimensional interface problems
In this section we turn our attention to the errors that occur when approximating the

solutions of the interface problem (2.24)–(2.27) with homogeneous Dirichlet boundary
conditions by finite element solutions generated from the two-dimensional IFE spaces

S̃ 2
h (�), S

2
h (�) and Ŝ 2

h (�). The same test functions used for investigating the interpola-
tion approximation capability in the previous subsection are used again here to explore
the performance of each of the IFE spaces when used with the Galerkin method. Here
each test function ui, i = 3, 4, will be matched with an appropriate function fi(x, y)

so that the corresponding ui is the exact solution of the interface problem when each fi

occurs as the function on the right hand side of PDE in the interface problem (2.24)–
(2.27).

The errors in the IFE solutions u3h and u4h are listed in tables 18–20. Applying
linear regression to these data, we obtain estimates of orders of these IFE solutions listed
in table 7.

We note that, in the L2 norm, the performance of the IFE solutions generated from
the IFE space S̃h(�) match that generated from a standard quadratic FE space. For test
functions u4, in both L∞ and H 1 norms, the order of the IFE solutions generated from
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Table 7
The orders of the IFE uih(x, y), i = 3, 4, generated in IFE spaces

S̃h(�), Sh(�) and Ŝh(�) with p2/p1 = 10.

u3 u4

IFE space Error C r C r

S̃h(�) Eh,∞ 15.247 2.828 9.265 2.498
Eh,0 7.351 2.979 9.487 2.933
Eh,1 43.049 1.939 36.617 1.744

Sh(�) Eh,∞ 3.456 2.230 37.916 3.001
Eh,0 6.417 2.913 11.056 2.987
Eh,1 16.916 1.585 73.738 1.992

Ŝh(�) Eh,∞ 25.551 3.000 37.907 3.001
Eh,0 7.448 2.985 10.966 2.985
Eh,1 50.038 1.992 73.687 1.992

the IFE space S̃h(�) seem to be lower than than those from a standard quadratic FE
space. It is interesting to see that, in the IFE space S̃h(�), the IFE solution to u3 has a
higher order than the IFE interpolant of u3.

In both L∞ and H 1 norms, the order of the IFE solutions generated from S
2
h(�)

for u3 are lower than that generated from the standard quadratic FE space. Again, as we
have commented for the similar phenomenon in one dimension, this minor limitation can
be alleviated by transforming the interface problem to an equivalent problem with the
extra continuity by a suitable homogenization. On the other hand, in the L2 norm, the
IFE solution of u3 seems to have the order as expected. The orders of the IFE solutions

from S
2
h(�) for u4 match those of the standard quadratic FE space.

As for the IFE solutions generated from the IFE space Ŝ2
h(�), there is nothing

remarkable to say here other than that again their performance is comparable to the
standard FE solutions based on body fit partitions.

Overall, we conclude that, when used to solve the test interface problems, the ap-
proximation capability of the two dimensional quadratic IFE spaces is similar to that of
the one-dimensional IFE spaces.

4. Conclusions

In this paper, we have developed three one-dimensional quadratic immersed finite
element spaces S̃h(�), Sh(�), Ŝh(�) and their two-dimensional tensor product exten-
sions for solving elliptic interface problems. These IFE spaces have the following fea-
tures:

• Their partition can be independent of the interface location.

• These IFE spaces are closely related with the standard quadratic FE because they use
the standard quadratic local basis functions on most of the elements, and IFE spaces
S̃h(�), Sh(�) even reduce to the standard quadratic FE space when the discontinuity



108 B. Camp et al. / Quadratic immersed finite element spaces

in the coefficient disappears or when the discontinuity happens on the edges of the
elements in the partition. This feature can make the adoption of these IFE spaces
easy because the users only need to modify the local basis subroutines of a standard
quadratic FE package.

• Both Sh(�) and Ŝh(�) demonstrate optimal approximation capability expected from
a FE space using quadratic polynomials. The IFE space S̃h(�) seems to have a sub-
optimal approximation capability. From our numerical experiments, we conjecture
that its orders are one half less than the optimal, and we are carrying out related
analysis to confirm this.

• We note that to achieve the optimal order of accuracy from the IFE space Sh(�), the
interface problem needs to have one extra continuity across the interface. However,
this is not an essential limitation of this IFE space because we can always transform
the interface problem to an equivalent problem that has the required continuity by
applying the pertinent homogenization.

• From the point of view of approximation capability, Sh(�), Ŝh(�) are better than the
IFE space S̃h(�). However, we think S̃h(�) is still a competitive IFE space. Fist
its orders (in both L2 and H 1 norms) are not too far below the optimal. Second,
its hierarchical structure has the potential to be employed in the adaptive procedure
according the polynomial degree.

We would like emphasize that which IFE space to use should be determined by the nature
of the application.
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Appendix

This section contains data of the numerical experiments presented in the previous
section. In all of these data tables, x.xxx(y) means x.xxx × 10y .

Table 8
Errors in Ihui , i = 1, 2, generated in the quadratic IFE space S̃h(�) with p2/p1 = 10.

h Eh,∞(Ihu1) Eh,0(Ihu1) Eh,1(Ihu1) Eh,∞(Ihu2) Eh,0(Ihu2) Eh,1(Ihu2)

1/8 2.398(−4) 4.950(−5) 2.667(−3) 3.680(−4) 7.671(−5) 4.159(−3)

1/16 5.293(−5) 4.353(−6) 1.162(−3) 8.547(−5) 6.827(−6) 1.881(−3)

1/32 2.612(−5) 1.628(−6) 6.682(−4) 4.368(−5) 2.714(−6) 1.118(−3)

1/64 9.317(−6) 5.441(−7) 2.770(−4) 1.580(−5) 9.220(−7) 4.695(−4)

1/128 2.177(−7) 9.784(−9) 8.387(−6) 3.702(−7) 1.626(−8) 1.401(−5)

1/256 5.287(−7) 1.763(−8) 2.912(−5) 9.018(−7) 3.008(−8) 4.966(−5)
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Table 9
Errors in Ihui , i = 1, 2, generated in the quadratic IFE space Sh(�) with p2/p1 = 10.

h Eh,∞(Ihu1) Eh,0(Ihu1) Eh,1(Ihu1) Eh,∞(Ihu2) Eh,0(Ihu2) Eh,1(Ihu2)

1/8 1.903(−5) 7.375(−6) 3.844(−4) 4.360(−4) 9.072(−5) 4.918(−3)

1/16 2.600(−6) 9.562(−7) 9.934(−5) 1.968(−5) 1.790(−6) 4.467(−4)

1/32 3.293(−7) 1.194(−7) 2.482(−5) 1.492(−5) 9.327(−7) 3.829(−4)

1/64 4.144(−8) 1.499(−8) 6.236(−6) 9.794(−6) 5.718(−7) 2.911(−4)

1/128 5.197(−9) 1.872(−9) 1.554(−6) 5.703(−7) 2.499(−8) 2.153(−5)

1/256 6.532(−10) 2.356(−10) 3.909(−7) 7.612(−7) 2.539(−8) 4.192(−5)

Table 10
Errors in Ihui , i = 1, 2, generated in the quadratic IFE space Ŝh(�) with p2/p1 = 10.

h Eh,∞(Ihu1) Eh,0(Ihu1) Eh,1(Ihu1) Eh,∞(Ihu2) Eh,0(Ihu2) Eh,1(Ihu2)

1/8 1.903(−5) 6.677(−6) 3.499(−4) 1.903(−5) 6.543(−6) 3.431(−4)

1/16 2.600(−6) 9.544(−7) 9.913(−5) 2.600(−6) 9.417(−7) 9.797(−5)

1/32 3.293(−7) 1.192(−7) 2.474(−5) 3.293(−7) 1.176(−7) 2.440(−5)

1/64 4.144(−8) 1.490(−8) 6.182(−6) 4.144(−8) 1.469(−8) 6.094(−6)

1/128 5.197(−9) 1.867(−9) 1.551(−6) 5.197(−9) 1.841(−9) 1.529(−6)

1/256 6.532(−10) 2.347(−10) 3.895(−7) 6.532(−10) 2.314(−10) 3.841(−7)

Table 11
Errors in the IFE solutions uih, i = 1, 2, generated in the quadratic IFE space S̃h(�) with p2/p1 = 10.

h Eh,∞(u1h) Eh,0(u1h) Eh,1(u1h) Eh,∞(u2h) Eh,0(u2h) Eh,1(u2h)

1/8 1.516(−4) 3.268(−5) 1.521(−3) 2.429(−4) 5.109(−5) 2.389(−3)

1/16 2.553(−5) 4.933(−6) 8.411(−4) 4.116(−5) 7.848(−6) 1.366(−3)

1/32 1.217(−5) 1.604(−6) 3.895(−4) 2.034(−5) 2.676(−6) 6.518(−4)

1/64 3.396(−6) 2.856(−7) 1.090(−4) 5.756(−6) 4.833(−7) 1.845(−4)

1/128 2.173(−7) 9.802(−9) 8.431(−6) 3.689(−7) 1.632(−8) 1.416(−5)

1/256 1.704(−7) 6.591(−9) 9.739(−6) 2.907(−7) 1.124(−8) 1.660(−5)

Table 12
Errors in the IFE solutions uih, i = 1, 2, generated in the quadratic IFE space Sh(�) with p2/p1 = 10.

h Eh,∞(u1h) Eh,0(u1h) Eh,1(u1h) Eh,∞(u2h) Eh,0(u2h) Eh,1(u2h)

1/8 1.893(−5) 7.019(−6) 3.678(−4) 3.048(−4) 7.453(−5) 4.114(−3)

1/16 2.593(−6) 9.557(−7) 9.926(−5) 1.738(−5) 1.621(−6) 4.293(−4)

1/32 3.289(−7) 1.194(−7) 2.481(−5) 1.238(−5) 8.270(−7) 3.628(−4)

1/64 4.141(−8) 1.496(−8) 6.219(−6) 6.330(−6) 4.248(−7) 2.337(−4)

1/128 5.195(−9) 1.870(−9) 1.552(−6) 5.404(−7) 2.766(−8) 2.445(−5)

1/256 6.532(−10) 2.350(−10) 3.901(−7) 3.670(−7) 1.457(−8) 2.711(−5)
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Table 13
Errors in the IFE solutions uih, i = 1, 2, generated in the quadratic IFE space Ŝh(�) with p2/p1 = 10.

h Eh,∞(u1h) Eh,0(u1h) Eh,1(u1h) Eh,∞(u2h) Eh,0(u2h) Eh,1(u2h)

1/8 1.893(−5) 6.676(−6) 3.499(−4) 1.893(−5) 6.543(−6) 3.431(−4)

1/16 2.593(−6) 9.540(−7) 9.912(−5) 2.593(−6) 9.409(−7) 9.795(−5)

1/32 3.289(−7) 1.192(−7) 2.474(−5) 3.289(−7) 1.175(−7) 2.440(−5)

1/64 4.141(−8) 1.490(−8) 6.182(−6) 4.141(−8) 1.469(−8) 6.094(−6)

1/128 5.195(−9) 1.867(−9) 1.551(−6) 5.195(−9) 1.841(−9) 1.529(−6)

1/256 6.537(−10) 2.347(−10) 3.895(−7) 6.531(−10) 2.314(−10) 3.841(−7)

Table 14
Errors in the IFE solutions uih, i = 1, 2, generated in the quadratic IFE space S̃h(�) with p2/p1 = 104.

h Eh,∞(u1h) Eh,0(u1h) Eh,1(u1h) Eh,∞(u2h) Eh,0(u2h) Eh,1(u2h)

1/8 1.893(−5) 6.423(−6) 3.368(−4) 1.893(−5) 6.420(−6) 3.369(−4)

1/16 2.593(−6) 9.256(−7) 9.609(−5) 2.593(−6) 9.264(−7) 9.626(−5)

1/32 3.289(−7) 1.157(−7) 2.401(−5) 3.289(−7) 1.159(−7) 2.404(−5)

1/64 4.141(−8) 1.446(−8) 5.999(−6) 4.141(−8) 1.447(−8) 6.002(−6)

1/128 5.195(−9) 1.811(−9) 1.505(−6) 5.195(−9) 1.810(−9) 1.505(−6)

1/256 6.531(−10) 2.280(−10) 3.782(−7) 6.531(−10) 2.282(−10) 3.785(−7)

Table 15
Errors in Ihui , i = 3, 4, generated in the quadratic IFE space S̃2

h
(�) with p2/p1 = 10.

h Eh,∞(Ihu3) Eh,0(Ihu3) Eh,1(Ihu3) Eh,∞(Ihu4) Eh,0(Ihu4) Eh,1(Ihu4)

1/8 4.991(−2) 1.510(−2) 7.972(−1) 7.402(−2) 2.224(−2) 1.174(0)

1/16 6.241(−3) 1.905(−3) 1.998(−1) 9.238(−3) 2.807(−3) 2.943(−1)

1/32 7.801(−4) 2.412(−4) 5.030(−2) 1.153(−3) 3.562(−4) 7.421(−2)

1/64 1.147(−4) 3.091(−5) 1.301(−2) 3.916(−4) 4.885(−5) 2.163(−2)

1/128 1.515(−5) 3.850(−6) 3.925(−3) 6.653(−5) 5.816(−6) 1.116(−2)

1/256 7.696(−6) 4.941(−7) 1.231(−3) 3.482(−5) 8.864(−7) 4.411(−3)

Table 16
Errors in Ihui , i = 3, 4, generated in the quadratic IFE space S

2
h(�) with p2/p1 = 10.

h Eh,∞(Ihu3) Eh,0(Ihu3) Eh,1(Ihu3) Eh,∞(Ihu4) Eh,0(Ihu4) Eh,1(Ihu4)

1/8 4.991(−2) 1.508(−2) 7.971(−1) 7.402(−2) 2.224(−2) 1.174(0)

1/16 6.241(−3) 1.895(−3) 1.996(−1) 9.238(−3) 2.807(−3) 2.943(−1)

1/32 8.275(−4) 2.426(−4) 5.041(−2) 1.153(−3) 3.552(−4) 7.407(−2)

1/64 9.014(−4) 5.514(−5) 2.915(−2) 1.441(−4) 4.494(−5) 1.872(−2)

1/128 3.677(−5) 3.911(−6) 6.452(−3) 1.801(−5) 5.649(−6) 4.686(−3)

1/256 2.833(−5) 6.480(−7) 3.552(−3) 2.251(−6) 7.061(−7) 1.172(−3)



B. Camp et al. / Quadratic immersed finite element spaces 111

Table 17
Errors in Ihui , i = 3, 4, generated in the quadratic IFE space Ŝ2

h
(�) with p2/p1 = 10.

h Eh,∞(Ihu3) Eh,0(Ihu3) Eh,1(Ihu3) Eh,∞(Ihu4) Eh,0(Ihu4) Eh,1(Ihu4)

1/8 4.991(−2) 1.501(−2) 7.962(−1) 7.402(−2) 2.209(−2) 1.172(0)

1/16 6.241(−3) 1.892(−3) 1.994(−1) 9.238(−3) 2.786(−3) 2.935(−1)

1/32 7.801(−4) 2.396(−4) 5.009(−2) 1.153(−3) 3.528(−4) 7.375(−2)

1/64 9.752(−5) 3.039(−5) 1.262(−2) 1.441(−4) 4.474(−5) 1.858(−2)

1/128 1.219(−5) 3.837(−6) 3.183(−3) 1.801(−5) 5.649(−6) 4.686(−3)

1/256 1.524(−6) 4.796(−7) 7.958(−4) 2.251(−6) 7.061(−7) 1.171(−3)

Table 18
Errors in the IFE solutions uih, i = 3, 4, generated in the quadratic IFE space S̃2

h
(�) with p2/p1 = 10.

h Eh,∞(u3h) Eh,0(u3h) Eh,1(u3h) Eh,∞(u4h) Eh,0(u4h) Eh,1(u4h)

1/8 4.990(−2) 1.505(−2) 7.963(−1) 7.401(−2) 2.216(−2) 1.172(0)

1/16 6.241(−3) 1.897(−3) 1.994(−1) 9.233(−3) 2.796(−3) 2.936(−1)

1/32 7.802(−4) 2.402(−4) 5.012(−2) 1.154(−3) 3.547(−4) 7.388(−2)

1/64 9.761(−5) 3.055(−5) 1.269(−2) 2.200(−4) 4.630(−5) 1.926(−2)

1/128 1.220(−5) 3.854(−6) 3.570(−3) 3.541(−5) 5.860(−6) 8.569(−3)

1/256 3.507(−6) 4.943(−7) 9.597(−4) 1.583(−5) 8.887(−7) 2.699(−3)

Table 19
Errors in the IFE solutions uih, i = 3, 4, generated in the quadratic IFE space S

2
h(�) with p2/p1 = 10.

h Eh,∞(u3h) Eh,0(u3h) Eh,1(u3h) Eh,∞(u4h) Eh,0(u4h) Eh,1(u4h)

1/8 4.990(−2) 1.503(−2) 7.962(−1) 7.400(−2) 2.217(−2) 1.172(0)

1/16 6.241(−3) 1.887(−3) 1.994(−1) 9.233(−3) 2.796(−3) 2.936(−1)

1/32 7.813(−4) 2.430(−4) 5.115(−2) 1.153(−3) 3.538(−4) 7.383(−2)

1/64 6.143(−4) 4.837(−5) 2.463(−2) 1.442(−4) 4.481(−5) 1.864(−2)

1/128 3.307(−5) 3.893(−6) 6.221(−3) 1.801(−5) 5.649(−6) 4.686(−3)

1/256 2.430(−5) 6.157(−7) 3.370(−3) 2.251(−6) 7.061(−7) 1.172(−3)

Table 20
Errors in the IFE solutions uih, i = 3, 4, generated in the quadratic IFE space Ŝ2

h
(�) with p2/p1 = 10.

h Eh,∞(u3h) Eh,0(u3h) Eh,1(u3h) Eh,∞(u4h) Eh,0(u4h) Eh,1(u4h)

1/8 4.990(−2) 1.499(−2) 7.962(−1) 7.400(−2) 2.207(−2) 1.172(0)

1/16 6.241(−3) 1.891(−3) 1.994(−1) 9.231(−3) 2.785(−3) 2.935(−1)

1/32 7.802(−4) 2.396(−4) 5.009(−2) 1.152(−3) 3.527(−4) 7.375(−2)

1/64 9.752(−5) 3.039(−5) 1.262(−2) 1.441(−4) 4.474(−5) 1.858(−2)

1/128 1.219(−5) 3.837(−6) 3.183(−3) 1.801(−5) 5.649(−6) 4.686(−3)

1/256 1.524(−6) 4.796(−7) 7.958(−4) 2.251(−6) 7.061(−7) 1.171(−3)
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