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HIGHER-ORDER IMMERSED
DISCONTINUOUS GALERKIN METHODS

SLIMANE ADJERID AND TAO LIN

Abstract. We propose new discontinuous finite element methods that
can be applied to one-dimensional elliptic problems with discontinuous
coefficients. These methods are based on a class of higher degree im-
mersed finite element spaces and can be used with a mesh independent
of the location of coefficient discontinuity. Numerical experiments are
presented to show that these methods can achieve optimal convergence

rates under both A and p refinements.
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1. Introduction

It has been pointed out in the literature (for example, see [2]), that finite
element methods should be designed/empolyed according to the problem to
be solved. For boundary value problems (BVPs) with discontinuous coef-
ficients, the conventional (including discontinuous Galerkin) finite element
methods employ universal basis functions, but they have to be used with a
mesh tailored in such a way that each element basically contains only one
material [3, 5]. With this approach, it is difficult, if not impossible, to use
uniform meshes, and the mesh has to be regenerated once the discontinuity
has moved to a new location during a numerical simulation. The recently
developed immersed finite element (IFE) methods [4, 9, 10, 11, 12, 14, 13]
use an alternative approach in which the mesh can be independent of the
coefficient discontinuity, but the basis functions are constructed according
to the material interface and the jump conditions. The meshes are allowed
to have elements containing the coefficient discontinuity interface. In other
words, the interface is allowed to be immersed in these elements; hence, we
call these methods the immersed finite element methods.

Higher degree finite element approximations for solutions to BVPs with
enough smoothness can lead to exponential convergence rates and thus are
very efficient. The discontinuous Galerkin (DG) finite element methods are
flexible for implementing either local h or p refinements. The (DG) method
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was first used to solve the neutron equation [16] and was studied for initial-
value problems for ordinary differential equations [1, 16]. Cockburn and
Shu [7] extended the method to solve first-order hyperbolic partial differen-
tial equations of conservation laws. They also developed the Local Discon-
tinuous Galerkin (LDG) method for convection-diffusion problems [8]. The
reader can consult [6] for more information on DG methods.

However, mathematical models for many applications involving inhomo-
geneous materials yield nonsmooth solutions. Therefore, all the advantages
of higher-order standard finite methods are lost unless the mesh is aligned
with material discontinuities. Aligning the mesh with material interfaces
may not be an obvious task and may lead to unnecessarily fine meshes in
the presence, for instance, of thin multi-layer coatings and fibers. In this
article, we present new and flexible higher degree finite element methods
that combine features of IFE and DG methods for solving boundary value
problems without requiring the mesh to be aligned with material interfaces.
These methods can also achieve optimal convergence rates with respect to
the polynomials employed.

It is known that the jump conditions can be used to uniquely define
the linear IFE basis functions across a material interface [10, 11, 12, 13].
However, we have noticed that interface jump conditions are not enough
to uniquely determine higher degree IFE basis functions. Improper choice
of extra conditions to define higher degree IFE basis functions might lead
to sub-optimal approximation capability [4]. The main goal of our article
here is to present a class of extra conditions for unique determination of
higher degree piecewise polynomial finite element basis functions that are
able to optimally resolve the nonsmooth behavior of the solution across the
interfaces without requiring the mesh to be aligned with the discontinuity.

This paper is organized as follows: In §2, we present two immersed discon-
tinuous Galerkin finite element methods. In §3, we present a class of higher
degree IFE spaces. In §4 we present several numerical results to demonstrate
features of our new methods and conclude with a few remarks in §5.

2. Immersed discontinuous Galerkin methods

In this section we describe two immersed discontinuous Galerkin methods
for a model boundary value problem on a domain Q = (a,b): find u such
that

(1) (ou') = f, a<z<b,
(2) u(a) = ug, u(b) = uy.
Without loss of generality, we assume that the domain 2 = (a, b) is separated

into two sub-domains by an interface point o € (a,b), across which the
coefficient ¢ has a jump:
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At the interface o, we assume that the solution u satisfies the following jump
conditions:

3) [ul(a) =0,  [ou](a) =0,

where [v](a) = v(a™) — v(a™). We would like to point out that the re-
sults obtained here can be easily extended to cases in which o has multiple
discontinuity points.

First, we consider the immersed local discontinuous Galerkin (ILDG)
method by introducing the auxiliary variable ¢ = ou’ and writing the model
problem as a first-order system

(4&) q/ = f

(4b) ou' = q,a<z<b.

Let us introduce a partition of Q: 7, :a = xg < 1 < -+ < zxy = b without
consideration of the interface location. Then, we multiply the first equation
by a test function v and the second equation by w, integrate over a typical
element I; = [z;,x;41], 1 =0,1,2,--- , N —1, and apply integration by parts
to obtain

(5&) —QU&H - (Q7 ’U/)Ii = (fav)fia
(5b) ouwl|z ™ — [oluw(a) — (ou,w")p, = (g w)r,, «€ I,
ouwl|y™ — (ou,w');, = (g, w)y,, ad ;.

We then use the local mixed weak form (5) to obtain a ILDG method
by employing a standard discontinuous piecewise polynomial function space
SNP to approximate ¢ and an immersed finite element (IFE) space Sﬁv’p to
approximate u. Here

(6) SNP =V | V|, € Pp,i=0,1,--- ,N — 1},

and P, is the space of p-th degree polynomials. The IFE space Sév’p is the
set of piecewise polynomial functions that are formed by p-th degree poly-
nomials on each element not containing an interface point, and by piecewise
p-th degree polynomial functions on elements containing interfaces. The
construction details for S?]’p are presented in the next section.

Specifically, the ILDG method consists of finding (U, Q) € XNP =
S;V’p x SNP such that for all (V, W) € XNP,

(Ta)  QV +(Q, V), = (£, V)1,

(7b) { O-[?Wﬁ?l - (UU7 W/)Ii = (Q7 W)L;, ad I,
SOWEH — [o)(@)(UW)(a) — (oU, W')p, = (Q, W1, a € I

The ILDG method is completed by using the following numerical fluxes for
the minimum diffusion LDG method introduced by Cockburn et al. [8]:

(8a) Uz)) =Ulz)), Qzi) =Q(z), i=1,2,--- ,N — 1.

)
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Fluxes at boundary points are given by the boundary condition as follows

(8b) U:(a) = u(a) Q(a> = Q(a™),
Up) = u®) Q®) = Q©O7)—fud)-U®7)).
Next, we consider the immersed discontinuous Galerkin (IDG) method
based on the DG method proposed by Riviere et al. [15] which consists of
determining U € Sﬁv’p such that

(9a) AU V) =L(V), YV S
where
N—-1 N—-1
V)= (oU" V'), + Z ({oU'} V] = {oV'}U] +~[U][V]) (22)
=0 =
—~U(0") (eV'(0T) =4V (0T)) + oU'(0F)V(07)
(9b) +U(17) (eV'(17) =4V (7)) —aU'(17)V(17),
and

(9¢) L(V) = (f,V)a —uo (cV'(07) =4V (07)) 4 us (cV'(17) =4V (17)).
Here we select v = 1/h.

3. A class of higher degree IFE basis functions

In this section, we construct the basis functions for the finite element
spaces S™VP and S}V’p . Because of the discontinuous formulation, we only
need to define these spaces locally on a typical element I;, i =0,1,--- | N—1.
As usual, we can just construct related spaces on the reference element
I= [—1, 1], then define those spaces on I; by the usual affine transformation.

First, let us recall the standard hierarchical shape functions on the refer-
ence element /. The first two linear basis functions are

(10a) Go(t) = (1—1)/2, di(t) = (t+1)/2, tel.
The higher degree shape functions are defined by Lobatto polynomials as
(10b) i) = cp(Pe(t) — Po_sg(t), k=2,---,p, tel,

where ¢}, is a scaling factor that may be determined by normalizing the basis.
Then, we can use

Pp = Spa’n{gbl(t)ﬂl = 05 ]-a e ’p}

to define the local spaces on an non-interface element for both S™? and
N.p
Syt

On an interface element, we define the local space with piecewise p-th

degree polynomial functions satisfying the interface jump conditions as the

minimum requirement. However, for p > 2, extra conditions should be

carefully added; otherwise the space defined may not have the optimal ap-

proximation capability [4]. We now propose to construct the local space on



HIGHER-ORDER IFE DG METHODS 559

an interface element such that its functions can match the smoothness of
the exact solution across the interface. We can implement this idea hierar-
chically as follows. Without loss of generality, we assume that I = [—1,1]
contains one interface & € (—1,1).

Two linear IFE basis functions [10]:

. ant +b, —-1<t<a,
CHEER S
aipt +bia, a<t<

d0(—1) =1, do(1) =0, ${(~1) =0,9{(1) =1,
[6{](@) =0, [0(¢]) (@) =0, i=0,1.
A quadratic IFFE basis function:
ST (t+1)(a21t+b21), 1<
o) = {(t — 1)(aget +b2), &<t
[#3)(@) =0, [o(d5))(@) =0, [0(d5)")(&) =
Setting ass = 1 uniquely determines ¢2(t). Also, we note that < ¢1, ¢f > =
0, where < f,g >= [% 0 f'g/dx + f; ot flg'dx.

The pt"* — degree IFE shape function:

(t+1)(Za tZ) -1<t<a,
dp(t) =

(t—l)(Za A, a<t<l,

Oa [ (¢1€) k)](a) = 0 k= 1727"' » Dy
< P(t), dh(t) >;=0, k=2,3,-- ,p— 1.
Setting a]2372 = 1 uniquely determines qﬁp(t). This coefficient can also be
determined by normalizing these shape functions. Figures 1-3 illustrate
the difference between the IFE basis functions and the standard Lobatto

hierarchical basis functions.
Finally, we let

ﬁ;:span{qgf, i=0,1,---,p},

and use it to form the local space for S}V’p on an interface element via the
usual affine transformation.

Remarks:
(1) If @ = +1 or o is continuous at the interface t = &, then <Z>Zl,z =
0,1,--- reduces to the standard Lobatto hierarchical basis functions.

(2) All immersed basis functions satisfy [0¢(®](a) =0, k> 1.
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FIGURE 1. The 1st degree IFE (left) and standard (right)
basis functions.
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FIGURE 2. The 2nd degree IFE (left) and standard (right)
basis functions.
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F1GURE 3. The 3rd degree IFE (left) and standard (right)
basis functions.
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(3) The construction procedure can be easily extended to handle the
case in which the interface element contains multiple interfaces.

(4) One can also construct Lagrange type IFE basis functions using the
same smoothness conditions. Details and related error estimations
will be reported in another article.

4. Numerical Examples

In this section we present numerical examples to demonstrate the features
of IFE spaces and the immersed DG methods, especially their optimal ap-
proximation capability.

4.1. Approximation capability of higher degree IFE spaces.

Ezample 1: We use this example to demonstrate the accuracy of the IFE
interpolation of the following function:

e’, r €0, ),

(11) u(z) = { [(x L g} v + (1 - g—;) e, z € (a,1]

where we always choose m = p+1 with p being the degree of the polynomials
used our finite element methods.
We can show that

[u](@) = 0, [au(k)} () =0,k=1,2,--- ,m—1, {Uu(m)} |(a) # 0.
We interpolate u by the 2nd and 3rd degree hierarchical IFE functions and

presents the £2 and H! errors in Table 1. The data in this table obeys the
following relation

[u — Thul|p < CHPTIF k=01

where Ipu is the p-th degree IFE interpolation of w which indicates that
these IFE spaces have the optimal approximation capability according to
the polynomials employed in these spaces.

4.2. Examples for the ILDG method.

Ezample 2: We consider the model interface problem (1) with one interface
(12a) (ou') =€*, 0 <z <4,
where
a2 - 1535
subject to the boundary conditions u(0) = —2, u(4) = 10. We solve this

problem using the ILDG method on uniform meshes having N = 11,13,15,17
elements and p = 1,2,3,4,5. The the £? errors in u and ¢ are presented in
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2nd degree IFE error || 3rd degree IFE error
N [ £%2 norm | H! norm || £ norm | H! norm
20 | 8.3737e-6 | 1.0859¢e-3 || 1.8702e-7 | 3.7422e-5
30 | 2.4965e-6 | 4.8548e-4 || 3.6017e-8 | 1.0803e-5
40 | 1.0556e-6 | 2.7369e-4 || 1.1403e-8 | 4.5613e-6
50 | 5.4106e-7 | 1.7534e-4 || 4.7768e-9 | 2.4589%¢-6
60 | 3.1329e-7 | 1.2183e-4 || 2.2809e-9 | 1.3682e-6
70 | 1.9735e-7 | 8.9531e-5 || 1.2168e-9 | 8.5141e-7

[rate [ 2.9919 [ 1.9923 | 4.0078 [ 3.0033 |

TABLE 1. Errors of the 2nd and 3rd degree hierarchical IFE
interpolations. N is the number uniform elements used in
the interpolation. o = /6, 0~ = 1,0" = 20.

N p=1 p=2 p=3 | p=4 | p=5
|lu—Ul|
11 ] 0.12439 [ 0.0035 | 7.6757e-5 | 1.3662e-6 | 2.0431e-8
13 | 0.70939 | 0.001691 | 3.13555e-5 | 4.7346e-7 | 5.98157¢-9
15 [0.043769 | 9.043c-4 | 1.45366e-5 | 1.8961e-7 | 2.08108¢-9
17 10.028585 | 5.21922e-4 | 7.3917 e-6 | 8.5526e-8 | 8.25496e-10
rate | 3.37 4.37 5.37 6.36 7.37
llg — Q|
11 | 0.30322 [0.89059¢-2 | 0.19916e-3 | 3.5817¢-6 | 5.4152¢-8
13 | 0.21786 | 0.54197e-2 | 0.10215e-3 | 1.5711e-6 | 1.9952e-8
15 | 0.16463 | 0.35411e-2 | 0.58034e-4 | 7.6485e-7 | 8.4752¢-9
17 | 0.12825 | 0.24363e-2 | 0.35107e-4 | 4.1265¢-7 | 4.01 e-9
rate | 1.97 2.97 3.98 4.97 5.97

TABLE 2. Errors ||u — Ul| and ||¢ — Q|| on uniform meshes
having N = 11,13,15,17 elements and p = 1,2,3,4,5 for

Example 2.

Table 2. These results indicate that ||u — U|| and ||¢ — Q|| converge to 0 at
O(hP*2) and O(hPT!) rates, respectively, under h-refinement. We observe
an O(hP*2) superconvergence result for u. Next, we solve the problem with
N =11,21,31 and p = 1 to 5 and plot the £? error versus degrees of free-
dom in Figure 4, from which we can see that the errors behave the same
way as for analytical solutions, i.e., they converge exponentially fast under
p refinement.

Ezample 3: We now demonstrate that our IFE methods can perform op-
timally even if some of the interface element contain multiple interfaces.
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FIGURE 4. Errors ||u — Ul| (left) and ||¢ — Q|| (right) versus
number of degrees of freedom for Example 2 using uniform
meshes having N = 11, 21, 31 elements and p = 1 to 5.

Consider the model problem (1) with three interfaces configured as follows:

-2, 0<z<+V2
-10, V2<z<+5
-1, VB5<az</540.002
—10, V540.002 <z <4

We apply the Dirichlet boundary conditions u(0) = —2 and u(4) = 5 and
solve the model problem using the ILDG on uniform meshes having N =
15,20, 25, 30, 35,45 elements and p = 1 to 4. Each of the meshes generated
with these N always contains one element with two interfaces. The £? errors
for u and ¢ versus N are plotted in Figure 5. The numerical results suggest
O(RP*T175) and O(hP*!) convergence rates in the £2 for u and g, respectively,
under mesh refinement. We also plot the errors versus the number of degrees
of freedom in Figure 6 to demonstrate the exponential converge rates under
p refinement.

(13) o=

Example 4: In this example we show that our IFE DG methods has the
capability to handle boundary layer problems in which the interface o ap-
proaches the boundary. We consider the linear diffusion problem (1) with
one interface

(14a) —(ou') =¢€", 0 <z <4,
where
1 <

(14D) _ , <<«
190, a<z <4,
subject to the boundary conditions u(0) = 0, u(4) = 4. We solve a set of

interface problems with o = 0.05,0.03,0.01,0.001,0.0001 using the ILDG
method on uniform meshes having N = 20, 30, 40, 50, 60, 70 elements and
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FIGURE 5. L2 errors |lu — U|| (left) and |lg — Q|
(right) for Example 3 using uniform meshes having N =
15,20, 25, 30, 35, 40, 45 elements and p = 1 to 4.
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FIGURE 6. L2 errors ||u—U|| (left) and ||g—Q)|| (right) versus
the number of the degrees of freedom for Example 3 using
uniform meshes having N = 15,20, 25, 30 elements and p = 1
to 4.

p = 3. We present the £2 errors ||u — U|| and ||g — Q|| in Table 3 and 4,
respectively, with their convergence rates. These results show superconver-
gence rates for u and optimal convergence rates for g independent of the
interface position.

4.3. Examples for the IDG method.
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N |a=be—2|a=3e—2|a=1le—2|a=1le—3|a=1le—4
20 3.2277e-6 3.2259¢-6 3.2372e-6 3.2282¢e-6 3.4089¢e-6
30 3.6182e-7 3.6183e-7 3.6414e-7 3.6121e-7 3.9746e-7
40 7.6116e-8 7.6784e-8 7.6617e-8 7.6079e-8 8.7113e-8
50 2.2956e-8 2.3009e-8 2.2773e-8 2.2778e-8 2.6984e-8
60 8.7780e-9 8.5008e-9 8.4816e-9 8.5650e-9 1.0394e-8
70 3.9017e-9 3.7186e-9 3.7276e-9 3.7929e-9 4.6502e-9
rate 5.36 5.4 5.4 5.39 5.27
TABLE 3. Errors ||u—U|| and their convergence rates on uni-
form meshes having N = 20, 30, 40, 50, 60, 70 elements and
p = 3 for Example 4 with o = 0.05,0.03,0.01,0.001, 0.0001.
N |a=5be—-2|a=3e—2|a=1le—2|a=1le—3|a=1le—4
20 2.0082¢-5 1.8369e-5 2.8913e-5 2.0956e-5 9.2505e-5
30 3.9944e-6 4.0545e-6 5.2925¢-6 3.6866¢-6 1.4134e-5
40 1.1582e-6 1.4292e-6 1.3772e-6 1.1578e-6 3.6784e-6
50 5.3142e-7 5.5469¢e-7 4.8860e-7 4.9071e-7 1.2874e-6
60 2.8380e-7 2.3197e-7 2.2870e-7 2.4908e-7 5.4489¢e-7
70 1.5106e-7 1.2755e-7 1.3022e-7 1.4242e-7 2.6333e-7
rate 3.89 3.98 4.38 3.98 4.68

TABLE 4. Errors ||¢— Q|| and their convergence rates on uni-
form meshes having N = 20, 30,40, 50,60, 70 elements and
p = 3 for Example 4 with o = 0.05,0.03,0.01,0.001, 0.0001.

Example 5. This example is used to demonstrate the performance of IDG
method applied to solve the model interface problem (1) whose exact solu-
tion is given by (11) with

_ 17
777 20,

The errors in both £2 and H' norms for p = 2, 3 are presented in Table 5 from
which we can see that the IDG solution has the optimal convergence rate
in both £2 and H! norms for odd polynomial degree. For even degree, the
IDG solution still has the optimal convergence rate in H!' norm, but not in
£? norm. However, this is not the limitation of the immersed finite element
because similar behavior is also observed for this particular DG method used
with standard finite element for BVPs with continuous coefficients[15].

z € (0,7/6),
z € (r/6,1).

Ezxample 6: We use this example to show that the IFE DG methods proposed
here can use one mesh to solve a sequence of BVPs whose interfaces vary
from one to the next. To be specific, we apply the 3rd degree IDG method
to a set of model boundary problems (1) whose exact solution are given
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2nd degree IFE error || 3rd degree IFE error
N | £2 norm | H! norm || £? norm | H' norm
20 | 3.0554e-3 | 7.9530e-3 || 1.9363e-6 | 4.1140e-5
30 | 1.3134e-3 | 3.3730e-3 | 3.8886e-7 | 1.1566e-5
40 | 7.2907e-4 | 1.8741e-3 || 1.2033e-7 | 4.8068e-6
50 | 4.6676e-4 | 1.2067e-3 || 4.7826e-8 | 2.5343¢-6
60 | 3.2368e-4 | 8.4028e-4 | 2.3484e-8 | 1.4052¢-6
70 | 2.3583e-4 | 6.0938e-4 || 1.3012e-8 | 8.7131e-7

[rate [ 2.0682 [ 2.0873 | 4.0050 [ 3.0995 |
TABLE 5. The IDG errors for p = 2,3 on uniform meshes
having N = 20, 30, 40, 50, 60, 70 elements for Example 5 with
a=7/6,0" =107 = 20.

by (11), but whose interface « converge to 0.5. The errors of the IDG
solutions for these BVPs are presented in Tables 6 and 7. On the same
set of meshes, our IDG method shows a similar convergence behavior for
all interface locations. We believe that this is a useful feature for design
problems in which the location of material interfaces need to be determined
optimally.

« 0.5063
N=20 | 1.99¢-6
N=30 | 3.90e-7
N=40 | 1.23e-7
N=50 | 5.07e-8
N=60 | 2.45e-8
N=70 | 1.33e-8 | 1.31e-8 | 1.31e-8 | 1.31e-8 | 1.31e-8 | 1.32¢-8
rate | 3.9974 | 4.0113 | 4.0192 | 4.0254 | 4.0275 | 4.0269
TABLE 6. IDG L£? errors using p = 3 on uniform meshes
having N = 20, 30, 40, 50, 60, 70 elements for Example 6 with
a sequence of ap — 0.5 and 0~ = 1,07 = 20.

0.5031
2.00e-6
3.91e-7
1.23e-7
5.05e-8
2.43e-8

0.5021
2.02¢e-6
3.93e-7
1.24e-7
5.05e-8
2.43e-8

0.5016
2.03e-6
3.96e-7
1.24e-7
5.06e-8
2.44e-8

0.5013
2.04e-6
3.99e-7
1.25e-7
5.09e-8
2.44e-8

0.5010
2.04e-6
4.00e-7
1.26e-7
5.11e-8
2.45e-8

5. Conclusions

In this manuscript we developed new higher-order finite element methods
that combine features of discontinuous Galerkin and immersed finite element
methods to solve boundary value problems with discontinuous coeflicients.
The proposed methods can use a mesh independent of the location of discon-
tinuity, if desired, even a uniform mesh can be used. The proposed methods
have the flexibility of DG methods for both h and p refinement. The higher
degree immersed finite element spaces introduced in this manuscript have
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o 0.5063 | 0.5031 | 0.5021 | 0.5016 | 0.5013 | 0.5010
N=20 | 4.55e-5 | 4.35¢e-5 | 4.29e-5 | 4.28e-5 | 4.28e-5 | 4.27¢-5
N=30 | 1.28e-5 | 1.26e-5 | 1.24e-5 | 1.23e-5 | 1.23e-5 | 1.23e-5
N=40 | 5.15e-6 | 5.25e-6 | 5.16e-6 | 5.12e-6 | 5.09e-6 | 5.08e-6
N=50 | 2.57e-6 | 2.65e-6 | 2.62e-6 | 2.50e-6 | 2.58e-6 | 2.58e-6
N=60 | 1.46e-6 | 1.51e-6 | 1.51e-6 | 1.50e-6 | 1.49e-6 | 1.48e-6
N=70 | 9.14e-7 | 9.36e-7 | 9.44e-7 | 9.39e-7 | 9.33e-7 | 9.30e-7

rate | 3.1243 | 3.0623 | 3.0456 | 3.0481 | 3.0523 | 3.0555
TABLE 7. IDG H! errors using p = 3 on uniform meshes
having N = 20, 30, 40, 50, 60, 70 elements for Example 6 with
a sequence of a, — 0.5 and 0~ = 1,0" = 20.

been demonstrated to have the optimal approximation capability with re-
spect to the degree of polynomials employed. It is in our plan to extend
these immersed discontinuous Galerkin methods to systems of partial dif-
ferential equations with discontinuous coefficients used to model composite
materials in two and three dimensions.
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