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HIGH DEGREE IMMERSED FINITE ELEMENT SPACES BY A

LEAST SQUARES METHOD

SLIMANE ADJERID, RUCHI GUO AND TAO LIN

Abstract. We present a least squares framework for constructing p-th degree immersed finite
element (IFE) spaces for typical second-order elliptic interface problems. This least squares for-
mulation enforces interface jump conditions including extended ones already proposed in the
literature, and it guarantees the existence of p-th IFE shape functions on interface elements. The
uniqueness of the proposed p-th degree IFE shape functions is also discussed. Computational re-
sults are presented to demonstrate the approximation capabilities of the proposed p-th IFE spaces
as well as other features.
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1. Introduction

In this manuscript, we present a least squares procedure for constructing higher
degree IFE spaces for solving second-order elliptic interface problems of the form

−∇ · (β∇u) = f, in Ω = Ω1 ∪ Ω2,(1a)

u = g, on ∂Ω,(1b)

where, without loss of generality, the domain Ω ⊆ R
2 is assumed to be split by an

interface curve Γ into two subdomains Ω1 and Ω2. To close the problem we impose
the classical jump conditions on the interface

[u]Γ := u1|Γ − u2|Γ = 0,(1c) [
β∇u · n

]
Γ

:= β1∇u1 · n|Γ − β2∇u2 · n|Γ = 0,(1d)

where n is the unit normal vector to the interface Γ. The diffusion coefficient β is
assumed to be a positive piecewise constant function such that

β(X) =

{
β1 for X ∈ Ω1,
β2 for X ∈ Ω2.

It is well-known that, in both theory and practice, traditional finite element
methods can be used to solve interface problems provided that their meshes are
body-fitting [4, 9, 12, 40], see an illustration in Figure 1 for a body-fitting mesh.
This body-fitting restriction hinders efficient applications of finite element methods
in applications where the interfaces evolve because of the involved physics such
as in multi-phase fluid simulation [26, 29] or because of computational algorithms
such as those for shape optimization problems [7, 22]. Generating a new mesh
to fit an evolving interface at each step is not only time consuming, but it can
also cause several difficulties such as the need for different finite element spaces on
different meshes at different steps. Hence, numerical methods have been developed
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that can use interface-independent meshes to solve interface problems by adapting
traditional numerical methods for solving partial differential equations. Adaptions
or modifications can be loosely categorized into two groups. Methods from the first
group employ suitable equations in elements around the interface either in finite
difference formulation such as the immersed interface method [28, 31] or in finite
element formulation such as the unfitted finite element method based on Nitsche’s
penalty idea [20, 21]. Methods from the second group use specially constructed local
approximation functions on interface elements according to the involved interface
jump conditions. Instances of these methods are extended finite element methods
(XFEM) [5, 37, 39] and IFE methods [14, 17, 18, 23, 27, 30, 33].

Figure 1. An body-fitting mesh and interface.

IFE methods use Hsieh-Clough-Tocher type macro finite element functions [8, 13]
on interface elements. For local IFE spaces consisting of piecewise polynomials de-
fined on subelements formed by cutting each interface element with a line approx-
imating the interface, we refer readers to [14, 27, 32, 33] for linear polynomials,
[23, 24, 34] for bilinear polynomials and [17, 41] for rotated Q1 polynomials. All
linear and bilinear IFE spaces mentioned above have the optimal convergence rates.
Higher degree IFE spaces are desirable since they lead to highly accurate solutions
and can be used to design efficient local adaptive h-p refinement algorithms.

Authors in [3, 10, 11, 35] discussed higher degree IFE spaces for 1D interface
problems. They considered the extended jump conditions that led to unique con-
struction of the IFE shape functions and optimally convergent IFE spaces. In
particular, a p-th degree optimally convergent IFE space was developed in [3]. For
2D interface problems, there are two major obstacles for the development of higher
degree IFE spaces. One obstacle is that, on each interface element, a higher degree
IFE function can no longer be a macro finite element function piecewisely defined on
polygonal subelements because of the intrinsic second-order O(h2) limitation of the
line. Another obstacle is the proper choice and enforcement of extended jump con-
ditions for determining all the coefficients in each higher degree IFE shape function
in piecewise polynomial format such that the resulting IFE space has the optimal
approximation capability.

There have been efforts to overcome these obstacles. Recently, several authors
[16, 17, 18] have investigated piecewise polynomial shape functions constructed by
enforcing jump conditions on the actual interface curve. Even though the involved
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polynomials are of lower degree such as linear or bilinear, an IFE function in these
articles is a piecewise polynomial defined on subelements with the interface as part
of their edges, i.e., the subelements to define a local IFE shape function are not
polygons. Furthermore, a constant coefficient case was considered by Guzman et
al. [19] for arbitrary high degree methods using the correction term idea. For the
discontinuous coefficient case, Adjerid et al. [1, 2] considered consistent extended
jump conditions that were derived from the regularity assumption of the right hand
side f in (1a), and they constructed p-th degree IFE shape functions by enforcing
the jump conditions on the interface curve in a weak sense.

The purpose of this article is to report our recent explorations in developing
higher degree IFE methods. Specifically, we present a least squares formulation for
constructing IFE spaces. This formulation enforces all jump conditions including
the chosen extended jump conditions along the actual interface Γ. The existence of
a p-th degree IFE shape function is intrinsically guaranteed by the least squares for-
mulation. The uniqueness of the p-th degree IFE shape function is also established
under certain conditions. In this framework, the proof for existence and uniqueness
does not rely on how elements are cut by the interface, and this feature simplifies
the treatment of high-order IFE spaces.

In this article, we discuss p-th degree IFE spaces based on one of the following
two groups of extended jump conditions:

• Normal Extended Jump Conditions

(2)

[
β
∂ju

∂nj

]

Γ

= 0, j = 2, 3, . . . p,

• Laplacian Extended Jump Conditions

(3)

[
β
∂j△u
∂nj

]

Γ

= 0, j = 0, 1, 2, . . . p− 2.

The normal jump conditions for degree p = 2 have been discussed in [2, 6] for
the straight line interface while in [19], the normal jump conditions are used to
construct p-th degree shape functions for curved interface and piecewise constant
β. The Laplacian jump conditions (3) have been used in [1, 28].

This manuscript is organized as follows. In Section 2, we outline the notations
and assumptions used through the whole manuscript. Then we develop the proce-
dure for constructing local IFE spaces on interface elements. The uniqueness of IFE
shape functions is also established under some appropriate conditions. In Section
3, we present numerical experiments for the IFE interpolation and IFE solution to
the interface problem. Finally, brief conclusions are given in the last section.

2. p-th Degree IFE Spaces

2.1. Notations and Assumptions. In this article, we only consider triangular
meshes of the domain Ω, denoted by Th. Let T i

h and T n
h denote the set of all

interface elements and non-interface elements in this mesh, respectively. For each

element T in Th, we let I = {1, 2, . . . , (p+1)(p+2)
2 } be the set of indices of the usual

local nodes Ni, i ∈ I associated with the standard p-th degree Lagrange finite
element shape functions ψj,T , j ∈ I in T , where we recall the following property:

(4) ψj,T (Ni) = δij , ∀i, j ∈ I.
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We let Pp(T ) be the space of polynomials of degree not exceeding p which is obvi-
ously spanned by the finite element shape functions. We also use Nh to denote the
set of local nodes in all elements in a mesh Th.

Since the standard p-th degree local finite element space will be used over all non-
interface elements, we will focus on the development of the local p-th degree IFE
spaces on interface elements. Without loss of generality, we assume each interface
element T ∈ T i

h is cut by the interface Γ into two subelements T 1 = Ω1 ∩ T and
T 2 = Ω2∩T , by which, we define I1 = {i : Ni ∈ T 1} and I2 = {i : Ni ∈ T 2} such
that I = I1 ∪ I2. Each p-th degree IFE function on T is a macro finite element
function chosen from the following piecewise polynomial space:

(5) Pp(T ) = {q : q|T 1 ∈ P
p(T 1) and q|T 2 ∈ P

p(T 2)}.
Since each function in Pp(T ) is formed by two p-th degree polynomials, we consider

the related product polynomial space Sp(T ) =
[
P
p(T )

]2
, which, by (4), has the

following set of basis functions:

(6) ξi,T =

{
(ψi,T , 0), if i ∈ I1

(0, ψi,T ), if i ∈ I2,
ηi,T =

{
(0, ψi,T ), if i ∈ I1

(ψi,T , 0), if i ∈ I2.

We can use the basis functions in (6) to span two subspaces of Sp(T ) as follows:

(7) V1 = Span{ξi,T : i ∈ I}, V2 = Span{ηi,T : i ∈ I}.
It is obvious that the direct sum of the two subspaces in (7) is Sp(T ), i.e.,

(8) Sp(T ) = V1

⊕
V2.

In fact, the piecewise polynomial space Pp(T ) is isomorphic to the product poly-
nomial space Sp(T ) because of the following one-to-one mapping:

(9) FT : Sp(T ) → Pp(T ), FT v =

{
v1, on T

1

v2, on T
2,

∀ v = (v1, v2) ∈ Sp(T ).

We can further easily verify that if η ∈ V2, then

(10) (FT η) (Ni) = 0, ∀ i ∈ I.
For any Γ̃ ⊆ Γ, we introduce a linear operator [[·]]Γ̃ on Sp(T ) which is a gener-

alized form of the jump of a scalar function:

(11) [[v]]Γ̃ := v1|Γ̃ − v2|Γ̃, ∀v = (v1, v2) ∈ Sp(T ),

To discuss the construction of the p-th degree IFE spaces, we make the following
assumptions about the interface Γ which are similar to those used in [16]:

(H1) The interface Γ cannot intersect an edge of any element at more than two
points unless the edge is part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection
points must be on different edges of this element.

(H3) The interface Γ is a piecewise C2 function, and the mesh Th is formed such
that on every interface element T ∈ T i

h , Γ ∩ T is C2.

Finally we conclude this section by recalling some notations related to Sobolev
spaces and associated norms. For every measurable subset Ω̃ ⊆ Ω we let Hp(Ω̃) be

the standard Hilbert space on Ω̃ equipped with the norm ‖ · ‖2
p,Ω̃

=
∑

|α|≤p ‖Dαv‖2
Ω̃
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and semi-norm |v|2
p,Ω̃

=
∑

|α|=p ‖Dαv‖2
Ω̃

where ‖ · ‖ is the L2 norm and α is a

multi-index. Furthermore, if Ω̃k = Ω̃ ∩ Ωk 6= ∅, k = 1, 2, we define

PHp
1 (Ω̃) = {u : u|Ω̃k ∈ Hp(Ω̃k), k = 1, 2; [u] = 0, [β∇u · nΓ] = 0 on Γ ∩ Ω̃

and u satisfies (2)},

PHp
2 (Ω̃) = {u : u|Ω̃k ∈ Hp(Ω̃k), k = 1, 2; [u] = 0 [β∇u · nΓ] = 0 on Γ ∩ Ω̃

and u satisfies (3)},

We equip PHp
1 (Ω̃) and PH

p
2 (Ω̃) with the broken norms and semi norms

‖ · ‖2
p,Ω̃

= ‖ · ‖2
p,Ω̃1

+ ‖ · ‖2
p,Ω̃2

, | · |2
p,Ω̃

= | · |2
p,Ω̃1

+ | · |2
p,Ω̃2

.

2.2. Local IFE Spaces On Interface Elements. Here we provide a general
definition of local IFE spaces for each of the extended jump conditions (2) and (3),
and then, we construct IFE shape functions using the least squares idea. Existing
local IFE spaces in the literature consist of piecewise polynomial functions satisfy-
ing the jump conditions exactly for an interface with a simple geometry. For generic
curved interfaces (especially non algebraic curves), piecewise polynomial functions
are not able to satisfy the interface jump conditions everywhere on the interface.
Constructing two p-th degree polynomials together such that they can satisfy jump
conditions in a certain sense that can lead to optimally convergent IFE spaces is
a major challenge. An attempt to construct p-th degree IFE shape functions on
elements cut by nonlinear interfaces was presented in [1] where the interface con-
ditions (including the extended ones) were enforced weakly via a L2 inner product
of suitably chosen polynomials space on the curved interface.

We now extend this weak enforcement idea through a least squares formulation.
Note that each p-th degree IFE function φT on an interface element T should be
a macro finite element function chosen from the space Pp(T ) defined in (5) that
can satisfy the jump conditions (1c) and (1d) specified in the interface problem (1)
and one group of the extended jump conditions (2) or (3). By the isomorphism

between the space Pp(T ) and Sp(T ) =
[
P
p(T )

]2
, a p-th degree IFE function can

also be constructed from the product space Sp(T ). Our idea is to define a symmetric
positive semi-definite bilinear form on Sp(T ) that is based on a least squares fit of all
the jump conditions across the interface, including the chosen extended ones. Then,
following the idea used in [2, 3, 6], for each polynomial in V1, we construct another
polynomial from V2 to minimize the penalty induced from this bilinear form, and
the local p-th degree IFE space is formed by piecewise polynomials constructed from
polynomials in V1 and V2 put together in this least squares framework. In fact, the
local p-th degree IFE space to be constructed on T is the orthogonal complement
of V2 with respect to a quasi inner product associated with this bilinear form,
and this orthogonality relates the least squares formulation in this article to the
weak enforcement idea in [1]. Also, the decomposition of the space Sp(T ) into two
subspaces V1 and V2 is similar to the idea in [21] where two polynomial spaces are
used on interface elements to capture the jump behaviors by enforcing the Nitsche’s
penalty in the formulation.

Using the extended jumps conditions (2) and (3), we now introduce two bilinear
forms on each interface element T . First, we let ΓT be the extended interface such
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that T ∩ Γ ⊆ ΓT , as illustrated in Figure 2, and

(12) k1h < |ΓT | < k2h, ∀ T ∈ T i
h .

for some positive constants k1 and k2 independent of the mesh size h.

Figure 2. An extended local interface ΓT outside of element T .

Now, for each positive integer p, we consider the following bilinear forms defined
on Sp(T )× Sp(T ) for the extended jump conditions (2) by
(13)

J1(v, w) = ω0

∫

ΓT

[[v]]ΓT
[[w]]ΓT

ds+

p∑

j=1

ωj

∫

ΓT

[[
β
∂jv

∂nj

]]

ΓT

[[
β
∂jw

∂nj

]]

ΓT

ds,

and for the extended jump conditions (3) by

J2(v, w) =ω0

∫

ΓT

[[v]]ΓT
[[w]]ΓT

ds+

∫

ΓT

ω1

[[
β
∂v

∂n

]]

ΓT

[[
β
∂w

∂n

]]

ΓT

ds

+

p−2∑

j=0

ωj+2

∫

ΓT

[[
β
∂j△v
∂nj

]]

ΓT

[[
β
∂j△w
∂nj

]]

ΓT

ds,

(14)

where ωj > 0, j = 0, 1, . . . , p are weights. It is easy to see that these two bilinear
forms are symmetric and Jk(v, v) ≥ 0 for all v ∈ Sp(T ), k = 1, 2. However, these
bilinear forms are positive semi-definite because, if v = (1, 1) ∈ Sp(T ), we have
J1(v, w) = J2(v, w) = 0 for any w ∈ Sp(T ). Therefore, we can only use these
bilinear forms to define semi norms on Sp(T ) as follows:

(15) |v|Jk
=

√
Jk(v, v), k = 1, 2, ∀v ∈ Sp(T ).

Now, we consider how to construct an IFE function from a function v ∈ Sp(T )
whose values at the local Lagrange nodes Ni, i ∈ I are known. Hence the construc-
tion of an IFE function v is reduced to the requirement that v needs to satisfy the
jump conditions (1c) and (1d) and one group of the two possible extended jump
conditions in (2) and (3). By their definitions given in (6) and (7), we can see that
the subspace V1 is associated with the nodal values of an IFE function so that the
subspace V2 is somehow related with the jump conditions. Since Jk(·, ·), k = 1, 2
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is a quasi inner product on Sp(T ), the weak enforcement idea suggests to consider
IFE functions from the following spaces:

(16) V⊥,k
2 := {v ∈ Sp(T ) : Jk(v, w) = 0, ∀w ∈ V2}, k = 1, 2,

which can be considered as orthogonal complements of V2 in the sense related to
the symmetric positive semi-definite bilinear form Jk(·, ·), k = 1, 2. In other words,

the interface jump conditions are imposed on all functions in V⊥,k
2 weakly through

the quasi inner product defined by the bilinear form Jk(·, ·), k = 1, 2.

By (8), every v ∈ V⊥,k
2 has a unique representation as

(17) v = ξT + ηT , ξT ∈ V1, and ηT ∈ V2.

Since we have assumed that v(Ni) = vi, i ∈ I are known, by (6) and (7), we have
ξT =

∑
i∈I viξi,T and we need to look for a vector c = (c1, c2, . . . , c|I|)

T ∈ R
|I|

such that ηT =
∑

i∈I ciηi,T leading to

(18) v =
∑

i∈I

vi ξi,T +
∑

i∈I

ci ηi,T .

Then, to enforce the requirement that v ∈ V⊥,k
2 , we test (18) against ηi,T , i =

1, 2, . . . , |I| in V2 such that Jk(v, ηi,T ) = 0 leading to the linear system

(19a) A(k)c = b,

where

(19b) v = (v1, v2, . . . , v|I|)
T , b = −B(k)v ∈ R

|I|×1,

and

A(k) = (Jk(ηi,T , ηj,T ))i,j∈I ∈ R
|I|×|I|,(19c)

B(k) = (Jk(ξi,T , ηj,T ))i,j∈I ∈ R
|I|×|I|.(19d)

We now discuss the existence for such a vector c that satisfies (19a) which leads
to an IFE function FT v ∈ Pp(T ) with v defined by (18). This existence is not
obvious because the positive semi-definiteness of the bilinear form Jk(·, ·), k = 1, 2
can only guarantee the positive semi-definiteness of the matrix A(k). However,
even though it is unclear whether A(k) is always invertible, we show that the linear
system (19a) always has a solution as stated in the following theorem.

Theorem 2.1 (Existence). On every interface element T ∈ T i
h , b = −B(k)v is in

Ran(A(k)), k = 1, 2 for each vector v ∈ R
|I|.

Proof. Essentially, we only need to show that Ran(B(k)) ⊆ Ran(A(k)), which is
equivalent to Ker(A(k)) ⊆ Ker

(
(B(k))T

)
. By contradiction, assume that there

exists some ĉ = (ĉi)i∈I ∈ R
|I| such that A(k)ĉ = 0 but (B(k))T ĉ 6= 0, then we can

find a vector d̂ = (d̂)i∈I ∈ R
|I| such that d̂T

(
B(k)

)T
ĉ > 0.

Letting v̂ = ǫd̂ with ǫ < 0 and letting ζ̂T =
∑

i∈I v̂i ξi,T +
∑

i∈I d̂i ηi,T , we have

Jk(ζ̂T , ζ̂T ) = ĉTA(k)ĉ+ 2ĉTB(k)v̂ + v̂TC(k)v̂

= 2ǫĉTB(k)d̂+ ǫ2d̂TC(k)d̂

in which

C(k) = Jk(ξi,T , ξj,T )i,j∈I ∈ R
|I|×|I|.
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Since C(k) is a symmetric positive semi-definite matrix, we have ĉTC(k)ĉ > 0.

For ǫ < 0 small enough we have Jk(ζ̂T , ζ̂T ) < 0 which contradicts the positive
semi-definiteness of Jk. This completes the proof. �

Note that the semi norm | · |Jk
, k = 1, 2 in (15) actually measures how well the

jump conditions are satisfied. Hence, it is important for us to note that the above
construction procedure for an IFE function can be considered from the point of
view of a least squares fitting as follows:

(20) min
ηT∈V2

|v|2Jk
= min

ηT∈V2

|ξT + ηT |2Jk
, k = 1, 2,

where v is given in the form of (18) with known coefficients v = (v1, v2, . . . , v|I|)
T .

By the definition of the bilinear form Jk(·, ·), k = 1, 2, we can see that this least
squares problem is equivalent to finding a minimizer of the following function

Jk(c) = |ζT |2Jk
= cTA(k)c+ 2cTB(k)v + vTC(k)v > 0.(21)

By standard arguments, we know that the minimizer of Jk(c) must satisfy

∇Jk(c) = 2A(k)c+ 2B(k)v = 2
(
A(k)c+ b

)
= 0,

which is equivalent to the linear system (19a).
In a nutshell, given a vector v = (v1, v2, . . . , v|I|)

T , by Theorem 2.1, we can

always solve the linear system (19a) to obtain a vector c = (c1, c2, . . . , c|I|)
T . These

two vectors lead to a function v ∈ V⊥,k
2 ⊆ Sp(T ) in the form given in (18) which

further yields a function φT ∈ Pp(T ) by the isomorphic mapping FT as follows:

(22) φT = FTv =

{
φ1T =

∑
i∈I1 vi ψi,T +

∑
i∈I2 ci ψi,T , on T

1

φ2T =
∑

i∈I2 vi ψi,T +
∑

i∈I1 ci ψi,T , on T
2.

The function φT constructed above is a p-th degree IFE function on the interface
element T because, according to the discussion above, φT can satisfy the jump
conditions of the interface problem on the actual interface Γ in a least squares
sense, including the extended ones specified by either (2) or (3).

Now, we describe the construction the local p-th degree IFE space on an interface
element T . First, we construct |I| p-th degree IFE shape functions as follows:

Choose a basis {vi}|I|i=1 in R
|I|,

then, for i = 1, 2, . . . , |I|, do
step 1: Set bi = −B(k)vi and then solve A(k)ci = bi for ci = (c1,i, c2,i, . . . , c|I|,i).
step 2: Use vi and ci in (22) to form the IFE shape function φi,T .

Then, we define the local p-th degree IFE space on an interface element T as

Sp
k,h(T ) = Span{φi,T , i = 1, 2, . . . , |I|}, k = 1, 2.(23)

By the facts that Dim(V2) = |I| and the positive semi-definiteness of Jk, we

know Dim(V⊥,k
2 ) ≥ |I|. Then, because FT is an isomorphism, we know that

Dim(FTV⊥,k
2 ) ≥ |I|. Therefore, in general, the local IFE space Sp

k,h(T ) defined

in (23) is just one of subspaces of FTV⊥,k
2 . Different ways to choose {vi}|I|i=1 and

different ways to generate a vector ci from A(k)ci = bi may yield different local

IFE spaces on an interface element T . Even for a fixed set of vectors {vi}|I|i=1, the
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indefiniteness of the linear system A(k)ci = bi can still lead to different local IFE
spaces unless A(k) is nonsingular which will be addressed in the next subsection.
On the other hand, the procedure presented above allows us to choose a set of lin-

early independent vectors {vi}|I|i=1 for generating a local IFE space Sp
k,h(T ) of our

preference. For example, if we let vi = ei, 1 ≤ i ≤ |I|, then the procedure above
leads to the following Lagrange type IFE shape functions:

φi,T = ψi,T + ψ
(0)
i,T , ψ

(0)
i,T =

{∑
j∈I2 cj,i ψj,T , on T

1

∑
j∈I1 cj,i ψi,T , on T

2,
i = 1, 2, . . . , |I|.(24)

For illustration, we present plots for all the 6 quadratic Lagrange type IFE
shape functions on a typical interface element in Figure 3. We also note that, even
though each IFE shape function is constructed to satisfy the jump conditions in a
least squares sense, we have observed that its components on subelements match
each other at p points or more on the interface Γ. A similar phenomenon was also
observed by Adjerid et al. [1]. We illustrate this phenomenon by plots in Figures
4-7 for the jump φ11,T −φ21,T along the curve ΓT on a typical interface element, from
which we can see that, under both extended jump conditions, the quadratic IFE
shape function is continuous at 2 points on ΓT while the cubic IFE shape function
is continuous at 3 points on ΓT .

Figure 3. Plots in the first row are quadratic IFE shape functions
associated with the vertices of the interface element, those in the
second row are quadratic IFE shape functions associated with the
edges.
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To end this section, we note that extending the local interface T ∩ Γ to ΓT

outside an interface element T , as illustrated in Figure (12), is inspired by the idea
in [18] where Guzman et al. used it to establish error estimates. Through numerical
experiments, we have noticed that this extension technique is useful for improving
the conditioning of the linear system in (19a). Specifically, if the bilinear forms
are defined on the interface Γ ∩ T instead of its extension ΓT , the linear system
(19a) might become too ill-conditioned to be solved accurately when one of the sub-
elements T 1 and T 2 is extremely small or Γ ∩ T is very short. We now present an
numerical example to show the dependence of the condition number of the matrix
in (19a) on the relative location of the interface as well as the ratio of β1 and β2

and to demonstrate that using bilinear forms defined on an extended interface can
improve the condition of this matrix.
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To be specific, we consider the domain Ω = (−1, 1)× (−1, 1) and a sequence of
interfaces that are circles x2 + y2 = π/6.28 − 0.25r with shrinking radii for r =
0, 1, 2, 4, 5. The interface elements studied have the vertices: (−0.6, 0), (−0.4, 0),
(−0.6, 0.2) in which the 5 locations of the interfaces corresponding to r = 0, 1, 2, 4, 5
are shown in Figure 8. In this interface element, we denote the left sub-element by
T 1 and the right one by T 2, we let β1 = 1 and let the value of β2 be either 5 or
100. Table 1 presents the condition number of the matrix in (19a) for construct-
ing the IFE shape function associated with the vertex (−0.6, 0) using the normal
extended jump conditions in the bilinear forms defined only on T ∩ Γ instead of
its extension. We note that the condition number of this matrix becomes larger as
either the degree p or the ratio β2/β1 increases, and this matrix becomes extremely
ill-conditioned when the interface is at the 5-th location due to the fact that T 2

or Γ ∩ T is too small. When bilinear form is defined on the extended interface ΓT

such that |ΓT − (Γ ∩ T )| = 0.3h, the condition number of this matrix is improved
as demonstrated by the data in Table 2, especially for the difficult cases when the
interface is at the 4-th and 5-th locations. Developing methods to improve the con-
ditioning for the linear system (19a) in such extreme cases is an interesting research
topic in the future.
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Figure 8. An interface element in which the interface is at differ-
ent locations.

Table 1. Without Extension.

Interface Locations β2 = 5, p = 2 β2 = 5, p = 3 β2 = 100, p = 2 β2 = 100, p = 3
Location 1 7.1557E+3 4.3476E+6 1.3312E+6 5.9246E+8
Location 2 6.4376E+3 1.3027E+7 1.4657E+6 1.9756E+9
Location 3 4.3064E+4 1.3765E+7 1.1231E+7 2.2153E+9
Location 4 1.0591E+6 9.0351E+8 2.8705E+8 2.3425E+11
Location 5 2.3013E+14 1.7583E+21 6.2169E+16 3.6076E+21
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Table 2. With Extension.

Interface Locations β2 = 5, p = 2 β2 = 5, p = 3 β2 = 100, p = 2 β2 = 100, p = 3
Location 1 1.7675E+3 6.9292E+4 2.8910E+5 1.2266E+7
Location 2 1.6010E+3 1.4341E+5 2.5362E+5 2.1539E+7
Location 3 7.8285E+3 2.5890E+5 1.4721E+6 4.0909E+7
Location 4 8.7303E+4 7.7764E+6 2.4242E+7 1.8945E+9
Location 5 8.9091E+9 6.8934E+16 3.0013E+10 8.4763E+16

2.3. Unique Determination of IFE Functions. We now discuss whether a p-
th degree IFE function in an interface element T can be uniquely determined by
its values at the local nodes Ni ∈ T, i = 1, 2, . . . , |I|. We will focus on the case in
which the curvature of T ∩ Γ is not the zero function and we refer readers to [2, 6]
for related discussions about the case in which T ∩ Γ is a line. Since the unique
determination of a p-th degree IFE function is equivalent to the definiteness of A(k)

which is decided by the definiteness of Jk, we investigate the following set which
can be considered as the kernel of Jk:

Kk := Ker (Jk) = {v ∈ Sp(T ) : Jk(v, w) = 0, ∀w ∈ Sp(T )}, k = 1, 2.(25)

Since Sp(T ) consists of piecewise polynomials, we know that the elements of Kk

satisfy the physical and extended jump conditions exactly; hence, we can express
Kk as

Kk = {v ∈ Sp(T ) : |v|Jk
= 0}, k = 1, 2.(26)

Let us first consider the case that involves the normal extended jump conditions
(2).

Lemma 2.1. Assume T is an interface element such that Γ ∩ T has a nonzero

curvature. Then

(27) K1 ⊆ {v = (v1, v2) ∈ Sp(T ) : ∇(β1v1 − β2v2) = 0}.
Proof. Let v = (v1, v2) be an arbitrary element of K1 and X be an arbitrary
point in T ∩ Γ where the normal of T ∩ Γ is n. Consider the p-th degree function
gn(t) = β1v1(X + nt)− β2v2(X + nt). Then, by (26), we have

djgn
dtj

(0) =

[
β
∂jv

∂nj
(X)

]
= 0, j = 1, 2, . . . , p.

Hence, gn is a constant which implies that the polynomial function β1v1 − β2v2 is
a constant on each line normal to Γ ∩ T .

Let (x̃, ỹ) be a local coordinate system around T as shown in Figure (9) and
assume we can describe Γ ∩ T by ỹ = s(x̃). Because Γ ∩ T is assumed to be a
C2 curve with a non zero curvature, there exists a point Y0 = (x̃0, ỹ0) ∈ Γ ∩ T
such that s′′(x̃0) > 0, and, by the continuity of s′′, there exists a ball Bǫ(Y0) :=
{X : |X − Y0| 6 ǫ}, for some ǫ > 0 such that s′′(x̃) > 0 for all (x̃, ỹ) ∈ Bǫ(Y0) ∩
Γ. Hence, s′ is strictly increasing on Bǫ(Y0) ∩ Γ. Now, let Y1 ∈ Bǫ(Y0) ∩ Γ be
arbitrary but Y1 6= Y0 and let l0 and l1 be the lines at Y0 and Y1 normal to Γ,
respectively. By the result shown above, there exist two constants Ck, k = 0, 1 such
that β1v1(X) − β2v2(X) = Ck ∀X ∈ lk, k = 0, 1. Since s′ is a strictly increasing
function on Bǫ(Y0) ∩ Γ, the normal lines l0 and l1 have distinct slopes and they
must intersect as illustrated in Figure 10, which implies C0 = C1. Since Y1 is an
arbitrary point on Bǫ(Y0)∩ Γ, we conclude that (β1v1 − β2v2)|Bǫ(Y0) ≡ C0 and this
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further implies that β1v1 − β2v2 is a constant polynomial. Then, we must have
∇(β1v1 − β2v2) = 0 for every v = (v1, v2) ∈ K1; hence, (27) is proven. �

Figure 9. The
local system.

Figure

10. Any two
normal lines
intersect.

Now we are ready to prove that J1 is positive definite as stated in the next
lemma.

Lemma 2.2. Let T be an interface element such that Γ∩T has a non zero curvature,

then the bilinear form J1 is positive definite on the subspace V2.

Proof. First, we show that V2 ∩K1 = {(0, 0)}. Consider an arbitrary v = (v1, v2) ∈
V2 ∩ K1. Let e be an interface edge of T that intersects Γ at D and, without loss
of generality, assume the first p + 1 nodes Ni, i = 1, 2, . . . , p + 1 of T are on e as
illustrated in Figure (11).

Figure 11. The interface edge.

Because v = (v1, v2) ∈ V2 ∩ K1, we have |v|J1
= 0. Thus v satisfies the jump

conditions everywhere so that v1(D) = v2(D). By Lemma 2.1, we also have β1∇v1−
β2∇v2 = 0 which leads to

(28) β1
∂jv1

∂tje
= β2

∂jv2

∂tje
, j = 1, 2, . . . , p,
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where te is a unit vector parallel to the edge e. Hence, by the continuity at D and
(28), v1|e and v2|e are two functions on e that satisfy the 1-D elliptic jump conditions
specified in [3]. Moreover, by (10), v ∈ V2 means to v1(Mi) = 0 for Mi ∈ T 1 and
v2(Mi) = 0 for Mi ∈ T 2. Thus, by Theorem 2.1 in [3] for the uniqueness of 1-D
IFE shape functions, we have v1 ≡ v2 ≡ 0 on e; therefore, β1v1 − β2v2 ≡ 0 on e.
From Lemma 2.1 β1v1 − β2v2 is a constant, we have β1v1(X)− β2v2(X) ≡ 0 for all

X = (x, y). So v1(Ni) =
β2

β1
v2(Ni) = 0 for i ∈ I2 which means that v1(Ni) = 0 for

all i ∈ I, and so that v1 ≡ 0. Similarly, we have v2 ≡ 0. Hence, v = (0, 0) implying
K1 only contains trivial functions in V2.

Finally, let v = (v1, v2) ∈ V2 be such that J1(v, v) = 0. Then v is in V2 ∩ K1;
hence, v = (0, 0) so that J1 must be positive definite on V2. �

Lemma 2.2 leads to the following theorem about unique determination of an IFE
function satisfying the normal extended jump conditions (2).

Theorem 2.2 (Uniqueness). Let T be an interface element such that Γ ∩ T has a

non zero curvature, then A(1) is nonsingular and every p-th degree IFE function

satisfying the normal extended jump conditions is uniquely determined by its values

at the nodes in T .

Proof. Lemma 2.2 implies that the bilinear form J1 is an inner product on the
subspace V2. Thus, by (19c), the matrix A(1) is symmetric positive definite from
which all results in this theorem follow. �

For the Laplacian extended jump conditions, it is unclear to the authors how to
prove the uniqueness of the p-th degree IFE shape functions in the general case.
But, we can prove the uniqueness in the cases when the interface Γ ∩ T is a non-
algebraic curve or algebraic curve of degree not less than p+ 1.

Theorem 2.3 (Uniqueness). Let T be an interface element such that Γ ∩ T is not

an algebraic curve or an algebraic curve of degree at least p + 1. Then A(2) is

nonsingular and every p-th degree IFE function satisfying the Laplacian extended

jump conditions is uniquely determined by its values at the nodes in T .

Proof. If v = (v1, v2) ∈ V2 ∩ K2, then q = v1 − v2 is zero on Γ ∩ T . Since it is a
polynomial of degree p and Γ is a non-algebraic curve or algebraic curve of degree
at least p + 1, then q = 0 and v1(x, y) = v2(x, y) for all x, y by the definition of
the algebraic curve in [15]. Then, because v = (v1, v2) ∈ V2, we have v = 0 and
J2 is non-degenerate on V2. Hence A(2) is a nonsingular matrix and other results
follow. �

Under the assumptions of Theorems 2.2 and 2.3, the bilinear forms Jk, k = 1, 2
are positive definite on V2, and we can show that the local IFE space Sp

k,h(T ) is

exactly the space FTV⊥,k
2 by the following theorem.

Theorem 2.4. Let T be an interface element and let Sp
k,h(T ) be the p-th degree

IFE space defined by either the normal or Laplacian jump conditions, and assume,

correspondingly, that T satisfies the conditions of either Theorem 2.2 or Theorem

2.3. Then Sp
k,h(T ) = FTV⊥,k

2 .

Proof. Since Jk, k = 1, 2, are non-degenerate on the subspace V2, according to [38],

we have Sp(T ) = V2 ⊕ V⊥,k
2 . Note that Dim(V2) = |I| and Dim(Sp(T )) = 2|I|.
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By the isomorphism FT , Dim(V⊥,k
2 ) = Dim(FTV⊥,k

2 ) = |I|. Since Sp
k,h(T ) is the

subspace of FTV⊥,k
2 with the dimension |I|, we must have Sp

k,h(T ) = FTV⊥,k
2 . �

By the uniqueness result we state and prove that the IFE shape functions form
a partition of unity. To be specific, let φi,T , i ∈ I be the p-th degree IFE shape
functions on an interface element T constructed according to the jump conditions in
(1) plus either the normal extended jump condition (2) or the Laplacian extended
jump conditions (3).

Theorem 2.5 (Partition of Unity). Let T be an interface interface and assume that

it satisfies the conditions in either Theorem 2.2 or Theorem 2.3. Then, p-th degree

IFE shape functions constructed with the corresponding extended jump conditions

have the following partition of unity property:

(29)
∑

i∈I

φi,T ≡ 1.

Proof. Let φT =
∑

i∈I φi,T . Then φT is an IFE function and φT (Ni) = 1 for i ∈ I.
Thus, there exists a vector c = (c1, c2, . . . , c|I|) solving (19a) such that

ζT = F−1
T φT =

∑

i∈I

ξi,T +
∑

i∈I

ciηi,T ∈ V⊥,k
2 .

On the other hand, consider the following function of Sp(T ):

ζ0T =
∑

i∈I

ξi,T +
∑

i∈I

ηi,T .

By the partition of unity of the standard finite element shape functions ψi,T , 1 ≤
i ≤ |I|, we have

ζ0T =
(∑

i∈I

ψi,T ,
∑

i∈I

ψi,T

)
= (1, 1)

which further implies that ζ0T ∈ V⊥,k
2 . By Theorem 2.2 or Theorem 2.3, we know

that ζT = ζ0T . Thus

∑

i∈I

φi,T = φT = FT (ζT ) = FT (ζ
0
T ) =

{
1, on T 1,

1, on T 2,

which proves the partition of unity stated in (29). �

3. Numerical Examples

In this section, we numerically demonstrate that the p-th degree IFE spaces
constructed by the least squares method can perform optimally as well as some
additional features. For this purpose, we will consider the IFE interpolation and
IFE solution in the following p-th degree IFE spaces defined on the solution domain
Ω of the interface problem described by (1):

Sp
k,h(Ω) =

{
v ∈ L2(Ω) : v|T ∈ Sp

k,h(T ) ∀T ∈ Th and

v|T1
(X) = v|T2

(X) ∀T1, T2 ∈ Th such that X ∈ (T1 ∩ T2) ∩Nh} ,
k = 1, 2

(30)
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where

Sp
k,h(T ) =

{
Span{φi,T , i = 1, 2, . . . , |I|}, for T ∈ T i

h ,

Span{ψi,T , i = 1, 2, . . . , |I|}, for T ∈ T n
h ,

k = 1, 2,

and φi,T , i = 1, 2, . . . , |I| are the Lagrange type IFE shape functions defined by
(24).

For a function u ∈ C0(Ω), we define its local p-th degree IFE interpolation on
each element T ∈ Th to be the function Ih,Tu ∈ Sp

k,h(T ) such that

(31) Ih,Tu =

{∑
i∈I u(Ni)ψi,T , if T ∈ T n

h ,∑
i∈I u(Ni)φi,T , if T ∈ T i

h .

Then, we define the p-th degree IFE interpolation of u as a function Ihu ∈ Sp
k,h(Ω)

piecewisely by

(32) (Ihu)|T = Ih,Tu, ∀T ∈ Th.
For the interface problem (1), we will consider its p-th degree IFE solution gen-

erated by applying the p-th degree IFE space in (30) to the partially penalized
method discussed in [25, 36]. Specifically, the IFE solution uh is a function in
Sp
k,h(Ω) such that

(33) ah(uh, vh) =

∫

Ω

fvhdX, ∀vh ∈ Sp
k,h,0(Ω),

and uh(X) = g(X) ∀X ∈ ∂Ω ∩ Nh, where the bilinear form ah is

ah(uh, vh) =
∑

T∈Th

∫

T

β∇uh · ∇vhdX +
∑

e∈E̊i
h

∫

e

{β∇uh · ne}e[vh]eds

+ ǫ
∑

e∈E̊i
h

∫

e

{β∇vh · ne}e[uh]eds+
∑

e∈E̊i
h

σ0
e

|e|

∫

e

[uh]e [vh]eds

−
∑

e∈Ei
h
∩∂Ω

∫

e

β∇uh · nevhds,

(34)

in which, E i
h and E̊ i

h are the set of all interface edges and the set of interior interface
edges, respectively, {·}e and [·]e are the usual average and jump at an edge e. Here
ǫ = −1, 0, 1 corresponds to symmetric, incomplete and nonsymmetric partially
penalized IFE methods. For more details about this formulation, we refer the
readers to [36].

Table 3. Interpolation errors and convergence rates for quadratic
IFE spaces, β1 = 1 and β2 = 5.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 2.2372E-3 NA 7.8443E-2 NA 2.2129E-3 NA 7.7412E-2 NA
1/20 2.8229E-4 2.9864 1.9706E-2 1.9930 2.8221E-4 2.9711 1.9712E-2 1.9735
1/40 3.5504E-5 2.9912 4.9525E-3 1.9924 3.5451E-5 2.9929 4.9456E-3 1.9949
1/80 4.4515E-6 2.9956 1.2413E-3 1.9963 4.4466E-6 2.9950 1.2399E-3 1.9959
1/160 5.5743E-7 2.9974 3.1077E-4 1.9979 5.5712E-7 2.9967 3.1060E-4 1.9971



620 S. ADJERID, R. GUO AND T. LIN

Table 4. Interpolation errors and convergence rates for cubic IFE
spaces, β1 = 1 and β2 = 5.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 8.1195E-5 NA 4.5877E-3 NA 7.9335E-5 NA 4.5483E-3 NA
1/20 5.0095E-6 4.0187 5.7954E-4 2.9848 4.9670E-6 3.9975 5.7467E-4 2.9845
1/40 3.1393E-7 3.9962 7.2864E-5 2.9916 3.1292E-7 3.9885 7.2793E-5 2.9809
1/80 1.9655E-8 3.9975 9.1648E-6 2.9910 1.9721E-8 3.9880 9.1907E-6 2.9855
1/160 1.2286E-9 3.9998 1.1504E-6 2.9939 1.2274E-9 4.0060 1.2252E-6 2.9072

Table 5. Interpolation errors and convergence rates for quadratic
IFE spaces, β1 = 1 and β2 = 100.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 7.3534E-4 NA 2.7176E-2 NA 1.2661E-3 NA 4.6494E-2 NA
1/20 9.3163E-5 2.9806 6.6039E-3 2.0410 9.6655E-5 3.7115 6.8429E-3 2.7644
1/40 1.2454E-5 2.9031 1.7455E-3 1.9196 1.6740E-5 2.5295 2.5419E-3 1.4287
1/80 1.6313E-6 2.9325 4.5476E-4 1.9405 4.7763E-6 1.8093 1.3870E-3 0.8740
1/160 2.0823E-7 2.9692 1.1615E-4 1.9691 3.5992E-7 3.7301 2.1084E-4 2.7177

Table 6. Interpolation errors and convergence rates for cubic IFE
spaces, β1 = 1 and β2 = 100.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 5.0669E-5 NA 2.9256E-3 NA 1.0067E-4 NA 5.7367E-3 NA
1/20 3.3035E-6 3.9391 3.8481E-4 2.9265 2.3124E-5 2.1221 2.3970E-3 1.2590
1/40 2.1864E-7 3.9173 5.0583E-5 2.9274 6.5877E-7 5.1335 1.4324E-4 4.0647
1/80 1.4273E-8 3.9372 6.5889E-6 2.9405 3.9673E-8 4.0536 1.6768E-5 3.0947
1/160 8.6548E-10 4.0437 8.0725E-7 3.0290 2.2662E-9 4.1298 1.9795E-6 3.0825

We present numerical results for three interface problems to demonstrate the
approximation capabilities of the p-th degree IFE spaces constructed by the least
squares method. The exact solution to the first problem satisfies both extended
jump conditions. The exact solution to the second problem satisfies extended
Laplacian extended jump conditions but not the normal extended jump condition.
Finally, the exact solution to the last problem satisfies neither extended interface
conditions. We will test both the moderate and large mismatch ratio β1/β2. We
construct the shape functions by selecting the weights ω0 = max (β1, β2)

2 and
ωj = |Γ ∩ T |2j, j = 1, 2, . . . , p, in the bilinear forms (13) and (14). The parameters
in (12) are chosen such that k1 = 0.1 and k2 = 2. We will also use ǫ = −1 and
σ0
e = 30 in the symmetric partially penalized (SPP) IFE method.

3.1. Example 1. The domain is Ω = (−1, 1)× (−1, 1) and the interface Γ is the
circle with radius r0 = π/6.28 which divides Ω into two subdomains Ω1 and Ω2

with

Ω1 = {(x, y) : x2 + y2 < r20}.
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Functions f and g in the interface problem (1) are such that its exact solution is

(35) u(x, y) =






1

β1
rα, (x, y) ∈ Ω1,

1

β2
rα +

(
1

β1
− 1

β2

)
rα0 , (x, y) ∈ Ω2,

where r =
√
x2 + y2 and α = 5.

The errors and convergence rates of the IFE interpolation of u are presented in
Tables 3-6 which suggest an optimal convergence. The errors and convergence rates
of the IFE solution to the interface problem are in Tables 7-8 which also suggest an
optimal convergence. We expect the p-th degree IFE spaces constructed by the least
squares method using either the normal or the Laplacian extended jump conditions
to perform optimally because the exact solution u in this example satisfies both
normal and Laplacian extended interface conditions.

Table 7. Errors in SPP quadratic IFE solution and convergence
rates, β1 = 1 and β2 = 5.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 2.2362E-3 NA 7.8165E-2 NA 2.2341E-3 NA 7.7892E-2 NA
1/20 2.8245E-4 2.9850 1.9671E-2 1.9905 2.8241E-4 2.9839 1.9679E-2 1.9848
1/40 3.5522E-5 2.9912 4.9500E-3 1.9905 3.5518E-5 2.9912 4.9490E-3 1.9914
1/80 4.4535E-6 2.9957 1.2410E-3 1.9959 4.4529E-6 2.9858 1.2407E-3 1.9959
1/160 5.5758E-7 2.9977 3.1077E-4 1.9976 5.5771E-7 2.9972 3.1081E-4 1.9971

Table 8. Errors in SPP quadratic IFE solution and convergence
rates, β1 = 1 and β2 = 100.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 7.3758E-4 NA 2.4944E-2 NA 7.4924E-4 NA 2.5166E-2 NA
1/20 9.5883E-5 2.9435 6.5378E-3 1.9318 1.0019E-4 2.9027 6.7053E-3 1.9081
1/40 1.2955E-5 2.8878 1.7650E-3 1.8892 1.3483E-5 2.8935 1.8146E-3 1.8856
1/80 1.6643E-6 2.9605 4.5616E-4 1.9520 1.7003E-6 2.9873 4.6318E-4 1.9700
1/160 2.1041E-7 2.9836 1.1573E-4 1.9788 2.1350E-7 2.9935 1.1692E-4 1.9860

Table 9. Interpolation errors and convergence rates for quadratic
IFE spaces.

Small jump: β1 = 1 and β2 = 5 Larger jump: β1 = 1 and β2 = 100
h E1∗ rate E2∗∗ rate E1 rate E2 rate

1/10 1.1645E-1 NA 6.5212E-0 NA 8.4099E-3 NA 7.8720E-1 NA
1/20 1.7706E-2 2.7174 1.9532E-0 1.7393 1.5398E-3 2.4493 2.7782E-1 1.5026
1/40 2.4360E-3 2.8617 5.3366E-1 1.8719 2.1407E-4 2.8466 5.7528E-2 2.2718
1/80 3.1928E-4 2.9316 1.3942E-1 1.9365 2.8345E-5 2.9169 1.4938E-2 1.9453
1/160 4.0862E-5 2.9660 3.5626E-2 1.9684 4.1645E-6 2.7669 4.0999E-3 1.8654

∗E1 denotes ‖u − Ihu‖0,∞,Ω, ∗∗E2 denotes |u − Ihu|1,∞,Ω.

Tables 9-10 present errors of IFE interpolations gauged in the L∞ and semi-
H1,∞ norms from which we can see that the quadratic IFE spaces have an almost
optimal convergence rate in the L∞ and semi-H1,∞ norms. However, we observe
that errors in cubic IFE interpolations in the L∞ norm behave optimally when the
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ratio of β1 and β2 is small, but the convergence rate deteriorate in other cases listed
in Table 10 as the mesh becomes finer.

Table 10. Interpolation errors and convergence rates for cubic
IFE spaces.

Small jump: β1 = 1 and β2 = 5 Larger jump: β1 = 1 and β2 = 100
h E1 rate E2 rate E1 rate E2 rate

1/10 6.7911E-3 NA 4.3699E-1 NA 1.8308E-3 NA 2.8334E-1 NA
1/20 4.8461E-4 3.8087 6.2825E-2 2.7982 1.2023E-4 3.9286 3.2052E-2 3.1440
1/40 3.2316E-5 3.9065 8.4064E-3 2.9018 8.0001E-6 3.9096 3.4944E-3 3.1973
1/80 2.0855E-6 3.9538 1.0867E-3 2.9515 7.7950E-7 3.3594 3.3271-3 0.0708
1/160 1.3242E-7 3.9772 1.5603E-3 -0.5219 1.3537E-6 -0.7963 1.1712E-2 -1.8157

∗E1 denotes ‖u − Ihu‖0,∞,Ω, ∗∗E2 denotes |u − Ihu|1,∞,Ω.

3.2. Example 2. The second problem is on Ω = (0.6, 1.6) × (0.21, 1.21) cut by
interface Γ given as

Γ = {(x, y), | L(x, y) := (x2 − y2)2 − 4x2y2 + 0.5 = 0},
where L(x, y) is a harmonic polynomial whose conjugate is L(x, y) = 4xy(x2 − y2).
As illustrated in Figure 12, Ω is split into

Ω1 = {(x, y) ∈ Ω : L(x, y) < 0}, and Ω2 = {(x, y) ∈ Ω : L(x, y) > 0}.

Figure 12. The domain and interface for Example 2.

Since △L = 0 and ∇L · ∇L = 0 for all x, y, we can let f = 0 and choose g to be
such that the exact solution to the interface problem (1) is

(36) u(x, y) =






L(x, y)− β2L(x, y)

β2 − β1
, (x, y) ∈ Ω1,

L(x, y)− β1L(x, y)

β2 − β1
, (x, y) ∈ Ω2.

Note that u in this example has a nonzero tangential derivative along the interface
Γ. Furthermore, it can be verified that u given in (36) satisfies the Laplacian
extended jump conditions but not the normal extended jump conditions.
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Table 11. Interpolation errors and convergence rates for qua-
dratic IFE spaces, β1 = 1 and β2 = 5.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 3.0924E-4 NA 3.2368E-2 NA 2.6032E-4 NA 2.9839E-2 NA
1/20 4.4250E-5 2.8050 8.9578E-3 1.8534 3.2632E-5 2.9960 7.4757E-3 1.9969
1/40 6.4364E-6 2.7813 2.5053E-3 1.8382 4.0776E-6 3.0005 1.8700E-3 1.9992
1/80 1.0274E-6 2.6473 7.5982E-4 1.7213 5.0996E-7 2.9993 4.6768E-4 1.9994
1/160 1.7708E-7 2.5366 2.5043E-4 1.6012 6.3761E-8 2.9996 1.1694E-4 1.9997

Table 12. Interpolation errors and convergence rates for qua-
dratic IFE spaces, β1 = 1 and β2 = 5.

Normal extended jump conditions Laplacian extended jump conditions
h ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate ‖u − Ihu‖0,Ω rate |u − Ihu|1,Ω rate

1/10 4.8270E-5 NA 3.2368E-2 NA 1.5597E-6 NA 1.5958E-4 NA
1/20 7.4538E-6 2.6951 8.9578E-3 1.6807 9.7688E-8 3.9969 2.0065E-5 2.9939
1/40 1.6712E-6 2.1571 2.5053E-3 1.2261 6.0741E-9 4.0074 2.5014E-6 3.0006
1/80 2.9106E-7 2.5215 2.9137E-4 1.5500 3.7884E-10 4.0030 3.1185E-7 3.0011
1/160 5.0069E-8 2.5393 1.0084E-4 1.5308 8.4674E-11 2.1616 4.0914E-8 2.9561

Interpolation errors and convergence rates are presented in Tables 11-12. Data
in the left two columns of Tables 11-12 show a suboptimal convergence for the IFE
spaces constructed by the normal extended jump conditions. On the other hand, re-
sults in the last two columns of Tables 11-12 suggest that the IFE spaces constructed
by the Laplacian extended jump conditions have the expected optimal approxima-
tion capability even though the convergence rates degenerate a little which, we
think, might be the consequence of round-off error. These numerical results clearly
demonstrate that the performance of an IFE space cannot be guaranteed to be
optimal if it is not constructed according to the extended jump conditions suitable
to the exact solution.

The data in Tables 13 demonstrate that numerical solutions generated from
the 2nd degree IFE space constructed according to the Laplacian extended jump
conditions can converge optimally. We omit results for IFE solutions satisfying
the normal extended jump conditions, but we simply report that they converge
sub-optimally as suggested by their interpolation counterparts.

Table 13. Errors in SPP quadratic IFE solution and convergence rates.
Small jump: β1 = 1 and β2 = 5 Larger jump: β1 = 1 and β2 = 100

h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 2.6606E-4 NA 2.9916E-2 NA 2.1344E-4 NA 2.3661E-2 NA
1/20 3.2899E-5 3.0156 7.4860E-3 1.9986 2.6256E-5 3.0231 5.8785E-3 2.0090
1/40 4.0987E-6 3.0048 1.8709E-3 2.0004 3.2064E-6 3.0336 1.4629E-3 2.0066
1/80 5.1160E-7 3.0021 4.6783E-4 1.9997 4.0003E-7 3.0028 3.6559E-4 2.0005
1/160 6.3882E-8 3.0015 1.1696E-4 1.9999 4.9878E-8 3.0036 9.1327E-5 2.0011

3.3. Example 3. The domain is Ω = (−1.21, 1.21) × (−1.21, 1.21) cut by the
circular interface Γ = {(x, y) | x2 + y2 = 1} which split Ω into Ω1 = {(x, y) ∈ Ω :
x2+y2 < 1} and Ω2 = {(x, y) ∈ Ω : x2+y2 > 1}. Function f and g in the interface



624 S. ADJERID, R. GUO AND T. LIN

problem (1) are such that its exact solution is

(37) u(x, y) =





1 + π −
√
2 cos

(π
4
(x2 + y2)

)
, (x, y) ∈ Ω1,

π
√
x2 + y2, (x, y) ∈ Ω2,

which satisfies (1a)-(1d) with β1 = 2 and β2 = 1. However, the true solution u fails
to satisfy both normal and Laplacian extended jump conditions.

First, we note that data in Tables 14 show that the linear IFE space discussed
in [16] that does not need extended jump conditions performs optimally for the
interface problem in this example. On the other hand, data in Tables 15-16 indicate
that approximations generated from higher degree IFE spaces can only perform sub-
optimally. Again, this example suggests that it is critical to construct an IFE space
according to the interface problem to be solved; otherwise, the optimal convergence
cannot be certain.

Table 14. Errors and convergence rates for linear IFE interpola-
tion and SPPG linear IFE solution, β1 = 2 and β2 = 1.

Interpolation errors SPP IFE solution error
h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 5.3665E-2 NA 5.8557E-1 NA 4.3372E-2 NA 5.0108E-1 NA
1/20 1.2910E-2 2.0554 2.8597E-1 1.0340 1.2029E-2 1.8503 2.4957E-1 1.0056
1/40 3.1817E-3 2.0207 1.4285E-1 1.0013 3.0693E-3 1.9705 1.2449E-1 1.0034
1/80 7.9375E-4 2.0030 7.1348E-2 1.0016 7.5360E-4 2.0260 6.2369E-2 0.9971
1/160 1.9827E-4 2.0012 3.5694E-2 0.9992 1.8922E-4 1.9937 3.1133E-2 1.0026

Table 15. Errors and convergence rates for interpolation and
SPPG solution with quadratic IFE functions based on the normal
extended jump conditions, β1 = 2 and β2 = 1.

Interpolation errors SPP IFE solution error
h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 3.9159E-3 NA 1.1378E-1 NA 2.6490E-3 NA 7.7531E-2 NA
1/20 7.8277E-4 2.3227 4.3396E-2 1.3907 5.0119E-4 2.4020 2.9562E-2 1.3910
1/40 1.1081E-4 2.8205 1.2980E-2 1.7412 1.0827E-4 2.2107 1.2296E-2 1.2655
1/80 2.3265E-5 2.2519 5.1928E-3 1.3217 1.6749E-5 2.6925 3.9101E-3 1.6529
1/160 3.6762E-6 2.6619 1.6949E-2 1.6153 2.9914E-6 2.4852 1.3942E-3 1.4877

Table 16. Errors and convergence rates for interpolation and
SPPG solution with quadratic IFE functions based on the Lapla-
cian extended jump conditions, β1 = 2 and β2 = 1.

Interpolation errors SPP IFE solution error
h ‖u − uh‖0,Ω rate |u − uh|1,Ω rate ‖u − uh‖0,Ω rate |u − uh|1,Ω rate

1/10 3.8069E-3 NA 1.1018E-1 NA 2.6546E-3 NA 8.1858E-2 NA
1/20 7.9083E-4 2.2672 4.3936E-2 1.3264 4.8616E-4 2.4490 2.9118E-2 1.4912
1/40 1.1116E-4 2.8307 1.2985E-2 1.7585 1.0352E-4 2.2315 1.1964E-2 1.2832
1/80 2.3373E-5 2.2498 5.2042E-3 1.3191 1.6326E-5 2.6647 3.8443E-3 1.6379
1/160 3.6838E-6 2.6656 1.6919E-3 1.6211 2.8871E-6 2.4995 1.3630E-3 1.4959

4. Conclusion

We have presented a general framework for constructing higher degree IFE spaces
for solving curved interface problems. We have proved that such high-degree spaces
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exist and may be unique under some conditions on the interface curve. Through
computations, we have also shown that the proposed IFE spaces associated with
given extended jump conditions may possess an optimal approximation capability
if the true solution and the IFE spaces satisfy the same extended jump conditions.
Future work will include an error analysis to prove optimality of IFE spaces and
an investigation of IFE spaces for problems with non-smooth interfaces.
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