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HIGHER DEGREE IMMERSED

FINITE ELEMENT METHODS FOR SECOND-ORDER

ELLIPTIC INTERFACE PROBLEMS

SLIMANE ADJERID, MOHAMED BEN-ROMDHANE, AND TAO LIN

Abstract. We present higher degree immersed finite element (IFE) spaces that can be used
to solve two dimensional second order elliptic interface problems without requiring the mesh to
be aligned with the material interfaces. The interpolation errors in the proposed piecewise pth

degree spaces yield optimal O(hp+1) and O(hp) convergence rates in the L2 and broken H1

norms, respectively, under mesh refinement. A partially penalized method is developed which
also converges optimally with the proposed higher degree IFE spaces. While this penalty is not
needed when either linear or bilinear IFE space is used, a numerical example is presented to show
that it is necessary when a higher degree IFE space is used.
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1. Introduction

Mathematical modeling of a physical phenomenon in a domain consisting of mul-
tiple materials often leads to an interface problem whose exact solution is required
to satisfy jump conditions across the material interfaces in addition to the pertinen-
t partial differential equation and the related boundary conditions. Conventional
finite element methods with body-fitted meshes can be used to solve interface prob-
lems with standard problem independent finite element basis functions. In general,
to achieve the optimal convergence of conventional finite element solutions, ele-
ments which are cut by the interface should be avoided [6, 9, 12]. This restriction
leads to several drawbacks, among which are

(i) The need for remeshing, sometimes many times, when solving problems with
moving interfaces. The same difficulty occurs for random interfaces where
many problems are solved with different interfaces (from different values of the
parameters) to estimate quantities of interest such as the expected solution.

(ii) Excessive mesh refinement to resolve small structures such as thin layers in
the domain.

(iii) Prohibition of the use of uniform meshes when solving problems whose inter-
faces have nontrivial geometries.

In the 1970s and 1980s, Babuška et al. [4, 5] developed the generalized finite
element method using the idea of constructing the basis functions on an element
by locally solving the interface problem in that element. Instead of generic poly-
nomials, they developed problem dependent local basis functions which may be
non-polynomials and are capable of capturing important features of the exact so-
lution. The recently developed IFE methods [2, 3, 11, 14, 15, 18, 19, 20, 21, 22]
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extended this idea and used the jump conditions in the interface problem to con-
struct local basis functions with piecewise polynomials. This idea is similar to
Hsieh-Clough-Tocher macro elements [8, 13] in which piecewise cubic polynomials
on three sub-triangles are used to satisfy the required continuity. IFE methods use
meshes that can be independent of interface geometry; hence they can circumvent
the limitations mentioned above for conventional finite element methods.

We note that almost all IFE spaces proposed up to now are based on linear,
bilinear, or trilinear polynomials [20, 21, 22, 28] except for those constructed for
one dimensional interface problems [2, 3, 11]. It is of great interests to develop
higher degree IFE spaces to be used in more efficient schemes such as those based
on discontinuous Galerkin formulations with local h and p refinement capabilities.
In this manuscript, we present procedures to construct arbitrarily higher degree IFE
spaces for solving the typical second order elliptic interface problem on a triangular
Cartesian mesh.

Following the usual IFE framework, we use standard finite element shape func-
tions on non-interface elements and we focus on how to construct higher degree IFE
shape functions in interface elements with piecewise polynomials that satisfy the
interface jump conditions required by an interface problem. However, as first ob-
served in [11], extra constraints need to be carefully introduced in order to uniquely
determine higher degree IFE functions with the optimal approximation capability
according to the degree of polynomials employed. Based on the idea in [2, 3], we
propose to construct higher degree IFE spaces with the interface jump conditions
required by the second order elliptic interface problem plus one of the two classes
of extended interface jump conditions. Both classes of extended jump conditions
involve higher order derivatives. In the first class, the second-order elliptic operator
and its normal derivatives of a higher degree IFE function are required to be con-
tinuous across the interface. The second class of extended jump conditions enforce
the continuity of higher order normal derivatives of the flux of an IFE function.

Figure 1.1. A two-material domain Ω

IFE functions are generally not continuous across interface edges; hence IFE
methods for interface problems are usually nonconforming in the sense that these
IFE spaces are not subspaces of H1(Ω) to which the exact solution belongs. While
a simple Galerkin formulation works satisfactorily for both the linear and bilin-
ear IFE spaces [15, 18, 20, 22], we have noticed that the discontinuity of higher
degree IFE functions across interface edges cannot be neglected in developing nu-
merical schemes for solving interface problems. We have found that penalization
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techniques used in discontinuous Galerkin methods work well with higher degree
IFE space presented here. The penalization can be employed over interface edges
only to augment the simple Galerkin formulation or it can be used in a discontin-
uous Galerkin formulation through all edges of a mesh. The proposed pth degree
IFE spaces combined with a partially penalized finite element formulation are able
to optimally resolve the non-smooth behavior of the solution across the interface
without requiring the mesh to be aligned with the material discontinuity.

To be specific, we consider a bounded open set Ω ⊂ R
2 that is separated into

two subsets Ω+ and Ω− by a curve Γ, see Figure 1.1. In this domain, we consider
the following typical two dimensional second order elliptic interface problem

{
−∇ · (β∇u) = f, on Ω,
u|∂Ω = g,

(1.1a)

whose true solution u and its normal flux are required to be continuous across the
interface Γ as

(1.2a) [u]Γ = 0,

and

(1.2b) [β
∂u

∂n
]Γ = 0,

where [v]Γ = v+|Γ − v−|Γ denotes the jump of a function v across the interface Γ.
Here v± = v|Ω± and ∂v

∂n = n·∇v denotes the normal derivative of v on the interface
Γ with n being a unit normal vector to Γ. The material coefficient β is assumed to
be piecewise constant in the following form

β(X) =

{
β−, when X ∈ Ω−,

β+, when X ∈ Ω+.
(1.3)

In this exploratory research stage, we focus on problems with a linear interface Γ
defined by the equation

(1.4) y = Ax +B.

Our choice here is mainly based on two reasons. (I). There are many important
applications with linear interfaces such as uniform coating and layered materials;
(II). We believe that our explorations here can shed light on how to handle general
curve interfaces in the next step of research.

This manuscript is organized as follows. In Section 2, we discuss how to set up
suitable extended jump conditions that can be used to construct quadratic IFE s-
paces. We further show that these IFE spaces exist and determine their dimension.
We also propose hierarchical IFE shape functions that could be used to efficiently
implement p-enrichment for IFE methods. In Section 3 we describe a framework
for constructing general higher degree IFE spaces. In Section 4 we introduce a
higher degree IFE method with penalties partially imposed over interface edges. In
Section 5 we present numerical experiments to demonstrate the optimal approxi-
mation capability of the proposed higher degree IFE spaces, and we conclude with
a few remarks in Section 6.

2. Quadratic IFE spaces

In this section we show how to construct quadratic IFE spaces for the two di-
mensional second order elliptic interface problem and prove their existence and
uniqueness. We further establish several properties of the proposed IFE spaces and
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construct their Lagrange and hierarchical IFE shape functions. From now on, we
use Pk to denote the space of two-dimensional polynomials of degree k:

(2.1) Pk = {p| p(ξ, η) =
k∑

l=0

l∑

i=0

cliξ
iηl−i}.

2.1. Jump conditions for quadratic IFE spaces. Let Th be a regular triangu-
lar mesh of size h for the domain Ω, where h is the maximum diameter. The set of
interface elements that are cut by the interface is denoted by T i

h . Similarly, edges
that are cut by the interface are called interface edges; otherwise, they are referred
to as non-interface elements or edges. As illustrated in Figure 2.1, every interface
element T = △V1V2V3 can be split as

(2.2) T = T+ ∪ T−, where T± = T ∩ Ω±.

Figure 2.1. A physical interface element

In the discussion from now on, we will use V4, V5 and V6 to denote the midpoints
of the edges of a triangular element T such that

V4 =
1

2
(V1 + V2), V5 =

1

2
(V2 + V3), V6 =

1

2
(V3 + V1).

First we introduce the following quadratic IFE spaces on an arbitrary interface
element T

(2.3a) R2
1(T ) = {U |U |T± ∈ P2, [U ]T∩Γ = [β

∂U

∂n
]T∩Γ = [β∆U ]T∩Γ = 0},

(2.3b) R2
2(T ) = {U |U |T± ∈ P2, [U ]T∩Γ = [β

∂U

∂n
]T∩Γ = [β

∂2U

∂n2
]T∩Γ = 0}.

These local IFE spaces can be used to construct global IFE spaces over the whole
domain Ω. The motivations for us to consider these IFE spaces are as follows.

On an interface triangle T , let ϕ(x, y) be a piecewise quadratic function written
as

ϕ(x, y) =

{
ϕ+(x, y) , on T+

ϕ−(x, y) , on T−,
(2.4)

where ϕ±(x, y) ∈ P2. Thus, ϕ is determined by 12 independent parameters. A
piecewise quadratic function ϕ ∈ R2

1(T ) satisfies

(2.5a) [ϕ]Γ = 0,
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(2.5b) [β n · ∇ϕ]Γ = 0,

(2.5c) [β∆ϕ]Γ = 0.

The two conditions (2.5a) and (2.5b) follow from the physical jump conditions
(1.2a) and (1.2b); however, the jump equation (2.5c) is suggested by the continuity
of the function f on the right-hand side in (1.1a).

Guided by our work of the one-dimensional IFE methods in [2, 11] we can also
construct piecewise quadratic functions that satisfy, instead of (2.5c), the following
weaker condition for the second normal derivative

[β
∂2ϕ

∂n2
]Γ = 0,(2.6)

which leads to the piecewise quadratic polynomial space R2
2(T ).

Since interface jump conditions (2.5c) and (2.6) are not in the original interface
problem, we refer to them as the extended interface jump conditions. These extend-
ed jump conditions are needed to uniquely determine the quadratic IFE functions
in R2

k(T ), k = 1, 2 on each interface element T ∈ Th and to guarantee the desired
optimal approximation capability.

We now describe how to use the reference triangle T̂ = △V̂1V̂2V̂3 to define the
functions in R2

k(T ), k = 1, 2, where V̂1 = (0, 0)t, V̂2 = (1, 0)t and V̂3 = (0, 1)t.
Without loss of generality, we assume that the vertices of each interface element
T = △V1V2V3 ∈ Th are arranged such that the vertex shared by the two interface
edges is V3. We consider each element T = △V1V2V3 ∈ Th with Vi = (xi, yi)

T as

the image of T̂ through the affine mapping F−1 : T̂ → T defined as

(2.7a)

(
x
y

)
= F−1(x̂, ŷ) = V1 + (V2 − V1)x̂+ (V3 − V1)ŷ,

where F : T → T̂ can be written as

F (x, y) = J

(
x
y

)
− J V1 =

(
x̂
ŷ

)
, J =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)−1

.(2.7b)

As usual, with a function ϕ̂ defined on T̂ , we define a corresponding function on T
as follows

(2.7c) ϕ(x, y) = ϕ̂(x̂, ŷ) = ϕ̂(F (x, y)).

Since the interface is linear, it intersects two edges of every interface triangle creat-
ing 12 possible cases as shown in Figure 2.2. Furthermore, interface elements can
be grouped into three types. Elements of Type I are shown in the first column
with one vertex on one side of the interface and the remaining five nodes on the
other side; elements of Type II are shown in the second column where two nodes
are on one side and the remaining four nodes are on the other side, and elements
of Type III are in the third column where the six nodes are equally distributed on
both sides of the interface. All interface elements of a given type are mapped to
the corresponding reference interface triangle shown in the first row of Figure 2.2.

For each type of reference triangles, we refer to the sub-domain of T̂ containing

vertex V̂3 as T̂ 1 and let T̂ 2 = T̂ \ T̂ 1. The discontinuous material coefficient β̂ on

the reference interface triangle T̂ is accordingly written as

(2.8) β̂ =

{
β̂1, on T̂ 1,

β̂2, on T̂ 2,

where β̂i = β± if T̂ i = F (T±).
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reference triangles
Type I Type II Type III

physical triangles

Figure 2.2. Interface elements of Type I and corresponding refer-
ence triangle (1st column), elements of Type II and corresponding
reference triangle (2nd column) and elements of Type III and cor-
responding reference triangle (3th column).

In order to construct piecewise quadratic functions on the reference triangles,
we need to map the jump conditions to the reference triangles. First, we apply the

interface jump conditions to the piecewise quadratic function ϕ̂ on Γ̂ = F (Γ ∩ T ):
(2.9a) [ϕ̂]Γ̂ = 0,

(2.9b) [β̂ n̂ · ∇̂ϕ̂]Γ̂ = 0,

where ∇̂ϕ̂ = (∂x̂ϕ̂, ∂ŷϕ̂)
t and n̂ = Jn is, in general, not normal to Γ̂.

Next, we discuss how to translate the extended interface jump conditions (2.5c)

and (2.6) to the reference element T̂ . By the chain rule ∇ϕ = Jt∇̂ϕ̂, we obtain

(2.10) ∆ϕ = ∇ · ∇ϕ = (Jt∇̂) · (Jt∇̂)ϕ̂.

Hence, on T̂ , the extended jump condition (2.5c) becomes

(2.11) [β̂(Jt∇̂) · (Jt∇̂)ϕ̂]|Γ̂ = 0.
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We further note that the second normal derivative can be written as

(2.12)
∂2ϕ

∂n2
= (n · ∇) (n · ∇)ϕ.

Thus, (2.6) leads to the following condition on T̂ :

(2.13) [β̂(n̂ · ∇̂)(n̂ · ∇̂)ϕ̂]|Γ̂ = [β̂
∂2ϕ̂

∂n̂2 ]Γ̂ = 0.

Therefore, on a reference element T̂ , we need to construct the following function
spaces:

(2.14) R̂2
1(T̂ ) = {Û ∈ P̂2(T̂ ) | [Û ]Γ̂ = 0, [β̂

∂Û

∂n̂
]Γ̂ = 0, [β̂(Jt∇) · (Jt∇)Û ]Γ̂ = 0},

and

(2.15) R̂2
2(T̂ ) = {Û ∈ P̂2(T̂ ) | [Û ]Γ̂ = 0, [β̂

∂Û

∂n̂
]Γ̂ = 0, [β̂

∂2Û

∂n̂2 ]Γ̂ = 0},

where

(2.16) P̂2 = {p̂ | p̂|T̂ i ∈ P2}.

2.2. Properties of quadratic IFE spaces. We will now discuss the properties
of the IFE spaces R̂2

k(T̂ ), k = 1, 2, determine their dimensions, and show how to
construct their bases. In the discussion below, we note that any piecewise quadratic
polynomial on T̂ can be written as

p̂(x̂, ŷ) =





6∑

i=1

ciL̂i(x̂, ŷ), on T̂ 1,

6∑

i=1

ci+6L̂i(x̂, ŷ), on T̂ 2,

(2.17)

where L̂j , j = 1, 2, . . . , 6, are the standard Lagrange quadratic shape functions on

T̂ associated with nodes V̂i, i = 1, 2, . . . , 6.
Let T be an arbitrary interface triangle and let T̂ = F (T ) be the associated

reference triangle cut by the interface Γ̂ : ŷ = ax̂ + b, as illustrated in Figure 2.2.
We recall that F is the standard affine mapping given in (2.7) and that the unit
normal vector n to the physical interface Γ is mapped to n̂ = Jn which, in general,
is not normal to Γ̂.

In the next lemma we show that n̂ = (n̂x, n̂y)
t cannot be parallel to Γ̂ when F

is an invertible affine mapping.

Lemma 2.1. Let T be an arbitrary interface element cut by a linear interface Γ.
If F is the standard affine mapping from T to the reference element T̂ , then

(2.18) an̂x − n̂y 6= 0.

Proof. First, the unit normal vector to the interface Γ̂ defined by the equation
ŷ = ax̂+ b can be written as

N̂ =
1√

1 + a2
(a,−1)t

with inner product

(2.19) n̂ · N̂ =
an̂x − n̂y√

1 + a2
.
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Assume n̂ to be parallel to Γ̂, then the inner product n̂ · N̂ = 0. Hence the line
containing Γ and all lines perpendicular to it are mapped onto the line containing Γ̂.
This means F maps R2 onto the line containing Γ̂. This contradicts the one-to-one
property of F and proves the lemma. �

Properties of R̂2
k(T̂ ), k = 1, 2: First, we prove that R̂2

k(T̂ ), k = 1, 2 is a nontrivial
space with dimension 6.

Lemma 2.2. Let p̂ ∈ P̂2 be defined by (2.17) with coefficients c = (c1, c2, . . . , c12)
t ∈

R
12 and P1 = Ê, P2 = D̂ and P3 = (D̂ + Ê)/2 as illustrated in Figure 2.2. Then

p̂ ∈ R̂2
k(T̂ ) if and only if c ∈ N(A(k)), k = 1, 2,(2.20)

where N(A(k)) is the null space of the 6× 12 rectangular matrix A(k) defined by

(2.21a) A(k) =




A0 −A0

A1 −rA1

A2,k −rA2,k


 , k = 1, 2

with r = β̂2

β̂1
and

(2.21b) A0 =




L̂1(P1) L̂2(P1) L̂3(P1) L̂4(P1) L̂5(P1) L̂6(P1)

L̂1(P2) L̂2(P2) L̂3(P2) L̂4(P2) L̂5(P2) L̂6(P2)

L̂1(P3) L̂2(P3) L̂3(P3) L̂4(P3) L̂5(P3) L̂6(P3)


 ,

(2.21c) A1 =




∂L̂1

∂n̂ (P1)
∂L̂2

∂n̂ (P1)
∂L̂3

∂n̂ (P1)
∂L̂4

∂n̂ (P1)
∂L̂5

∂n̂ (P1)
∂L̂6

∂n̂ (P1)

∂L̂1

∂n̂ (P2)
∂L̂2

∂n̂ (P2)
∂L̂3

∂n̂ (P2)
∂L̂4

∂n̂ (P2)
∂L̂5

∂n̂ (P2)
∂L̂6

∂n̂ (P2)


 ,

(2.21d) A2,1 =
(
a1 a2 . . . a6

)
, aj = (Jt∇) · (Jt∇)L̂j(P1), 1 ≤ j ≤ 6.

(2.21e)

A2,2 =
(

∂2L̂1

∂n̂2 (P1)
∂2L̂2

∂n̂2 (P1)
∂2L̂3

∂n̂2 (P1)
∂2L̂4

∂n̂2 (P1)
∂2L̂5

∂n̂2 (P1)
∂2L̂6

∂n̂2 (P1)
)
.

Proof. We present a proof for the case k = 2. Similar arguments can be used for
k = 1 and we refer readers to [7] for related details.

We first show that the condition is necessary. Assume that p̂ ∈ R̂2
2(T̂ ), then

[p̂]Γ̂ = 0, [β̂
∂p̂

∂n̂
]Γ̂ = 0, [β̂

∂2p̂

∂n̂2 ]Γ̂ = 0.(2.22)

The jump condition specified by the first equation in (2.22) is equivalent to enforcing
[p̂](Pi) = 0, i = 1, 2, 3, which can be written as

6∑

j=1

cjL̂j(Pi)−
6∑

j=1

cj+6L̂j(Pi) = 0, i = 1, 2, 3,

or

(2.23)
(
A0,−A0

)
c = 0.
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Similarly, the jump condition described by the second equation in (2.22) is equiva-

lent to [β̂ ∂p̂
∂n̂ ](Pi) = 0, i = 1, 2, which can be written as

6∑

j=1

cj
∂L̂j

∂n̂
(Pi)− r

6∑

j=1

cj+6
∂L̂j

∂n̂
(Pi) = 0, i = 1, 2,

or

(2.24)
(
A1,−rA1

)
c = 0.

The third equation in (2.22) is equivalent to [β̂ ∂2p̂
∂n̂2 ](P1) = 0, which can be written

as
6∑

j=1

cj
∂2L̂j

∂n̂2 (P1)− r

6∑

j=1

cj+6
∂2L̂j

∂n̂2 (P1) = 0.

This is equivalent

(2.25)
(
A2,2,−rA2,2

)
c = 0.

Combining (2.23), (2.24) and (2.25) yields A(2)c = 0.

Reversing the arguments above can show that the condition is also sufficient. �

In the next lemma we show that the nullity of A(k), k = 1, 2 defined in (2.21) is
equal to 6.

Lemma 2.3. Under the assumptions of Lemma 2.2, the nullity of the matrix
A(k), k = 1, 2 defined in (2.21) is equal to 6.

Proof. We present a proof for the case k = 2, and we refer readers to [7] for related
arguments when k = 1. Let us consider the 6× 6 submatrix of A(2)

(2.26) Ac =




A0

A1

A2,2


 .

A direct calculation gives its determinant as follows:

(2.27) det(Ac) =
32

(1 + a)4
(1− b)4(an̂x − n̂y)

4.

By the fact b 6= 1 and Lemma 2.1 we can show that Ac is invertible, hence, the
rank of A(2) is equal to 6. Then, we finish the proof by applying the rank-nullity
theorem:

(2.28) rank(A(2)) + nullity(A(2)) = 12.

�

In the next lemma we establish the existence of an isomorphism between R̂2
k(T̂ )

and N(A(k)) for k = 1, 2.

Theorem 2.1. Let A(k), k = 1, 2 be the matrix defined by (2.21). Then the fol-
lowing statements hold for k = 1, 2.

(1) There exists an isomorphism Ψ from the quadratic IFE space R̂2
k(T̂ ) to the

null space N(A(k)).

(2) The dimension of R̂2
k(T̂ ) is equal to 6.

(3) A set of vectors {bi, i = 1, 2, . . . , 6} ⊂ R
12 form a basis of N(A(k)) if and

only if {Ψ−1(bi), i = 1, 2, . . . , 6} form a basis of R̂2
k(T̂ ).
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Proof. Again, we present a proof for the case k = 2, and we refer readers to [7] for
related arguments when k = 1.

Since each p̂ ∈ R̂2
2(T̂ ) can be represented in the form given in (2.17), we define

the mapping Ψ : R̂2
2(T̂ ) → N(A(2)) by

(2.29) Ψ(p̂) = (c1, c2, . . . , c12)
t.

From the definition of Ψ, one can easily show that Ψ is linear, i.e.,

(2.30) Ψ(λa+ µb) = λΨ(a) + µΨ(b), ∀ a,b ∈ R
12 and λ, µ ∈ R.

Establishing that Ψ is injective is straightforward by setting Ψ(p̂) = Ψ(q̂) we
show that p̂ = q̂.

Next, we show that Ψ is surjective. In fact, for every c = (c1, c2, . . . , c12)
t ∈

N(A(2)), by Lemma 2.2, we can define a piecewise quadratic polynomial p̂ ∈ R̂2
2(T̂ )

of the form (2.17). Thus, for all c ∈ N(A(2)) there exists p̂ ∈ R̂2
2(T̂ ) such that

Ψ(p̂) = b.

Hence, the mapping Ψ is an isomorphism between R̂2
2(T̂ ) and N(A(2)). Using

Lemma 2.3 yields dim(R̂2
2(T̂ )) = dim(N(A(2))) = 6.

Since Ψ is an isomorphism, each basis of N(A(2)) is mapped into a basis of

R̂2
2(T̂ ) which completes the proof. �

In conclusion, both quadratic IFE spaces R̂2
k(T̂ ), k = 1, 2, have dimension

six and their elements can be represented as linear combinations of the piecewise
quadratic basis functions obtained from a basis of the corresponding null space
N(A(k)).

More conventional basis functions such as Lagrange and hierarchical shape func-
tions may be constructed for these interface spaces. The existence and uniqueness
of such shape functions will be discussed in the next section.

2.3. Quadratic IFE shape functions. Now we will construct Lagrange and
hierarchical shape functions for IFE spaces introduced above.

2.3.1. IFE shape functions of Lagrange type. Let T̂ be a reference interface
element of any of the three types described in Figure 2.2. In this section, we consider
a basis for R̂2

k(T̂ ), k = 1, 2, consisting of the IFE shape functions of Lagrange type

ϕ̂i ∈ R̂2
k(T̂ ), i = 1, 2, . . . , 6, k = 1, 2, satisfying the nodal constraints

(2.31) ϕ̂i(V̂j) = δij , j = 1, 2, . . . , 6.

First, we construct a line perpendicular to line Γ and we denote it by Γ⊥. Then
we use these two lines to form an interface coordinate for representing each point
(x, y) as follows:

(2.32)

{
ξ = ξ(x, y) = 1√

1+A2
(x +Ay + C),

η = η(x, y) = 1√
1+A2

(y −Ax−B),

where η is the distance between (x, y) and Γ and C is a constant chosen such

that (ξ(0, B), η(0, B)) = (0, 0). Through the mapping F : T → T̂ , the interface Γ

becomes Γ̂ = F (Γ) defined by ŷ = ax̂ + b, and Γ⊥ becomes Γ̂⊥ = F (Γ⊥) which is
parallel to the line given by n̂x̂ŷ − n̂ŷx̂+ c = 0, where (n̂x̂, n̂ŷ)

t = n̂ = Jn. These
two lines in the x̂-ŷ plane form, in general, a skew coordinate system as illustrated
in Figure 2.3. We can use it to represent a point (x̂, ŷ) as follows:
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Figure 2.3. The interface coordinates systems (ξ, η) on T and

(ξ̂, η̂) on T̂ = F (T ).

(2.33)

{
ξ̂ = ξ̂(x̂, ŷ),

η̂ = η̂(x̂, ŷ)

where both ξ̂(x̂, ŷ) and η̂(x̂, ŷ) are linear functions of x̂ and ŷ, and Γ̂ is described
by η̂ = 0.

We now describe how to use the interface coordinates (ξ̂, η̂) on the reference

element to construct a shape function in R̂2
2(T̂ ). First, we define the following sets

of indices: I1 the set of indices of all nodes of T̂ in T̂ 1, and I2 the set of indices of
all nodes of T̂ in T̂ 2. Hence, considering the 3 types of reference elements shown in
the first row of Figure 2.2, if T̂ is of type I, I1 = {3} and I2 = {1, 2, 4, 5, 6} ; if T̂ is

of type II, I1 = {3, 5} and I2 = {1, 2, 4, 6} ; and if T̂ is of type III, I1 = {3, 5, 6}
and I2 = {1, 2, 4}.

Then, following the idea proposed by Adjerid and Lin [3] for one-dimensional
lagrange IFE shape functions, we now discuss how to construct the shape functions
ϕ̂i, i = 1, 2, . . . , 6 in terms of the standard quadratic shape functions of Lagrange
type L̂j(x̂, ŷ), j = 1, 2, . . . , 6 on the reference element. First, given a function

φ̄(ξ̂, η̂) we can consider a function of (x̂, ŷ): φ̂(x̂, ŷ) = φ̄(ξ̂(x̂, ŷ), η̂(x̂, ŷ)) where one
can verify that

∂φ̂(x̂, ŷ)

∂n̂
= C

∂φ̄(ξ̂(x̂, ŷ), η̂(x̂, ŷ))

∂η̂
(2.34)

with C being a generic constant. This property can be used to construct a piecewise
quadratic function to satisfy the interface jump conditions. For instance, given the

expression ϕ̄(1)(ξ̂, η̂) on T̂ 1, we can extend it to a function ϕ̄ on the whole T̂ by

defining its expression on T̂ 2 as

ϕ̄(2)(ξ̂, η̂) = ϕ̄(1)(ξ̂, 0) +
β̂1

β̂2

(
ϕ̄(1)(ξ̂, η̂)− ϕ̄(1)(ξ̂, 0)

)
.(2.35)

Let π̂(x̂, ŷ) be the image of (x̂, ŷ) by the oblique projection parallel to the η̂ axis

on Γ̂ and let ϕ̂(x̂, ŷ) = ϕ̄(ξ̂, η̂). Then,

ϕ̂(2)(x̂, ŷ) =
β̂1

β̂2
ϕ̂(1)(x̂, ŷ) +

(
1− β̂1

β̂2

)
ϕ̃1
i (x̂, ŷ),(2.36)
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with ϕ̃
(1)
i (x̂, ŷ) = ϕ̄

(1)
i (π̂(x̂, ŷ)). By (2.34), we can show that ϕ̂(x̂, ŷ) satisfies the

jump conditions required by R̂2
2(T̂ ).

Hence, for each of the shape functions ϕ̂i, i = 1, 2, . . . , 6, we first determine
one of its two expressions such that it has zero values at all nodes on one side of
T̂ . Then, we use this extension technique to determine the formula of this shape
function on the other side of T̂ such that pertinent interface jump conditions and

nodal value constraints are satisfied. Specifically, let r̂ = β̂1

β̂2
, then we can form

ϕ̂i ∈ R̂2
2(T̂ ), i = 1, 2, . . . , 6 as follows.

For i ∈ I1 we write the shape function ϕ̂i as

ϕ̂i(x̂, ŷ) =





ϕ̂
(2)
i (x̂, ŷ) =

∑

j∈I1

cjL̂j(x̂, ŷ) , (x̂, ŷ) ∈ T̂ 2,

ϕ̂
(1)
i (x̂, ŷ) = 1

r̂
ϕ̂

(2)
i (x̂, ŷ) + (1− 1

r̂
) ϕ̃

(2)
i (x̂, ŷ) , (x̂, ŷ) ∈ T̂ 1,

(2.37)

and for i ∈ I2, we write the shape function ϕ̂i as

ϕ̂i(x̂, ŷ) =





ϕ̂
(1)
i (x̂, ŷ) =

∑

j∈I2

cjL̂j(x̂, ŷ) , (x̂, ŷ) ∈ T̂ 1,

ϕ̂
(2)
i (x̂, ŷ) = r̂ ϕ̂

(1)
i (x̂, ŷ) + (1− r̂) ϕ̃

(1)
i (x̂, ŷ) , (x̂, ŷ) ∈ T̂ 2.

(2.38)

Here ϕ̃
(k)
i = ϕ̂

(k)
i ◦ π̂, k = 1, 2 and the coefficients cj , j ∈ Ik, k = 1, 2 are further

determined by imposing the Lagrange nodal value conditions (2.31). Later in this
section, we will show that these coefficients and their corresponding shape function
ϕ̂i, i = 1, 2, . . . , 6 can be uniquely determined.

Similar ideas can be applied to construct shape functions ϕ̂i, i = 1, 2, . . . , 6 for
the IFE space R̂2

1(T̂ ) as follows.
For i ∈ I1, we write the shape function ϕ̂i as

ϕ̂i(x̂, ŷ) =





ϕ̂
(2)
i (x̂, ŷ) =

∑
j∈I1

cjL̂j(x̂, ŷ), (x̂, ŷ) ∈ T̂ 2,

ϕ̂
(1)
i (x̂, ŷ) = 1

r̂ ϕ̂
(2)
i (x̂, ŷ) + (1 − 1

r̂ )ϕ̃
(2)
i (x̂, ŷ)

− (1 − 1
r̂ )

(ŷ−ax̂−b)2

2(1+a2) ∆̂ϕ̃
(2)
i (x̂, ŷ), (x̂, ŷ) ∈ T̂ 1,

and for i ∈ I2, we write the shape function ϕ̂i as

ϕ̂i(x̂, ŷ) =





ϕ̂
(1)
i (x̂, ŷ) =

∑
j∈I2

cjL̂j(x̂, ŷ), (x̂, ŷ) ∈ T̂ 1,

ϕ̂
(2)
i (x̂, ŷ) = r̂ ϕ̂

(1)
i (x̂, ŷ) + (1− r̂)ϕ̃

(1)
i (x̂, ŷ)

− (1− r̂) (ŷ−ax̂−b)2

2(1+a2) ∆̂ϕ̃
(1)
i (x̂, ŷ), (x̂, ŷ) ∈ T̂ 2,

with ∆̂ = (Jt∇̂) · (Jt∇̂).
The following theorem is about the existence and uniqueness of the shape func-

tions for R̂2
2(T̂ ). Similar result can be established for IFE space R2

1(T ) with a little
more computations.

Theorem 2.2. Let T̂ be a reference interface element cut by the interface Γ̂ : ŷ =
ax̂+ b, and let R̂2

2(T̂ ) be the piecewise quadratic polynomial space defined in (2.15)

with n̂ orthogonal to Γ̂. Then, there exist six shape functions ϕ̂i, i = 1, 2, . . . , 6, in
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R̂2
2(T̂ ) satisfying the Lagrange nodal value conditions (2.31). The shape functions

ϕ̂i, i = 1, 2, . . . , 6, are unique.

Proof. The proof is elementary which is basically to show that nodal value con-
straints imposed on each ϕ̂i, i = 1, 2, . . . , 6 lead to a linear system about coefficients
in (2.37) or (2.38) and the matrix in this linear system is nonsingular. Readers can
refer [7] for more details.

�

Corollary 2.1. Under the assumptions of Theorem 2.2, the shape functions ϕ̂i ∈
R̂2

2(T̂ ), i = 1, 2, . . . , 6, satisfying the Lagrange nodal value conditions ϕ̂i(V̂j) =

δij , i, j = 1, 2, . . . , 6, form a basis of R̂2
2(T̂ ).

Proof. The conditions ϕ̂i(V̂j) = δij , i, j = 1, 2, . . . , 6, trivially imply the linear

independence of ϕ̂i, i = 1, 2, . . . , 6. Since the dimension of R̂2
2(T̂ ) is equal to 6,

then the result follows. �

Corollary 2.2. Under the assumptions of Theorem 2.2, ϕ̂i, i = 1, 2, . . . , 6 form a
partition of unity for the space R̂2

2(T̂ ), i.e.

(2.39)

6∑

i=1

ϕ̂i(x̂, ŷ) = 1, ∀(x̂, ŷ) ∈ T̂ .

Proof. Let ϕ̂i, i = 1, 2, . . . , 6 be the Lagrange basis of R̂2
2(T̂ ). Since the constant

function ϕ̂0(x̂, ŷ) = 1 is in R̂2
2(T̂ ), then, there exists di, i = 1, 2, . . . , 6 such that

(2.40)
6∑

i=1

diϕ̂i(x̂, ŷ) = ϕ̂0(x̂, ŷ) = 1.

Since ϕ̂i(V̂j) = δij , i, j = 1, 2, . . . , 6, evaluating equation (2.40) at V̂j implies dj =
1, j = 1, 2, . . . , 6, which completes the proof. �

Next, we make few observations:

(1) The previous existence and uniqueness proofs extend to any isosceles right
triangle interface element T in a straightforwardmanner by noting that such
triangle may be mapped into one of the reference triangles by a composition
of a translation, a rotation, a dilation, and a reflection which preserve the
right angle. Thus, the image n̂ of the normal vector n is orthogonal to the
image Γ̂ of the interface Γ.

(2) From Theorem 2.2, we conclude the existence of six shape functions ϕ̂i, i =

1, 2, . . . , 6 in R̂2
2(T̂ ) that are uniquely determined by the Lagrange nodal

value conditions. Since dim(R2
2(T )) = 6, and the shape functions

ϕi(x, y) = ϕ̂i(F (x, y)) ∈ R2
2(T ), i = 1, 2, . . . , 6,

are linearly independent, thus, they form a basis of R2
2(T ).

(3) The assumption of uniform meshes with isosceles right triangular elements
is an acceptable assumption, since the IFE method may, in general, be used
on uniform Cartesian meshes independent of the interface.

Next, we define the global Lagrange type quadratic IFE spaces over the whole
domain Ω. Locally, on every non-interface element T , we let R2

k(T ) = P2, k = 1, 2,
spanned by standard Lagrange shape functions. Let Nh be the set of nodes for the
standard Lagrange quadratic finite element space defined on the triangular mesh
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Th. At each node vi ∈ Nh, we define a piecewise quadratic IFE basis functions ψ
(k)
i

for k = 1, 2, respectively, over the whole domain such that for k = 1, 2,

ψ
(k)
i |T ∈ R2

k(T ), for T ∈ Th, and ψ
(k)
i (vj) = δij , ∀ vj ∈ Nh.

The global quadratic IFE basis functions constructed above may be discontin-
uous across interface edges as illustrated in Figure 2.4. More precisely, the global
IFE basis functions are continuous across non-interface edges while, in general, they
are continuous only at the two edge vertices and midpoint of an interface edge.

Figure 2.4. A mesh having two elements for Ω = (0, 1)2 cut by
the interface y = x/2 + 1/5 with r = 5 (top) and Lagrange im-

mersed basis functions ψ
(2)
3 (middle) and ψ

(2)
5 (bottom).
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Without loss of generality, we assume that Nh contains N nodes among which
the first NI nodes are in the interior of Ω while the rest of them are on the boundary
of Ω. Then, finally, we can define the quadratic IFE spaces over the whole domain
as

(2.41) S2,k
h = span{ψ(k)

j , j = 1, 2, . . . , N}, k = 1, 2,

and define the space S2,k
h,0 , k = 1, 2 to be the IFE spaces associated with interior

nodes as follows:

(2.42) S2,k
h,0 = span{ψ(k)

j , j = 1, 2, . . . , NI}, k = 1, 2.

2.3.2. Hierarchical shape functions in R̂2
k(T̂ ), k = 1, 2. Hierarchical shape

functions have several advantages over their Lagrange counterparts as they yield
well conditioned algebraic problems and efficient p-refinement algorithms. In this
section we discuss the construction of hierarchical quadratic IFE shape functions
by following the standard procedure for classical hierarchical shape functions.

On an interface reference element T̂ = △V̂1V̂2V̂3, we assume, without loss of
generality, that the interface cut through edges V̂1V̂3 and V̂2V̂3 as illustrated in
Figure 2.3. On this element, there are three piecewise linear Lagrange type IFE

shape functions ϕ̂
(1)
i , i = 1, 2, 3, that can be described as follows:

(2.43) φ̂
(1)
1 =

{
φ̂
(1),1
1 = c1L̂1(x̂, ŷ) + c2L̂2(x̂, ŷ), on T̂ 1,

φ̂
(1),2
1 = L̂1(x̂, ŷ) + c3L̂3(x̂, ŷ), on T̂ 2,

(2.44) φ̂
(1)
2 =

{
φ̂
(1),1
2 = c1L̂1(x̂, ŷ) + c2L̂2(x̂, ŷ), on T̂ 1,

φ̂
(1),2
2 = L̂2(x̂, ŷ) + c3L̂3(x̂, ŷ), on T̂ 2,

and

(2.45) φ̂
(1)
3 =

{
φ̂
(1),1
3 = L̂3(x̂, ŷ) + c1L̂1(x̂, ŷ) + c2L̂2(x̂, ŷ), on T̂ 1,

φ̂
(1),2
3 = c3L̂3(x̂, ŷ), on T̂ 2,

where, L̂i(x̂, ŷ), i = 1, 2, 3 are the standard linear Lagrange shape function on T̂ ,
and according to [21], the coefficients c1, c2, c3 for each shape function are uniquely
determined by the interface jump conditions (2.9).

Next, we construct three IFE shape functions associated the edges of T for

the space R̂2
1(T̂ ) as follows. For each 3-tuple (k, i, j) = (4, 1, 2), (5, 2, 3) (6, 3, 1)

we define the IFE shape functions associated with the edge containing the nodes
V̂k, k = 4, 5, 6 by

ϕ̂
(2)
k =











ϕ̂
(2),1
k = ϕ̂

(1),1
i (x̂, ŷ)ϕ̂

(1),1
j (x̂, ŷ) + ĉk

(ŷ−ax̂−b)2

(1+a2)
, (x̂, ŷ) ∈ T̂ 1,

ϕ̂
(2),2
k = ϕ̂

(1),2
i (x̂, ŷ)ϕ̂

(1),2
j (x̂, ŷ) , (x̂, ŷ) ∈ T̂ 2,

(2.46)

which are continuous across the interface together with their fluxes. The coefficients
ĉk, k = 4, 5, 6 are further determined by applying the extended jump conditions
(2.11). Specifically, applying (Jt∇̂) leads to

(Jt∇̂)ϕ̂
(2)
k (x̂, ŷ) =





(Jt∇̂)ϕ̂
(1),1
i ϕ̂

(1),1
j + ϕ̂

(1),1
i (Jt∇̂)ϕ̂

(1),1
j

+ ĉk
(1+a2) (J

t∇̂)
(
(ŷ − ax̂− b)2

)
, (x̂, ŷ) ∈ T̂ 1,

(Jt∇̂)ϕ̂
(1),2
i ϕ̂

(1),2
j + ϕ̂

(1),2
i (Jt∇̂)ϕ̂

(1),2
j , (x̂, ŷ) ∈ T̂ 2,
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which, in turn, yields

(Jt∇̂) · (Jt∇̂)ϕ̂
(2)
k (x̂, ŷ) =



















2 (Jt∇̂)ϕ̂
(1),1
i · (Jt∇̂)ϕ̂

(1),1
j

+ ĉk
(1+a2)

(Jt∇̂) · (Jt∇̂)
(

(ŷ − ax̂− b)2
)

, (x̂, ŷ) ∈ T̂ 1,

2 (Jt∇̂)ϕ̂
(1),2
i · (Jt∇̂)ϕ̂

(1),2
j , (x̂, ŷ) ∈ T̂ 2.

This can be written as

(Jt∇̂) · (Jt∇̂)ϕ̂
(2)
k (x̂, ŷ) =











2 (Jt∇̂)ϕ̂
(1),1
i · (Jt∇̂)ϕ̂

(1),1
j + 2 ĉk

(1+a2)
(v · v) , (x̂, ŷ) ∈ T̂ 1,

2 (Jt∇̂)ϕ̂
(1),2
i · (Jt∇̂)ϕ̂

(1),2
j , (x̂, ŷ) ∈ T̂ 2,

where v = (Jt∇̂)(ŷ − ax̂ − b) is a constant vector. Applying the jump condition
(2.11) yields

β̂1(Jt∇̂)ϕ̂
(1),1
i · (Jt∇̂)ϕ̂

(1),1
j + β̂1 ||v||22

ĉk
(1 + a2)

= β̂2 (Jt∇̂)ϕ̂
(1),2
i · (Jt∇̂)ϕ̂

(1),2
j ,

which, in turn, leads to

(2.47) ĉk = −(1 + a2)
[β̂ (Jt∇̂ϕ̂(1)

i ) · (Jt∇̂ϕ̂(1)
j )]Γ̂

β̂1 ||v||22
, k = 4, 5, 6.

One can easily show that the six hierarchical shape functions ϕ̂
(1)
i , i = 1, 2, 3,

ϕ̂
(2)
3+i, i = 1, 2, 3 constructed above form a basis of R̂2

1.
The procedures above can be extended for constructing hierarchical shape func-

tions for the IFE space R̂2
2(T̂ ).

3. Higher degree IFE spaces and shape functions

Now we consider immersed finite element spaces of arbitrary degree p ≥ 3. We
focus our discussion on the following IFE space:
(3.1)

Rp
1(T ) = {U |U |T± ∈ Pp, [U ]T∩Γ = [β

∂U

∂n
]T∩Γ = [β

∂l∆U

∂nl
]T∩Γ = 0, l = 0, 1, . . . , p− 2},

which, on T̂ , becomes
(3.2)

R̂p
1(T̂ ) = {Û ∈ P̂2(T̂ ), | [Û ]Γ̂ = 0, [β̂

∂Û

∂n̂
]Γ̂ = 0, [β̂

∂l∆̂Û

∂n̂l
]Γ̂ = 0, l = 0, 1, . . . , p− 2}.

Similar ideas can be applied to form Rp
2(T ).

The Lagrange type shape functions can be constructed as follows. On each ele-
ment T̂ there are ndim = dim(Pp) nodes V̂i, i = 1, 2, . . . , ndim and the associated

standard Lagrange shape functions L̂i, i = 1, 2, . . . , ndim. Their indices are divid-
ed into I 1, I 2 and I 0, respectively, which are the sets of indices for nodes in
T̂ 1, T̂ 2 and on the interface Γ̂ ∩ T̂ . Then, we define the Lagrange type IFE shape
functions for R̂p

1 as follows:

(3.3a) ϕ̂i(x̂, ŷ) =





L̂i(x̂, ŷ) +
∑

j∈I 2

cjL̂j(x̂, ŷ) on T̂ 1,

∑
j∈I 1

cjL̂j(x̂, ŷ) on T̂ 2,
for i ∈ I

1,

(3.3b) ϕ̂i(x̂, ŷ) =





∑
j∈I 2

cjL̂j(x̂, ŷ) on T̂ 1

L̂i(x̂, ŷ) +
∑

j∈I 1

cjL̂j(x̂, ŷ) on T̂ 2
for i ∈ I

2,
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and

(3.3c) ϕ̂i(x̂, ŷ) =





L̂i(x̂, ŷ) +
∑

j∈I 2

cjL̂j(x̂, ŷ) on T̂ 1

L̂i(x̂, ŷ) +
∑

j∈I 1

cjL̂j(x̂, ŷ) on T̂ 2
for i ∈ I

0,

where the coefficients cj , j = 1, 2, . . . , |I 1| + |I 2| are determined by enforcing

the jump conditions in (3.2) with suitable number of points on Γ̂ according to the
degree of the involved polynomials. These local shape functions can also be used
to construct a Lagrange type pth degree IFE spaces Sp,1

h and Sp,1
h,0 over Ω through

the standard procedure. We would like to mention that the procedure above can
be easily adapted for constructing quadratic IFE shape functions.

Following [1, 27] and the reasoning for constructing quadratic hierarchical IFE

spaces we construct pth degree hierarchical IFE shape functions for R̂p
1, p ≥ 3. On

non-interface elements use standard hierarchical bases [1, 27] while on each interface
triangle we consider an IFE basis consisting of

• 3 vertex piecewise linear IFE shape functions

(3.4) ϕ̂
(1)
i , i = 1, 2, 3,

• 3(p− 1) edge IFE shape functions
(3.5)

ϕ̂
(k)
i =




ϕ̂
(2),1
3+i (ϕ̂

(1),1
i )k−2 +

k∑
l=2

cl(ŷ − ax̂− b)l, on T̂ 1

ϕ̂
(2),2
3+i (ϕ̂

(1),2
i )k−2, on T̂ 2

k = 2, 3, . . . , p, i = 1, 2, 3,

where the superscript k denotes the polynomial degree and the subscript i
denotes the edge number, and

• (p− 1)(p− 2)/2 (for p ≥ 3) interior IFE shape functions

(3.6) ϕ̂
(3+i+j)
i,j =




ϕ̂I,1(ϕ̂

(1),1
1 )i(ϕ̂

(1),1
2 )j +

3+i+j∑
l=2

cl(ŷ − ax̂− b)l, on T̂ 1

ϕ̂I,2(ϕ̂
(1),2
1 )i(ϕ̂

(1),2
2 )j , on T̂ 2

with 0 ≤ i+ j ≤ p− 3, where

(3.7) ϕ̂I,k = ϕ̂
(1),k
1 ϕ̂

(1),k
2 ϕ̂

(1),k
3 , k = 1, 2.

One can easily verify that edge and interior shape functions and their fluxes
are continuous across the interface. We determine the coefficients c2, c3, . . .
to satisfy the extended interface conditions in R̂p

1. We further note that
interior IFE shape functions are supported on one element only.

4. Finite element methods for interface problems

In this section we present a finite element method for solving the interface prob-
lem (1.1) with the proposed higher degree IFE spaces. We assume that the true
solution u belongs to the function space

(4.1) S(Ω) = {u, u|Ω± ∈ Hp+1(Ω±), [u]Γ = [β n · ∇u]Γ = 0}.
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Next we define a subset of the space Sp,k
h consisting of functions interpolating the

essential boundary condition g

(4.2) Sp,k
h,E = {U ∈ Sp,k

h |U =

NI∑

i=1

ciψ
(k)
i +

N∑

i=NI+1

g(vi)ψ
(k)
i }.

Let us recall the IFE method that exhibited optimal convergence rates for linear,

bilinear and one-dimensional higher degree IFE spaces [3, 15, 20]: find Uh ∈ Sp,k
h,E

such that
∑

T∈Th

∫

T

β∇Uh∇V hdxdy =
∑

T∈Th

∫

T

fV hdxdy, ∀ V h ∈ Sp,k
h,0 .(4.3)

However, our numerical experiments indicate that this IFE formulation does not

converge optimally in S2,k
h,E . The IFE solution produced by this method has a large

error across interface edges which, we believe, is caused by the discontinuity of
the IFE functions. While this discontinuity does not prevent the method based
on either linear or bilinear IFE functions to converge optimally, it becomes severe
enough for higher degree IFE functions such that the method can only perform
sub-optimally. To overcome this defect, we propose to employ penalization and
stabilization in IFE methods. The idea is based on the Non-Symmetric Interior
Penalty Galerkin (NIPG) method [10, 26] and our penalized IFE method described
below follows from the standard Galerkin formulation plus penalties applied on
interface edges only.

We now introduce a few notations and conventions in order to describe the
formulation with interior penalty terms. Let Eh, E0

h, E i
h and E(0,i)

h be the set of
all the edges, interior edges, interface edges and interior interface edges in a mesh
Th, respectively. For e ∈ E0

h
shared by two elements T1 and T2, let the vectors

n1 and n2, respectively, be the unit vectors normal to e, pointing towards the
exterior of T1 and T2. Following [23], for a scalar piecewise smooth function u, we
let u|Ti

= ui, i = 1, 2, and we will use the average and jump of u on an edge e
defined by

(4.4a) {u} =
1

2
(u1 + u2) and [u] = u1n1 + u2n2.

Similarly for a vector-valued piecewise smooth function τ such that τ |Ti
= τ i, i =

1, 2 we define its average and jump by

(4.4b) {τ} =
1

2
(τ 1 + τ 2) and [τ ] = τ 1 · n1 + τ 2 · n2.

We will also use the following notations

(4.5) (u, v)Th
=
∑

T∈Th

∫

T

u v dxdy, and < u, v >Et
h
=
∑

e∈Et
h

∫

e

u v ds,

for t being either (0, i), or i. Then our partially penalized pth degree IFE method

is stated as: find Uh ∈ Sp,k
h,E , k = 1, 2 such that

(β∇Uh,∇V h)Th
+ < [Uh], {β∇V h} >E0,i

h

− < {β∇Uh}, [V h] >E0,i

h

+

s < [Uh], [V h] >E0,i

h

−
∫

Ei
h
∩∂Ω

β∇Uh · n V h ds = (f, V h)Th
,(4.6)

∀ V h ∈ Sp,k
h,0 .
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We note that this scheme follows directly from the NIPG method [10, 26] with a
minor modification that the penalization is partially applied only on interface edges
where IFE functions are continuous. We have focused on the NIPG formulation
for higher degree IFEs because of its flexibility about the choice of the penalty
parameter s as suggested by the analysis for NIPG finite element in the literature.
We experimented this scheme with various values for the penalty parameter s such
as s = 100, s = 1 and s = 0.01 and we observed similar convergence behaviors;
therefore, in the discussion from now on, we set s = 1 just for the simplicity. We
believe that other formulations with partial penalty, such as those discussed in [29],
can also be applied to higher degree IFEs, but those schemes usually require a
suitable choice for the value of the penalization parameter. We plan to investigate
related issues in a forthcoming article for extending higher degree IFEs to problems
with general curve interfaces.

Finally, we note that fully discontinuous Galerkin finite element methods [16,
17, 24, 25] may be used to solve interface problems with the proposed pth degree
IFE spaces, but those methods will have more global degrees of freedom than the
partially penalized IFE methods described above.

5. Computational examples

In this section we present numerical results for several interface problems to
demonstrate the approximation capability of higher degree IFE spaces developed
in the previous sections. All IFE spaces in these numerical experiments are con-
structed on uniform triangular meshes Th that are formed by partitioning Ω into
(1/h)2 squares, then forming the triangular elements by joining the lower left and
upper right vertices of these squares. Data presented in this section are generated
with higher degree IFE spaces Sp,1

h . Results generated with IFE spaces Sp,2
h have

similar features; hence they are omitted here for the sake of reducing presentation
space. In our numerical experiments, both IFE interpolations and IFE solutions
generated by the partially penalized scheme to the second order elliptic interface
problems converge optimally.

Example 5.1.

This example is to demonstrate the optimal approximation capability of the
higher degree IFE spaces by the convergence rates of IFE interpolations of the
following function:
(5.1)



(6x2+6xy−4x+3) cos(y2−x2− 4
3
y+ 4

9
)+(2+3x−3y) sin( 2

3
−x−y)

3β+ , on Ω+,

( β−

β+ −1)(3−8x+12xy)+(6x2+6xy−4x+3) cos(y2−x2− 4
3
y+ 4

9
)+(2+3x−3y) sin( 2

3
−x−y)

3β− , on Ω−,

where the domain Ω = [0, 1]2 is cut by the interface Γ : y = x + 2
3 such that

Ω+ = {(x, y), y > x + 2
3}, Ω− = {(x, y), y < x + 2

3}, and r = β+

β− that represents

a moderate discontinuity in the coefficient β when r = 5 or a large discontinuity
when r = 103.

As usual, the Lagrange type IFE interpolant Ihu(x, y) of u(x, y) is defined by

(5.2) Ihu(x, y)|T =

(p+1)(p+2)/2∑

i=1

u(Vi)φ
(p)
i (x, y), ∀ T ∈ Th,

where Vi, i = 1, 2, . . . , (p + 1)(p + 2)/2 are the Lagrange nodes for pth degree

polynomials in T and φ
(p)
i (x, y), i = 1, 2, . . . , (p+ 1)(p+ 2)/2 are the Lagrange FE
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or IFE shape functions defined on T depending on whether T is a non-interface or
an interface element.

Tables 5.1 and 5.2 present errors of Ihu in both L2 and semi-H1 norms for the
quadratic IFE space S2,1

h . Errors of Ihu ∈ S3,1
h are given in Tables 5.3 and 5.4.

Finally, errors of Ihu ∈ S4,1
h are given in Tables 5.5 and 5.6. All of these data

indicate that IFE interpolants Ihu ∈ Sp,1
h , p = 2, 3, 4 converge to u optimally in

both L2 and H1 norms regardless of a moderate or large discontinuity in β.

Table 5.1. L2 interpolation errors and their orders for u, ux and
uy for the function (5) with r = 5 using the IFE space S2,1

h .

h ||u− Ihu||0 order ||ux − (Ihu)x||0,h order ||uy − (Ihu)y||0,h order
1
4

1.824818e-03 N/A 5.509363e-02 N/A 3.422630e-02 N/A
1
8

2.286751e-04 2.9963 1.383511e-02 1.9935 8.736473e-03 1.9699
1
16

2.857819e-05 3.0003 3.454655e-03 2.0017 2.189569e-03 1.9964
1
32

3.573301e-06 2.9995 8.640540e-04 1.9993 5.482050e-04 1.9978
1
64

4.465973e-07 3.0002 2.159648e-04 2.0003 1.370356e-04 2.0001
1

128
5.582714e-08 2.9999 5.399578e-05 1.9999 3.426435e-05 1.9998

Table 5.2. L2 interpolation errors and their orders for u, ux and
uy for the function (5) with r = 103 using the IFE space S2,1

h .

h ||u− Ihu||0 order ||ux − (Ihu)x)||0,h order ||uy − (Ihu)y)||0,h order
1
4

1.825604e-03 N/A 5.512166e-02 N/A 3.428669e-02 N/A
1
8

2.307696e-04 2.9838 1.395794e-02 1.9815 8.880656e-03 1.9489
1
16

2.857665e-05 3.0135 3.454740e-03 2.0144 2.189942e-03 2.0197
1
32

3.579449e-06 2.9970 8.654861e-04 1.9969 5.499555e-04 1.9935
1
64

4.465694e-07 3.0027 2.159599e-04 2.0027 1.370315e-04 2.0048
1

128
5.584678e-08 2.9993 5.401489e-05 1.9993 3.428750e-05 1.9987

Table 5.3. Interpolation errors and their orders for the function
(5) with r = 5 using the IFE space S3,1

h

h ||u− Ihu||0 order ||ux − (Ihu)x)||0,h order ||uy − (Ihu)y)||0,h order
1
6

2.7113e-05 NA 1.5579e-03 NA 7.0126e-04 NA
1
12

1.6998e-06 3.9956 1.9537e-04 2.9953 8.8603e-05 2.9845
1
18

3.3603e-07 3.9980 5.7937e-05 2.9978 2.6306e-05 2.9950
1
24

1.0635e-07 3.9989 2.4450e-05 2.9989 1.1106e-05 2.9975
1
33

2.9760e-08 3.9994 9.4072e-06 2.9994 4.2739e-06 2.9986
1
42

1.1343e-08 3.9997 4.5634e-06 2.9996 2.0735e-06 2.9992
1
51

5.2174e-09 3.9998 2.5489e-06 2.9998 1.1582e-06 2.9995
1
63

2.2407e-09 3.9999 1.3522e-06 2.9998 6.1447e-07 2.9997

Example 5.2.

In this example, we first show that the non-conforming Galerkin scheme (4.3)
does not converge when it is used with the quadratic IFE spaces even though
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Table 5.4. Interpolation errors and their orders for the function
(5) with r = 103 using the IFE space S3,1

h

h ||u− Ihu||0 order ||ux − (Ihu)x)||0,h order ||uy − (Ihu)y)||0,h order
1
6

2.7111e-05 NA 1.5578e-03 NA 7.0105e-04 NA
1
12

1.6996e-06 3.9956 1.9536e-04 2.9953 8.8575e-05 2.9845
1
18

3.3600e-07 3.9980 5.7935e-05 2.9978 2.6298e-05 2.9950
1
24

1.0635e-07 3.9989 2.4449e-05 2.9989 1.1102e-05 2.9975
1
33

2.9757e-08 3.9994 9.4069e-06 2.9994 4.2726e-06 2.9986
1
42

1.1342e-08 3.9997 4.5633e-06 2.9996 2.0728e-06 2.9992
1
51

5.2170e-09 3.9998 2.5488e-06 2.9998 1.1578e-06 2.9995
1
63

2.2406e-09 3.9999 1.3522e-06 2.9998 6.1428e-07 2.9997

Table 5.5. Interpolation errors and their orders for the function
(5) with r = 5 using the IFE space S4,1

h

h ||u− Ihu||0 order ||ux − (Ihu)x)||0,h order ||uy − (Ihu)y)||0,h order
1
4

6.5831e-06 NA 3.5068e-04 NA 1.7890e-04 NA
1
8

2.2653e-07 4.8610 2.4260e-05 3.8535 1.1540e-05 3.9544
1
16

7.2422e-09 4.9671 1.5527e-06 3.9657 7.2846e-07 3.9857
1
32

2.2753e-10 4.9923 9.7591e-08 3.9919 4.5607e-08 3.9975
1
64

7.1207e-12 4.9979 6.1086e-09 3.9978 2.8525e-09 3.9989
1

128
2.2259e-13 4.9995 3.8191e-10 3.9995 1.7829e-10 4.0000

Table 5.6. Interpolation errors and their orders for the function
(5) with r = 103 using the IFE space S4,1

h

h ||u− Ihu||0 order ||ux − (Ihu)x)||0,h order ||uy − (Ihu)y)||0,h order
1
4

1.9895e-05 NA 1.1000e-03 NA 1.0567e-03 NA
1
8

5.0327e-07 5.3049 5.7995e-05 4.2454 5.3953e-05 4.2917
1
16

1.0195e-08 5.6253 2.2257e-06 4.7036 1.7516e-06 4.9449
1
32

2.9742e-10 5.0993 1.3265e-07 4.0685 1.0078e-07 4.1194
1
64

7.8165e-12 5.2498 6.7474e-09 4.2972 4.0416e-09 4.6402
1

128
2.4026e-13 5.0239 4.1792e-10 4.0130 2.4618e-10 4.0372

this scheme works optimally with the linear and bilinear IFE spaces. Then, we
demonstrate that the partially penalized IFE method (4.6) can produce solutions
to interface problems with optimal convergence rates.

First, we consider the interface problem (1.1) whose true solution is given in

(5) where β+

β− = 5. Errors of quadratic IFE solutions produced by non-conforming

Galerkin scheme (4.3) are reported in Table 5.7. Data in this table does not suggest
any convergence pattern if any at all.

Next, we solve the same interface problem for β+

β− = 5 and β+

β− = 103 on the

same meshes by the partially penalized IFE method (4.6) using quadratic IFE

spaces S2,1
h . The errors and orders of convergence in these quadratic IFE solutions

are presented in Tables 5.8, 5.9. From these results, we can easily observe that
the partially penalized IFE method performs optimally with the quadratic IFE
space S2,1

h for interface problems with both a moderate and a large discontinuity
in coefficients.
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Table 5.7. L2 errors and their orders for quadratic IFE solution
Uh and its derivatives for Example 5.2 with r = 5 using the method
(4.3) with S2,1

h .

h ||u− Uh||0 order ||ux − Uh
x ||0,h order ||uy − Uh

y ||0,h order
1
4 1.895109e-03 N/A 5.541022e-02 N/A 3.524658e-02 N/A
1
8 4.842859e-04 1.9683 1.849617e-02 1.5829 1.451450e-02 1.2799
1
16 6.071277e-05 2.9957 4.626621e-03 1.9991 3.856017e-03 1.9123
1
32 5.041339e-05 0.2681 5.654537e-03 -0.2894 5.481738e-03 -0.5075
1
64 6.476201e-06 2.9605 1.545544e-03 1.8712 1.543935e-03 1.8280
1

128 6.674539e-06 -0.0435 2.706456e-03 -0.8082 2.683355e-03 -0.7974

Table 5.8. L2 errors and their orders for quadratic IFE solution
Uh and its derivatives for Example 5.2 with r = 5 using the par-
tially penalized method with S2,1

h .

h ||u− Uh||0 order ||ux − Uh
x ||0,h order ||uy − Uh

y ||0,h order
1
4 2.185943e-03 N/A 1.862205e-02 N/A 2.458501e-02 N/A
1
8 2.746045e-04 2.9928 4.496799e-03 2.0500 6.257552e-03 1.9741
1
16 3.426104e-05 3.0027 1.105460e-03 2.0242 1.565315e-03 1.9991
1
32 4.284828e-06 2.9992 2.757968e-04 2.0029 3.916519e-04 1.9988
1
64 5.355157e-07 3.0002 6.883339e-05 2.0024 9.787855e-05 2.0005
1

128 5.582693e-08 3.0001 5.399404e-05 1.9999 3.426510e-05 1.9998

Table 5.9. L2 errors and their orders for quadratic IFE solution
Uh and its derivatives for Example 5.2 with r = 103 using the
partially penalized method with S2,1

h .

h ||u− Uh||0 order ||ux − Uh
x ||0,h order ||uy − Uh

y ||0,h order
1
4 2.008170e-03 N/A 5.644459e-02 N/A 3.510983e-02 N/A
1
8 2.340102e-04 3.1012 1.383754e-02 2.0282 8.805326e-03 1.9954
1
16 2.891611e-05 3.0166 3.464429e-03 1.9978 2.199582e-03 2.0011
1
32 3.584640e-06 3.0119 8.641624e-04 2.0032 5.489480e-04 2.0024
1
64 4.473714e-07 3.0022 2.160397e-04 2.0000 1.371766e-04 2.0006
1

128 5.585713e-08 3.0017 5.399635e-05 2.0002 3.427253e-05 2.0010

Example 5.3.

There are many applications with great potentials to take advantage of the major
strength of the IFE method which consists of its ability to be used on interface-
independent meshes. For instance, let us consider the interface problem (1.1) on
Ω = (0, 1)2 consisting of two materials, one of them forms a thin layer in the top
part of the domain. Specifically, we assume the interface is defined by

(5.3) y = 1− ǫ, 0 < ǫ < 1

which separates Ω into Ω+ = {(x, y) ∈ Ω, y > 1−ǫ} and Ω− = {(x, y) ∈ Ω, y < 1−ǫ}
as illustrated in Figure 5.1. The Dirichlet boundary condition and the source term
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f are selected such that the true solution is

u(x, y) =





(1+x3(y+e−1)) cos(x(y+e−1))+sin(x(y+e−1))
β+ , on Ω+,

(1+x3(y+e−1)) cos(x(y+e−1))+sin(x(y+e−1))−1
β− + 1

β+ , on Ω−.

(5.4)

Figure 5.1. A two-material domain with a thin layer of width ǫ
for Example 5.3.

We solve this problem for ǫ = 10−3 and β+

β− = 5 using the partially penalized

IFE method (4.6) with the space S2,1
h on uniform meshes. We present the L2

errors for the quadratic IFE solution Uh and it derivatives in Table 5.10. For the
sake of comparison, we also solve this problem using the standard quadratic finite
element method with body-fitted meshes. The related computations are carried
out through the software COMSOL using its default parameters except for “max
element size” hmax = 1/8, 1/16, 1/32 and 1/64. A typical mesh used in COMSOL
for hmax = 1/16 and ǫ = 10−3 is shown in Figure 5.2.

We present errors in the finite element solution in Table 5.11 and plot the L2

errors versus the number of degrees of freedom for both methods in Figure 5.3. From
this simple experiment we observe that in order to produce numerical solutions with
a comparable accuracy, the conventional finite element method with body-fitted
meshes requires much more global degrees of freedom than the proposed partially
penalized IFE method.

Table 5.10. Degrees of freedom (DOF) and errors in IFE solution

Uh ∈ S2,1
h and its derivatives for Example 5.3 with ǫ = 10−3. The

IFE solution Uh is produced by the proposed partially penalized
IFE method on uniform meshes.

DOF ||u− Uh||0 ||ux − Uh
x ||0,h ||uy − Uh

y ||0,h
289 1.689638e-04 4.136825e-03 3.268165e-03
1089 2.137912e-05 1.041716e-03 8.173907e-04
4225 2.684222e-06 2.610211e-04 2.043138e-04
16641 3.362449e-07 6.529878e-05 5.107821e-05



564 S. ADJERID, M. BEN-ROMDHANE, AND T. LIN

Figure 5.2. COMSOL-generated mesh for the two-material do-
main of Figure 5.1 with ǫ = 10−3.

Table 5.11. Degrees of freedom (DOF) and errors in FE solution
Uh and its derivatives for Example 4 with ǫ = 10−3. The FE
solution Uh is produced by the standard finite element method in
COMSOL software on body-fitted meshes.

DOF ||u− Uh||0 ||ux − Uh
x ||0,h ||uy − Uh

y ||0,h
25550 1.838226e-04 5.894349e-03 4.736762e-03
25706 2.488306e-05 1.633209e-03 1.391346e-03
27182 3.049056e-06 4.049628e-04 3.783127e-04
32890 3.796342e-07 1.038044e-04 9.289677e-05

10
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10
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10
−7

10
−6

10
−5

10
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10
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Degrees of Freedom

L2  e
rr
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Immersed FE method
Standard FE method

Figure 5.3. L2 errors versus the number of degrees of freedom for
immersed method on uniform meshes and for standard finite ele-
ment method on body-fitted meshes using COMSOL for Example
5.3.
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6. Conclusion

We have explored how to extend linear IFE functions to higher degree polyno-
mials for solving the popular second order elliptic interface problems. Two classes
of extended interface jump conditions are proposed for IFE functions with second
degree polynomials and beyond on uniform triangular meshes. Procedures are de-
veloped for constructing higher degree IFE shape functions in both the Lagrange
and hierarchical forms on interface elements. These higher degree IFE are nu-
merically demonstrated to have the optimal approximation capability. A partially
penalized IFE method is also developed to solve the second order elliptic interface
problems with higher degree IFE spaces. Numerical results indicate that this par-
tially penalized higher degree IFE method converges optimally and the penalization
used in this scheme seems to be necessary for it to perform satisfactorily.
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