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Abstract� We propose solutions to two convergence problems that may occur in the Jacobi�
Davidson algorithm �����

The �rst problem arises when small perturbations of the projection of the matrix to the search
space 	the projected matrix
 create spurious eigenvalues close to the target eigenvalue� This makes
the corresponding eigenvector ill�conditioned and the algorithm stagnates or converges very slowly�
We discuss several causes for this problem� One potential remedy is to use re�ned Ritz vectors ��� ��
however� for the Jacobi�Davidson method this solution generally is very expensive� We will propose
a much cheaper solution�

The second problem occurs if the correction equation solved in the Jacobi�Davidson algorithm
produces a solution that makes a small angle with the current search space� In this case we do not
have an e�ective extension to the search space� and again the algorithm tends to converge very slowly�
We propose a solution to this problem that also improves the convergence of the linear systems that
must be solved in the algorithm�

Key words� large� sparse eigenvalue problems� Jacobi�Davidson method� truncation� non�
Hermitian linear systems
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�� Introduction� The Jacobi�Davidson algorithm to compute selected eigenval�
ues and �vectors of a matrix was introduced in ����� For completeness� we brie	y
describe the basic idea�

We want to solve the linear eigenvalue problem Ax 
 �x for one �or more�

eigenvalues close to a given target �� Assume we have already computed a matrix Vk
with k orthonormal columns that span the search space over which we approximate
the desired eigenpair� Let Hk 
 V �k AVk and let ��� s� be an eigenpair of Hk� Then
the approximate eigenvalue � and eigenvector u 
 Vks form a so�called Ritz pair� The
residual is given by r 
 Au � �u� and by de�nition we have r � Vk� Obviously Hk

has up to k eigenpairs� We select the one with the eigenvalue closest to the desired
eigenvalue� In the next iteration� to improve our approximate eigenpair ��� u�� we
solve the following correction equation �see ������

�I � uu���A� �I��I � uu��t 
 �r� t � u������

Afterwards� the solution t is orthogonalized against Vk and normalized to compute
an orthogonal extension to the space range�Vk�� Then we set column k�� of V to t�
Vk�� 
 �Vk t�� The correction equation ����� is typically solved only to low accuracy
by an iterative method� In their paper the authors use GMRES� but other methods
may be used as well� The algorithm is continued until the norm of the residual satis�es
some preset tolerance �krk� � tol��

The Jacobi�Davidson algorithm has recently gained wide popularity and the
method and generalizations have been used to solve several hard eigenvalue prob�
lems� see e�g�� ��� ��� ��� ����

In this paper we focus on the two problems mentioned in the abstract� The
purpose of this paper is not to compare the Jacobi�Davidson algorithm with other
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eigensolvers nor to introduce another eigensolver� Therefore� to analyze the conver�
gence problems in as simple a setting as possible we will not use preconditioners� Even
though we realize that this is one of the powerful features of the algorithm� see e�g�
����� In addition� we select speci�c �but mostly realistic� problems to illustrate the
convergence problems and to demonstrate the usefulness of our proposed solutions�

The �rst problem arises when small perturbations of the �projected� matrices
Hk for �many� successive k create spurious eigenvalues close to the target eigenvalue�
This makes the eigenvector ill�conditioned and the algorithm stagnates or converges
very slowly� One potential remedy is to use re�ned Ritz vectors ��� ��� however� for
the Jacobi�Davidson method this solution generally is expensive� The re�ned Ritz
vector �u corresponding to � is de�ned as the solution to

�u 
 argmin
y
k�A� �I�Vkyk�������

If the columns of Vk span a Krylov space �but not an arbitrary subspace of a Krylov
space�� the residuals of all Ritz pairs are di�erently scaled copies of the same vector�
say r� Therefore� range��A� �I�Vk� � range��Vk r��� and we can compute the re�ned
Ritz vector from a small �k � �� � k matrix� cf� the Arnoldi method where we can
compute it using the extended Hessenberg matrix ���� However� the columns of Vk
in the Jacobi�Davidson algorithm will generally not span a Krylov space� Note that
even an arbitrary selection of vectors out of a Krylov sequence does not span a Krylov
space� So we do not have the property that range��A � �I�Vk� � range��Vk r���
Indeed� for the Jacobi�Davidson algorithm the residuals of the Ritz pairs may all be
independent� In fact� for the Jacobi�Davidson algorithm each basis vector might have
been generated with a di�erent preconditioner� So� computing the re�ned Ritz vector
becomes expensive� because it requires the singular value decomposition �SVD� of an
N � k matrix� Moreover� since � changes from one iteration to the next� we have to
compute a new SVD in each iteration�

We will propose a much cheaper solution� We will also show an example that using
re�ned Ritz vectors in the Jacobi�Davidson algorithm may lead to slower convergence
than using the Ritz vectors �Problem � in Section ���

The second problem occurs if the approximate solution t to the correction equation
����� makes a small angle with the current search space range�Vk�� that is� k�I �
VkV

�

k �tk� � ktk�� After orthogonalization t contains mainly noise� we do not compute
an e�ective extension to the search space� and again the algorithm tends to converge
very slowly� We propose a solution to this problem that also improves the convergence
of the linear systems that must be solved in the algorithm�

In ��� we suggested the solutions to these problems� In the present paper we
elaborate in detail the relevant theory� and we present several improvements and
additions to the material in ����

We discuss the relevant theory in Section � and our implementations in Section ��
Section � contains the numerical experiments� and Section � contains the conclusions�

�� Theory� Let A � C
N�N � let V �k Vk 
 Ik� and let Hk 
 V �k AVk� Further� we

assume that the desired eigenvalue � of A closest to the speci�ed �input� target � is
simple� and we denote the �right� eigenvector corresponding to � by x� Although we
believe that the approaches discussed in this paper are applicable to higher dimen�
sional invariant subspaces� we will not discuss this in the present paper� Let � be the
eigenvalue of Hk closest to � and let ��� s� denote the corresponding �right� eigenpair�
The operator used in the Jacobi�Davidson correction equation ����� will be denoted
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by

Au�� 
 �I � uu���A� �I��I � uu���

Since the failure to converge of Ritz vectors is caused by the ill�conditioning of the
eigenvectors s of the matricesHk� for k 
 �� �� � � �� we will need to look at the following
matrices and singular value decompositions� Let Sc � C k�k�� � S�cSc 
 Ik��� and
Sc � s� So Sc provides an orthonormal basis for the complement of range�s�� and we
have

�s Sc�
�Hk�s Sc� 


�
� s�HkSc
� S�cHkSc

�
������

We de�ne the following two singular value decompositions

S�cHkSc � �I 
 ���������

and

Au��VkSc 
 ������������

We are concerned with the convergence of the Jacobi�Davidson algorithm to some
given tolerance tol� Hence� we will discuss ill�conditioning relative to the tolerance we
are trying to achieve� To compute accurate approximations to the desired eigenpair
we are concerned with the conditioning of the matrix �S�cHkSc� �I� and� in the case
of small eigenvalues� with the conditioning of the matrix Hk�

���� Spurious Eigenvalues� As discussed in ��� �� the Ritz vectors u may not
converge to the eigenvector x until the search space spans the entire space C n � even
though the actual eigenvector x can be approximated very accurately in smaller �pre�
vious� subspaces� When this happens� the reason for this failure to converge is that
there exists a small perturbation of the projected matrix Hk that makes its eigenvalue
� a double eigenvalue� As a result the conditioning of the eigenvector s corresponding
to � becomes so poor that u 
 Vks fails to converge� This may happen even if A has no
other eigenvalue �relatively� close to the desired eigenvalue � and the corresponding
eigenvector x is not very ill�conditioned� as we will show in Section ��

In order to derive an alternative to re�ned Ritz vectors� we will analyze the
problem of ill�conditioning of the eigenvector s of Hk� If s is signi�cantly more ill�
conditioned than x� this must be an artifact of the subspace over which we are trying
to approximate ��� x�� Therefore� we propose to improve the search space by purging
subspaces that cause this arti�cial ill�conditioning�

Theorem ���� There exists a perturbation E of Hk with kEk� 
 �k�� such that
� is a double eigenvalue of Hk �E�

Proof� From ����� we have k�S�cHkSc � �I��k��k� 
 �k��� In this case� the

Kahan�Parlett�Jiang theorem ���� ��� states that there exists a perturbation bE of

S�cHkSc such that k bEk� 
 �k�� and �S
�

cHkSc� bE��k�� 
 ��k��� So � is an eigenvalue

of S�cHkSc � bE� Then� from ����� we can conclude that � is a double eigenvalue of
Hk �E� where

E 
 �s Sc�

�
� �

� bE
�
�s Sc�

��

Obviously� kEk� 
 k bEk� 
 �k���
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This theorem shows that if �k�� is very small� the eigenvector s corresponding to �
is ill�conditioned� In particular� if �k����� is very small� there exists a small relative
perturbation of Hk that makes � a double eigenvalue� and we may not expect that s
will be computed to high accuracy� Clearly� this will lead to convergence problems if
the ill�conditioning persists� It is important to realize that this does not necessarily
imply that S�cHkSc has an eigenvalue close to �� some eigenvalues of S

�

cHkSc may
be very ill�conditioned� If we use the QR�algorithm to compute the eigenvalue de�
composition of Hk� then we have for the computed Schur form of the matrix Hk that
P bTP � 
 Hk � E� where kEk� � 	machkHkk� ���� Typically� kHkk� � ��� so we can
expect perturbations of order ��	mach�

The following theorem� adapted from ���� shows under which conditions the Ritz
vector u 
 Vks does converge to x�

Theorem ���� If 	 exists such that

�k�� 	 
min�S
�

cHkSc � �I� 
 	 � �������

for k 
 �� �� � � �� then the Ritz vector Vks corresponding to � converges�
Proof� See ���� theorem ��� and subsequent discussion�

It was also shown in ��� that the Ritz value � converges unconditionally as the angle
between the vector x and the search space goes to zero� So� if we can adapt the
sequence of search spaces such that they produce the same converging Ritz value �� but
the corresponding eigenvector s remains well�conditioned ��k�� uniformly bounded
away from �� the Ritz vector u 
 Vks will converge to x� This is exactly what we
propose to do�

We want the computed Ritz vector to converge within the required tolerance tol�
Therefore� as a matter of practical concern� we must prevent that s becomes so ill�
conditioned that the inaccuracy in the computation of s prevents us from reaching
this tolerance� In the following� we will derive a way to adapt the sequence of search
spaces spanned by Vk� for k 
 �� �� � � �� such that s remains well�conditioned� From
the theorems above� we already see that we want to keep ����k�� smaller than a
certain tolerance related to tol� We will derive this tolerance criterion below�

First� however� we will consider where the ill�conditioning of s may come from�
and why the Jacobi�Davidson algorithm may be susceptible to this problem� The
most important reason for the potential ill�conditioning of s is that Au�� may be
ill�conditioned over range�VkSc��

Theorem ���� If Au�� is ill�conditioned over range�VkSc� and �� � ��� then
there exists a small relative perturbation of Hk such � is a double eigenvalue�

Proof� Since s � Sc we have

�VkSc�
�Au���VkSc� 
 S�cHkSc � �I 
 ����

Clearly �k�� � ��k��� So from �� � ��� we may infer ����k�� � ������k��� Therefore�
S�cHkSc� �I is ill�conditioned� According to Theorem ��� this means a small relative
perturbation exists that makes � a double eigenvalue�
The problem that Au�� is ill�conditioned over range�VkSc� tends to arise for a vari�
ety of reasons� The matrix A may be very ill�conditioned �which does not mean the
eigenvalue x is ill�conditioned�� The eigenvalue approximation � is much more accu�
rate than the eigenvector approximation u �which is quite common�� or vice versa�
We can improve the conditioning of s by purging those directions from the search
space that cause the ill�conditioning� This is rather counterintuitive� as generally
the approximation improves as we extend the search space� However� the problem
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has little to do with the projection of the actual eigenvector x onto the search space
range�Vk�� it is caused by the projection of A onto the search space� Note that
S�cHkSc � �I 
 ��� may also be ill�conditioned if there exists a vector y such that
almost Au���VkSc�y � VkSc� even if kAu���VkSc�yk� is not small� However� this prob�
lem may well disappear in subsequent iterations if Vk is expanded�

The assumption in Theorem ��� that �� � ��� excludes the possibility that we are
lucky and S�cHkSc� �I is much better conditioned than Au���VkSc�� This could hap�
pen if 
max�S

�

cV
�

k Au��VkSc� is much smaller than ���� However� this points us in the
right direction for adapting Vk such that the eigenvector s remains well�conditioned�

Before we discuss how we purge those directions that cause the ill�conditioning
from the search space� we discuss an additional� related convergence problem�

The previously discussed problem holds for any eigenvalue �� However� if we
are interested in an eigenpair with a small absolute eigenvalue� we will also have
problems if Hk is ill�conditioned� If the condition number of Hk is large� this may
lead to large relative errors in the computed smallest eigenvalues� This can be shown
as follows� We have for the computed Schur form of Hk �from the QR algorithm�

that P bTP � 
 Hk �E� where kEk� � �machkHkk� ���� In addition� we have from the
Bauer�Fike theorem �see ���� that if  is an eigenvalue ofHk�E� whereHk 
 X�X���
then

min����Hk�j�� j � ���X�kEk��

where ���X� is the spectral condition number of the eigenvector matrix of Hk� So�
the ill�conditioning of Hk can lead to a large relative shift of the smallest �absolute�
eigenvalues of Hk� especially if ���X� is large as well� If we are interested especially
in the smallest eigenvalues� this inaccuracy may prevent us from converging� even if
the eigenpair itself can be well approximated in the Krylov space� It is the inaccuracy
of the computed eigenvalues of the projected matrix that keeps us from converg�
ing� Typically� ���Hk� will be large when ����k�� is large� Especially in the case
that S�cHkSc � �I is ill�conditioned because its eigenvector matrix is ill�conditioned�
rather than having an eigenvalue very close to �� Speci�cally� if �� � � then Hk

is ill�conditioned� So if we try to approximate an eigenpair with an absolute small
eigenvalue� we have reason to try to purge subspaces from range�Vk� that cause large
singular values of Hk�

We will now discuss how we can compute more accurate approximations to x by
adapting the search space range�Vk�� As stated before� we are interested in computing
an eigenpair approximation accurate to some given tolerance tol� that is we want

krk� 	 kAVks� �Vksk� � tol������

Given a certain inaccuracy in s we have no direct way to assess the e�ect on krk� �other
than computing it�� Of course� we do know that kHks � �sk� � krk� �see below��
Hence� we want to bound the inaccuracy in the computed s to be less than tol���
where � 
 � provides some margin� Note that reducing ����k�� increases the relative
perturbation that makes � a double eigenvalue and hence controls the conditioning
of s� Therefore� we want to truncate the search space such that ����k�� remains
bounded� In particular we want to bound �k�� away from �� so that Theorem ���
guarantees convergence� We will now derive the bound we want to maintain for
����k�� relative to tol�

From a theorem in ���� p����� and its specialization to eigenvectors ���� p�����
we can compute the following error bound for the computed eigenvector �s of Hk with
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respect to the exact eigenvector s for a perturbation �matrix� E�

�s � s�Sc��I � S�cHkSc�
��S�cEs������

Moving s to the left� taking norms on both sides and assuming kEk� � kHkk	mach�
we get

k�s� sk� �
kHkk�
�k��

	mach������

So in order to bound the error in s from ����� we have to truncate the subspace
range�Vk� such that

kHkk�
�k��

�
tol

�	mach

������

In the case that the desired eigenvalue is not the absolute largest eigenvalue we may
use the approximation �� � kHkk�� in which case the previous bound becomes

��
�k��

�
tol

�	mach

������

So optimizing the conditioning of s and minimizing the bound on the error in the
computed �s in ����� require the same value to be bounded�

However� the actual error in s may be much smaller than indicated by the upper
bound� Moreover� truncating too often or reducing the dimension of the subspace too
much is expensive and may reduce the convergence rate� Hence� we typically apply an
additional criterion� We assess the actual error and hence the e�ect of ill�conditioning
by the norm of the residual of the eigenpair ��� s� of Hk� If kHks� �sk� is very small�
say

krsk� 	 kHks� �sk� � tol���������

we may assume the ill�conditioning did not play a large role �and does not a�ect
the accuracy of u signi�cantly�� and we may choose not truncate� Speci�c choices
are discussed in Section �� for the e�ect of certain choices see Section �� There is
an another important reason for using krsk�� As will be shown in the numerical
examples� if ����k�� gets su ciently large krsk� may be large too� Since rs 
 V �k r
we have

krsk� � krk��������

So� if krsk� � tol the Ritz vector u cannot converge to the required tolerance� Occa�
sionnally we may use further criteria in addition to those mentioned above�

Summarizing� when the bound on the conditioning of s and!or the bound on krsk�
are violated we truncate the search space such the bound on �max��min is satis�ed
again� Clearly� we want to discard the subspace of smallest dimension such that

�max

�min

�
tol

�	mach

�������

We can do this as follows� Let fn� n� � � � � � n�g be the largest set of consecutive
indices such that �n���n� � tol

��mach
� where � 
 � can be used to create a certain
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margin for the accuracy of s �a typical choice is � 
 ����� Then we de�ne the new
search space using Sc� the right singular vectors �n� � � � � � �n� � and s� The new search
space is represented by

bVn��n��� 
 Vk�s Sc�n� � � � Sc�n� ��������

In Section � we will discuss e cient ways to implement this truncation� The
computation of the eigenvalue decomposition of Hk and the SVD of S

�

cHkSc � �I
introduces a cost of O�k��� where k is very small compared to N � In the next section
we will show that the truncation ������ has a computational cost of O�Nk�� in contrast
to O�Nk�� for computing re�ned Ritz vectors for the Jacobi�Davidson algorithm� An
additional advantage is that this truncation may need to be done only once or a few
times �see Section ��� while in general re�ned Ritz vectors must be computed at every
iteration�

���� Ine�ective extension to the search space� The second problem occurs
if the solution t to the correction equation ����� makes a small angle with the current
search space� that is� k�I �VkV

�

k �tk� � ktk�� Note that only t � u is enforced by the
algorithm� not t � Vk � Hence� if k�I � VkV

�

k �tk� � ktk�� after orthogonalization� the
resulting vector� �I � VkV

�

k �t will contain mainly noise� and it will not give a useful
extension to the subspace range�Vk�� The Jacobi�Davidson algorithm then stagnates
or converges very slowly� This can happen for a variety of reasons� First of all� if A
is very ill�conditioned and!or strongly non�symmetric� Generating Krylov subspaces
with such a matrix tends to generate spaces that make very small angles with each
other� unless we enforce a certain level of independence by maintaining orthogonality
to selected subspaces ���� Another typical reason why t may be close to range�Vk� is
slow convergence of the Jacobi�Davidson algorithm� If the Jacobi�Davidson algorithm
at some stage converges very slowly� then r and u hardly change� and we solve virtually
the same correction equation several times� Clearly� the solutions will be very close
as well�

Following ideas from ���� we can reduce this problem by using the already gen�
erated subspace range�Vk� in the linear solver� This serves two purposes and both
will alleviate the problem� We can generate a new search space explicitly orthogonal
to Vk� The component of t in this search space always provides a good extension
to the search space� If we use Vk in the linear solver to improve convergence we
�nd better approximations to t �with fewer iterations� which generally will make the
Jacobi�Davidson algorithm converge faster�

The extensions to the standard algorithm bring additional costs too� However�
we can easily combine the standard algorithm with the extensions in the sense that
we do not perform them at every step� but only when certain criteria are met� For
example� when convergence becomes very slow� when the approximate solution of the
correction equation ����� is almost dependent with the columns of Vk � or when the
algorithm seems to stall even though we compute accurate solutions to the correction
equation�

Approach �� If we mainly aim to improve the linear solver� we apply the fol�
lowing strategy derived from ��� �� ���

We �rst compute the QR�decomposition

Au��VkSc 
 QR�������

with Q�Q 
 Ik��� and Q � u� We now want to solve ����� over the union of range�Vk�
and a small Krylov space range�Cm� such that Cm � Q� The optimal way to do
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this was discussed in ��� ��� Assuming we use GMRES to approximately solve the
correction equation ������ we do this as follows�

� 
 k � r �QQ�rk��������

c� 
 ��r �QQ�r����������

Next we use the Arnoldi iteration with additional orthogonalization on Q to compute

Au��Cm 
 QQ�Au��Cm � Cm��Gm�������

so that Cm � Q and Cm � u� In the following we use B to denote Q�Au��Cm� Now we
want the solution t 
 VkScy��Cmy� that minimizes the residual norm k�r�Au��tk��
We need to �nd the vectors y� and y� that solve

y�� y� 
 arg min
�y���y�

k � r �Au���VkSc�y� � Cm�y��k��������

Now we substitute for �r 
 �QQ�r � �c�� and using ������ and ������ we get

y�� y� 
 arg min
�y���y�

k �QQ�r �QR�y� �QB�y� � �c� � Cm��Gm�y��k��������

This problem can be solved in two minimization steps ����

y� 
 argmin
�y�
k�c� � Cm��Gm�y��k��������

y� 
 argmin
�y�
k �QQ�r �QR�y� �QB�y�k��������

where the second minimization reduces to a nonsingular linear system of equations
after the solution of the �rst gives y� and if R is nonsingular� Note that the latter
condition is automatically ful�lled if we use truncations as described in subsection ����
since the singular values of R are ���� � � � � ��k��� The �rst minimization is solved as in
the standard GMRES iteration� We can move the �orthogonal� matrix Cm�� outside
the norm and solve the resulting upper Hessenberg system�

minke���Gm�y�k��

in least squares sense using m� � Givens rotations and back substitution�
This gives the solution t 
 VkScy� � Cmy� that minimizes the residual norm of

the correction equation� Moreover� t is automatically orthogonal to u� Furthermore�
since we are interested in t only as an extension to the subspace range�Vk�� we do not
even need to compute y�� we are only interested in the part Cmy��

However� we have taken Cm orthogonal to Q� not orthogonal to Vk� and so we
have to orthogonalize Cmy� against Vk� Since Cm is orthogonal to Q 
 Au��VkSc� and
we use Vk to approximate an invariant subspace� we do not expect range�Cm� to be
close to range�Vk�� Unfortunately� occasionally when we orthogonalize the normalized
Cmy� against Vk we do end up with a very small vector� If this persists we should use
Approach �� discussed below� However� in general this is not the case� and we �nd
vectors Cmy� that make large angles with range�Vk��

So the algorithmic extensions outlined above serve two di�erent purposes� First�
they typically produce smaller residuals for the linear system of equations ����� than
the standard Jacobi�Davidson algorithm� Second� they generally produce a new di�
rection vector that has a larger angle with range�Vk� than the vector produced by the
standard Jacobi�Davidson algorithm�
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Finally� there is an interesting link between the truncation strategy discussed in
the previous subsection and the problem of poor extensions to the search space� From
������ and ����� we have that the SVD of R is given by

R 
 Q� �������������

This has following implication� If Au�� is ill�conditioned over the range�VkSc�� espe�
cially if ��k�� is very small� then

y� 
 R����Q�r �By��

may be very large� This emphasizes the fact that t may have a large component
in range�VkSc�� especially if Au�� is ill�conditioned over range�VkSc�� It also shows
that the two problems we address are not unrelated� Since we are not interested in t
but only in the component Cmy�� our approach prevents the new vector from being
spoiled by components in range�VkSc� that we are not interested in�

Approach �� As an alternative we may want to compute t to be explicitly
orthogonal to Vk� This prevents the possibility of computing a vector t that is close
to range�Vk�� A straightforward approach would be to solve ����� using an orthogonal
residual approach �like FOM� instead of a minimal residual approach� but this can
occasionally lead to poor approximations� In fact the results of some experiments
turned out rather disappointing� However� with some additional work we can solve
in minimal residual sense for a general solution of the form t 
 VkScy� � Cmy� with
Cm � Vk� To generate the Cm� instead of separately forcing orthogonality to VkSc
and to u 
 Vks� we rather maintain orthogonality to range�Vk� and iterate with
A� 
 �A � �I�� So� given the residual r 
 Au � �u� we proceed as follows� Let
c� 
 r�krk�� We use m Arnoldi iterations with additional orthogonalization on Vk to
compute

A�Cm 
 VkV
�

k A�Cm � Cm��Gm�������

Note that Cm � Vk� Taking the generic solution t 
 VkScy� � Cmy� and solving in
least�squares sense �minimum residual� we get the equations

�r �A��VkScy� � Cmy�� � range�A��VkSc Cm���������

The system of normal equations for this problem tends to be very ill�conditioned� so
these equations are best solved using a QR�decomposition�

In general� it seems the second approach produces less good results than the �rst�
Since� in none of our experiments using the �rst approach we had problems with t
having a small angle with range�Vk� we will not show any results with Approach ��

Remark� In ��� the authors propose to compute an extension to the search space
by solving a modi�ed correction equation using

�I � VkV
�

k ��A� �I��I � VkV
�

k �t 
 �r�

This turns out not to work well ���� Although this approach seems similar to ours�
there are important di�erences� In Approach � we extend the search space orthogonal
to Au��VkSc which seems to be better for the linear solver� In Approach � we do extend
the search space orthogonal to Vk � However� in both approaches we compute solutions
to the original correction equation 	���
 and we compute optimal solutions over the
spaces range�Au��VkSc�

L
range�Cm� and range�VkSc�

L
range�Cm� respectively� So

we use Au��VkSc and Vk to generate more independent search spaces� but we solve
the original correction equation� This seems to make a signi�cant di�erence�
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�� Implementation� We follow the basic algorithm as speci�ed in ����� How�
ever� we extend it with a few additional steps to improve convergence and with a
truncation strategy to make sure that the eigenvector of the desired eigenpair of Hk

remains su ciently well�conditioned�
Let the columns of the matrix Vk span the search space that we use for computing

an approximate eigenpair� and letWk 
 AVk and Hk 
 V �k Wk � Furthermore� let ��� s�
be the eigenpair of Hk with � closest to the desired eigenvalue� Then we have the Ritz
pair ��� u� where u 
 Vks� To extend the search space and �nd a better approximation
to the desired eigenpair ��� x� we approximately solve the correction equation

Au��t 
 �r�

subject to the constraint that t be orthogonal to u�
In order to deal with spurious eigenvalues close to �� or more generally with ill�

conditioning of S�cHkSc� �I and s we make the following tests before an iteration �if
k � ���

�� We compute ����� and we test whether ����� is sati�ed�
�� We compute krsk� and we test whether ������ is satis�ed� If not� and if our
desired eigenvalue is the largest absolute eigenvalue� we may also compute
kHkk� and test whether ����� is satis�ed� Note that if ����� and!or ����� are
satis�ed there is no need to check ������ unless we are willing to change the
tolerance margin �� If we do not change �� even if ������ would be violated�
no truncation will be done�

�� Occasionally� it appears to be advantageous to check ks�HkSck��kS
�

cHkSck�
and not to truncate if this number is �very� small� This number indicates a
relative uncoupling of � from the eigenvalues of S�cHkSc� see ���� pp� ��� "
����

Finally� we note that maintaining ����� and!or ����� �in practice� always takes care of
maintaining ������ Our general truncation strategy is to truncate according to ������
if ����� and ������ are violated� Using the third criterion above regularly improves
convergence but not much�

A straightforward implementation of the truncation ������ is expensive if we purge
a subspace of small dimension� This is generally the case� the dimension of the
subspace purged is typically � or �� Therefore� the truncation is implemented using a
trick from ���� We do not care about the actual columns of the new matrix bVn��n����
we only need

range�bVn��n���� 
 range��Vks VkSc�n� VkSc�n��� � � � VkSc�n� ���

Therefore� we use Givens rotations to rotate the columns of Vk in such a way that the
vectors to be purged are rotated to the last columns of Vk� Then we adapt k to re	ect
the dimension of the new search space� and the vectors are e�ectively discarded� They
will be overwritten in subsequent iterations� Suppose we want to discard the vector
Vk�Sc���� We proceed as follows� From the vector Sc�� we can generate a set of
Givens rotations G�� � � � � Gk�� such that G

�

k��G
�

k�� � � � G
�

��Sc��� 
 �ek� where � is
an arbitrary unit scalar �which can be set to � 
 � if this is advantageous�� Now we
update Vk using these Givens rotations�bVk 
 VkG� � � � Gk��������

So� we have for the last column of bVkbVkek 
 VkG� � � � Gk��ek 
 Vk�Sc���#��
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and discarding the last vector by setting k � k � � gives the desired result� We
have to update Hk by computing bHk 
 �G� � � �Gk���

�Hk�G� � � � Gk���� The cost of
this truncation is O�Nk�� This process is easily repeated to discard further vectors�
Hence� purging a subspace of dimension much less than k has cost O�Nk��

In order to deal with poor extensions of the search space we check whether k�I �
VkV

�

k �tk� � �ktk�� where typical values of � are ����� or ������� If this is the case
we continue the iteration normally� but for the next m Jacobi�Davidson iterations we
will follow the algorithm outlined in Section � under Approach �� Typical values for
m are � to �� When following Approach �� in order to implement ������ we use the
same trick with the Givens rotations outlined above with G�k��G

�

k�� � � � G
�

�s 
 �ek�
However� we do not update Vk and Wk but add the results immediately into Q using
two additional temporary vectors for intermediate results� Then we compute the QR
decomposition of Q� We compute t 
 Cmy� and orthogonalize t against Vk� If in this
case k�I � VkV

�

k �tk� � �ktk� we will follow Approach � in the next iteration� For the
examples in this paper� this was never necessary�

Finally� we may need to truncate when the number of columns in the matrix
Vk becomes too large� We use the $Schur vector% strategy proposed in ����� With
one exception �to make a particular point�� in the experiments discussed in the next
section we do not use such truncations to avoid confusion between the e�ects of our
algorithmic extensions and the e�ects of this type of truncation�

�� Numerical Experiments� We will discuss three test problems� All experi�
ments were carried out using Matlab version ����

The �rst problem is speci�cally constructed to analyze the e�ects of ill�conditioning
of the eigenvector s of Hk� The other two problems are more realistic and concern
the e�ects of additional orthogonalization in the linear solver� following Approach ��
to improve the e�ectiveness of the extension to the search space� The third problem
is also used as an example that using re�ned Ritz vectors at each iteration for the
Jacobi�Davidson algorithm may lead to worse convergence than using Ritz vectors�

Problem �� The �rst problem is derived from a test problem in ���� using a
diagonal matrix� We change the test problem by a similarity transformation that will
make the matrix nonnormal� Let the diagonal matrix D be given by diag�� k

��� �
������

for k 
 � � � � ���� Let S be a bidiagonal matrix with diagonal elements � and upper
diagonal elements equal to �� For this experiment we use � 
 ����� We de�ne the
matrix A 
 SDS��� and we will compute the smallest absolute eigenvalue �� 

�������� and the associated eigenvector� Note that this is an interior eigenvalue�
The correction equation ����� is solved approximately using �� steps of GMRES�

We show the convergence of the standard Jacobi�Davidson algorithm in Fig� ����
Note how the Jacobi�Davidson algorithm converges slowly because k�I�VkV

�

k �tk��ktk�
is fairly small� We see that right from the start S�cHkSc� �I is rather ill�conditioned�
As the ill�conditioning becomes severe� krsk� becomes large� and the algorithm stag�
nates� The restart parameter is set to ��� After the restart �using Schur vector
truncation� S�cHkSc � �I is better conditioned �drop of ����k��� and the algorithm
converges in �� more iterations� This emphasizes that the stagnation was not due to
the fact that the projection of the desired eigenvector x on range�Vk� was small� but
due entirely to the e�ects of ill�conditioning�

In Fig� ��� we show the convergence of the Jacobi�Davidson algorithm using re�
�ned Ritz vectors� This is expensive� but we show the results to illustrate the e�ect
on the convergence� We use the re�ned Ritz vectors also to extend the search space�
just as in ���� When we use re�ned Ritz vectors� for this problem� krsk� �not shown�
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Fig� ���� Convergence of the standard Jacobi�Davidson algorithm for Problem � and its relation
to our various criteria�

0 5 10 15 20 25 30 35 40
-12

-10

-8

-6

-4

-2

0

2

4

6

�=0.80

log (||(I-VV )t|| /||t|| )
10 2 2

*

log ||r||
10 2

Jacobi-Davidson iterations

Fig� ���� Convergence of the Jacobi�Davidson algorithm using re�ned Ritz vectors for Problem �
and its relation to k	I � VkV

�

k

tk��ktk��

remains small� Note that k�I � VkV
�

k �tk��ktk� is fairly small �but better than for the
standard Jacobi�Davidson algorithm� and the algorithm converges slowly�

In Fig� ��� we show the convergence of the Jacobi�Davidson algorithm using trun�
cation to maintain a well�conditioned eigenvector s� After a few iterations the algo�
rithm does one single truncation� which signi�cantly improves the conditioning of s�
note the drop of ����k�� and of krsk�� This shows our truncation algorithm is very ef�
fective� After this ����k�� increases slowly but without a�ecting krsk�� except at the
very end� At the end ����k�� increases drastically� but since ks

�HkSck��kS
�

cHkSck�



Improving Jacobi�Davidson ��

0 5 10 15 20 25 30 35 40 45
-20

-15

-10

-5

0

5

10

15

�=0.80

log / )
10 max min

�� �

log (||(I-VV )t|| /||t|| )
10 2 2

*

log ||r||
10 2

log ||r ||
10 s 2

log ||r||

||s H S || /||S H S ||2

10 2

k c 2 c k c

without using
* *

log (||s H S || /||S H S || )
10 k c 2 c k c 2

* *

Jacobi-Davidson iterations

Fig� ���� Convergence of the standard Jacobi�Davidson algorithm with truncation for Problem �
and its relation to our various criteria�

becomes small we do not truncate� The Jacobi�Davidson algorithm with truncation
converges in a few more iterations than the Jacobi�Davidson algorithm using re�ned
Ritz vectors� however� the Jacobi�Davidson algorithm with truncation does signi��
cantly less work �	ops�� Moreover� the Jacobi�Davidson algorithm with truncation
achieves this convergence with only a single truncation �of a subspace of dimension
���

We also provide the convergence for the case that we do not use the ratio ks�HkSck��kS
�

cHkSck�
to avoid truncation when this ratio is small� In this case the algorithm performs a
truncation at iteration ��� This improves krsk� and ����k�� again drastically �not
shown in the �gure�� but the unnecessary truncation delays convergence by a few
iterations�

In Fig� ��� we show the convergence of the Jacobi�Davidson algorithm using trun�
cation to maintain a well�conditioned eigenvector s and using Approach � in the linear
solver when k�I �VkV

�

k �tk��ktk� becomes small� It performs three truncations in the
�rst few iterations� This algorithm has the fastest convergence of the four Jacobi�
Davidson variants�

Problem �� The second example involves a small convection�di�usion problem
with strong convection� leading to a strongly nonsymmetric �non�normal� matrix� The
matrix A is derived from the �nite volume discretization of the partial di�erential
equation

�uxx � uyy � ��ux � ��uy 
 ��

on ��� ��� ��� �� with Dirichlet boundary conditions� u 
 � for x 
 � and y 
 �� and
u 
 � for x 
 � and y 
 �� We discretize the system using �� mesh points in each
direction� We solve again for the �absolute� smallest eigenvalue and the associated
eigenvector� In this case the smallest eigenvalue is on the boundary of the spectrum�
The correction equation is solved approximately using �� steps of GMRES�

For this problem there is no need for truncation� and k�I�VkV
�

k �tk��ktk� remains
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Fig� ���� Convergence of the standard Jacobi�Davidson algorithm and the Jacobi�Davidson
algorithm using Approach � for the linear solver for Problem ��

close to �� as shown for the standard Jacobi�Davidson algorithm� see Fig� ���� For
the Jacobi�Davidson algorithm using Approach � in the linear solver� we forced the
algorithm to do the additional orthogonalization in the linear solver at each iteration�
This leads to much faster convergence in the linear solver and hence in the eigensolver�
The standard Jacobi�Davidson algorithm takes about ��& more Jacobi�Davidson it�
erations than the version using Approach �� This shows that extra work in the linear
solver may be worth while to improve convergence�
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Fig� ��	� Convergence of the Jacobi�Davidson algorithm using Approach � in the linear solver
for Problem ��

Example �� In our last example we compute an interior eigenpair of the ma�
trix West���� from the public domain Harwell�Boeing collection� We solve for an
interior eigenvalue close to the �complex� value ����������������� and for the asso�
ciated eigenvector� The correction equation is solved approximately using �� steps of
GMRES�

We compare the standard Jacobi�Davidson algorithm with the Jacobi�Davidson
algorithm using Approach � for the linear solver� and with the Jacobi�Davidson algo�
rithm using re�ned Ritz vectors �also for extending the search space�� see Figs� ���� ����
and ���� For this problem there was no need for truncation� The Jacobi�Davidson algo�
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� Convergence of the Jacobi�Davidson algorithm using re�ned Ritz vectors for Problem ��

rithm using Approach � for the linear solver uses parameters � 
 ���� and m 
 �� the
number of Jacobi�Davidson iterations using Approach � after k�I � VkV

�

k �tk� � �ktk�
occurs� Occasionally� k�I � VkV

�

k �tk��ktk� is small� but the inner orthogonalization
quickly brings the ratio close to �� The standard Jacobi�Davidson algorithm and the
Jacobi�Davidson algorithm with re�ned Ritz vectors su�er signi�cantly from small
k�I �VkV

�

k �tk��ktk� ratios and converge much slower than the Jacobi�Davidson algo�
rithm using Approach �� Note that the Jacobi�Davidson algorithm with re�ned Ritz
vectors converges slowest �and is the most expensive per iteration��

	� Conclusions� We have explained and analyzed two problems that can se�
riously deteriorate the convergence of the Jacobi�Davidson algorithm and even pre�
vent it from converging� Based on our analysis we have proposed solutions to these
problems� and we have demonstrated their usefulness in numerical experiments� In
addition� we have shown how the convergence of the Jacobi�Davidson algorithm can
be improved by including the existing search space for the eigenproblem in the search
space for solving the �linear� correction equation�
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