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RECYCLING SUBSPACE INFORMATION FOR DIFFUSE OPTICAL
TOMOGRAPHY™

MISHA E. KILMER! AND ERIC DE STURLER?

Abstract. We discuss the efficient solution of a long sequence of slowly varying linear systems
arising in computations for diffuse optical tomographic imaging.

The reconstruction of three-dimensional absorption and scattering information by matching com-
puted solutions from a parameterized model to measured data leads to a nonlinear least squares
problem that we solve using the Gauss—Newton method with a line search. This algorithm requires
the solution of a long sequence of linear systems. Each choice of parameters in the nonlinear least
squares algorithm results in a different matrix describing the optical properties of the medium. These
matrices change slowly from one step to the next, but may change significantly over many steps. For
each matrix we must solve a set of linear systems with multiple shifts and multiple right-hand sides.

For this problem, we derive strategies for recycling Krylov subspace information that exploit
properties of the application and the nonlinear optimization algorithm to significantly reduce the
total number of iterations over all linear systems. Furthermore, we introduce variants of GCRO that
exploit symmetry and that allow simultaneous solution of multiple shifted systems using a single
Krylov subspace in combination with recycling. Although we focus on a particular application and
optimization algorithm, our approach is applicable generally to problems where sequences of linear
systems must be solved. This may guide other researchers to exploit the opportunities of tunable
solvers.

We provide results for two sets of numerical experiments to demonstrate the effectiveness of the
resulting method.
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1. Introduction. In diffuse optical tomography (DOT), data is obtained by
transmitting near-infrared light into a highly absorbing and scattering medium and
then recording the photon flux. The goal is to use the diffuse optical data measured
on the surface to reconstruct three-dimensional (3D) images of the absorption and
“reduced scattering” functions in the medium. In the case of breast tissue imaging,
differences in the absorption and scattering may indicate the presence of a tumor or
other anomaly.

The forward problem is the determination of synthetic data (photon flux) for
given absorption and scattering functions from some mathematical model. A number
of mathematical models have been proposed in the literature [2]. We focus on the
frequency-domain diffusion model in which the data is a nonlinear function of the
absorption and scattering functions. In order to solve the imaging problem—the
determination of the absorption and reduced scattering functions—one must solve
many instances of the forward problem. This fact implies a huge computational
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bottleneck for the imaging problem. The goal of this paper is to discuss techniques for
reducing the computational complexity of forward solves, thereby greatly improving
the execution time of the nonlinear imaging problem.

In [26], we recycle the subspaces that are generated automatically by the methods
used. In the present paper, we analyze the application, its solutions, and the non-
linear optimization algorithm to derive strategies for selecting subspaces for recycling
that enhance convergence even further. In particular, we explore which information
to keep and which to save as the damped Gauss—Newton (GN) method progresses.
Furthermore, we present a variant of GCRO [10] that exploits the symmetry of the
matrix and that can solve multiple shifted complex systems simultaneously with a
single Krylov subspace in combination with recycling. The symmetry means that
there is no need to restart for a single linear system to save on storage.

We consider the solution of a sequence of linear systems of the form

(1.1) (A(p;) +irI)zl), = by

that arise in a 3D imaging algorithm for DOT. Here, i = v/—1, « is a positive constant
that depends on the frequency, w, and the vector p; denotes the vector of parameters
that define the diffusion and absorption in tissue at the jth step of a GN iteration to
solve the nonlinear least squares problem (defined below) for an optimal set of param-
eters. The sparse, symmetric positive definite matrix A depends on the parameters
p; and arises from the discretization of the diffusion-absorption equation with mixed
boundary conditions and some further matrix manipulation (see section 3). There-
fore, Krylov iterative solvers such as MINRES [25, 4] are good candidates for solving
these linear systems.

We observe that in our application the matrices A(p;) vary slowly from one GN
step or line search step to the next, but they change significantly over multiple GN
steps. In addition, we need to solve for multiple (complex) shifts and multiple right-
hand sides for each matrix. In order to solve this problem in the most efficient way
we must exploit all these features. For each of these features separately, suggestions
have been made to reduce the overall cost (for example, see [19, 18, 22] for solving for
a group of matrices that differ by a constant times the identity and [17, 31, 9, 26, 21]
for solving for multiple right-hand sides). However, the various methods have not
been combined to address all these features at once, and this is not a trivial issue.

The problem of solving a sequence of systems where the matrix changes slowly
is the most complicated feature to exploit. In [26] we propose to recycle from one
linear system to the next the Krylov subspaces that solvers like GCRO [10], GCROT
[11], and GMRESDR [24] retain to improve the convergence for a single linear system.
GMRESDR cannot recycle a subspace for a subsequent linear system, as it requires
a Krylov space to work with; therefore, we introduced the variant GCRODR [26].

Other approaches have been proposed as well. If all matrices in a set of symmet-
ric positive definite linear systems are pairwise close to each other and all right-hand
sides are available simultaneously, the methods proposed by Chan and Ng [7] can be
used. However, this is not the case for our application. For the Hermitian positive
definite case, Rey and Risler have proposed to reduce the effective condition number
by augmenting the search space either with all converged Ritz vectors from previous
CG iterations or with all previously generated Krylov spaces for a few iterations to
implicitly approximate dominant eigenvectors [27, 28]. Clearly, both in memory and
floating point operations these methods are very expensive. Moreover, in their ap-
proach, although they use CG, full recurrences are required. Finally, both approaches
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lack the possibility to gradually improve the recycled space and to adapt it for a
sequence of linear systems that change gradually but substantially over many steps.
For this reason, Rey and Risler also make the assumption that all matrices remain
close. Fischer has proposed to project right-hand sides from subsequent time steps
onto the space of previous right-hand sides and to solve only for the remainder [16].
This leads to a better starting guess if the right-hand sides are correlated, but his
algorithm does not maintain orthogonality to this subspace and, in general, does not
improve the rate of convergence.

Multigrid methods might provide an alternative for the methods proposed here,
as they have lower complexity than Krylov methods for diffusion type problems, and
several papers have discussed how to deal effectively with large jumps in the diffusion
and absorption coefficients [1, 5, 34]. However, it is not clear that the convergence rate
of multigrid methods can be significantly improved for a sequence of matrices and/or
right-hand sides when subsequent solutions differ significantly, as is accomplished
by the methods proposed here (see also [26]). Adaptations of multigrid methods for
sequences of problems mainly involve the judicious choice on which grids to update an
old solution [5]. This approach is not suitable if the new solution differs significantly
from the previous solution because it does not improve convergence in general. It just
reduces the work in updating a slightly changed solution. In addition, our algorithms
compute solutions for multiple shifts more or less for free; in a multigrid setting this is
not possible. Finally, we can improve the convergence of the algorithm over multiple
right-hand sides, which is not straightforward with multigrid methods.

As mentioned above, our problem includes the solution of a small set of right-
hand sides for each matrix (with fixed p; and ). As was shown in [9, 26], subspace
recycling is quite effective for this problem. However, other approaches or variations
have been successful as well, in particular block methods [17, 31] and seed methods
[8, 21]. Subspace recycling is the easiest to implement, as it can solve the right-hand
sides one by one as individual linear systems, simply recycling the selected search
space [26]. This avoids changes to the program to deal with varying block sizes and
deflation if the vectors inside a block become dependent.

Finally, we also want to solve for multiple shifts using a single Krylov space.
This is not complicated in itself, as the Krylov space for a shifted problem equals
the Krylov space for the original problem. However, it is not easily combined with
recycling Krylov subspaces, because the images of recycled spaces under matrices with
different shifts are not the same. We derive an extension to the GCRO method in
section 5 to deal with this problem.

The paper is organized as follows. Section 2 gives some background on GCRO
and subspace recycling. In section 3, we give background information for the imaging
problem in DOT, and we derive the sequence of linear systems of the form (1.1) that
we wish to solve. In section 4, we discuss characteristics of the system that favor the
use of recycling. We describe our algorithm in section 5, and give numerical results
in section 6. Conclusions and future work are the subject of section 7.

2. Recycling Krylov subspaces. The ideas we exploit in this paper find their
origin in attempts to improve the convergence of restarted and truncated Krylov
subspace methods for a single, nonsymmetric, linear system. Restarting GMRES
[30] may lead to poor convergence and even stagnation. Therefore, recent research
has focused on truncated methods that improve convergence by retaining a selected
subspace when they restart [3, 10, 11, 24, 26, 29]. We refer to this subspace as the
recycled subspace. These methods aim to maintain convergence close to that of full
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GMRES while significantly reducing memory and CPU costs. A taxonomy of popular
choices is given in [15], and approaches to convergence theory for GMRES that are
relevant here can be found in [32, 35].

An important choice for the present paper is to recycle an approximate invariant
subspace [23, 24]. An alternative method that adapts the recycled space based on
its effectiveness is given in [11]. In [10] the updates to the solution (residual) are
recycled. This is also proposed in [3], but the recycled space is used slightly differently.
In this paper, we exploit knowledge of the physics underlying DOT, the solutions in
a general sense, and the nonlinear optimization algorithm to combine the strategies
from [10, 24, 16, 26] for a sequence of linear systems.

The GCRO method provides a general mechanism for Krylov methods to include
arbitrary additional subspaces in the search space. We explain briefly how GCRO
combines the recycled space with a newly generated Krylov subspace to obtain an
optimal approximation over the sum of these spaces. To prepare for the extension to
the simultaneous solution of a set of linear systems with matrices that differ only by a
constant times the identity using a single Krylov subspace, we present the basic steps
from [10] in a slightly different way.

Consider the linear system Az = b, where A € RV*Y and b € RV. Assume we
have the matrix U € RY*"¢, such that AU = C and CTC = I. There are no other
restrictions on the matrix U. The approximate solution in range(U) that minimizes
the 2-norm of the residual yields the residual » = b — CC”b that is orthogonal to
range(C'). If this solution is not adequate, we expand the subspace as follows [10].
Let vy = (I—CCT)b/||(I-CCT)b|l2. We use an Arnoldi recurrence with (I —CC7T)A
and vy to generate the recurrence relation

(I —CCTAV,, =V, H,, <
(2.1) AV, = CCT AV, + Vi H, .

Next, we compute the approximate solution in range([V,, U]) that minimizes the
2-norm of the residual, ||b — A(V,y + Uz)||2, as follows:

nb—A[UVm]{Z
Y,z Y 1llg
. I CTAv, z ]
gl [5 “0 5]

. CTh I CTAvV,, z
22 P R I | R

where e; denotes the first Cartesian basis vector in R™*! and £ = ||[(I—-CCT)b||5. The
minimization in (2.2) corresponds to a small least squares problem, whose solution
requires only the QR decomposition of the submatrix H,, using Givens rotations as in
[30]. We will show below that this approach is also extended easily to a set of matrices
A+ iyI. In this case, we need to deal with the problem that range((A + iyI)U) ¢
range(C'), and of course range((A + ivI)U) depends on 7.

If we have found a matrix U that speeds up the convergence significantly, we can
recycle this matrix for the next right-hand side (with the same A and ) and possibly
improve it. This does not require any changes to the algorithm, and it allows the
algorithm to learn as it computes the solutions for subsequent right-hand sides which
spaces are best to recycle. This improves the convergence for multiple right-hand
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sides and a constant matrix without requiring extra storage. This algorithm can also
be extended to a block method [37].

Now, consider a sequence of systems with coefficient matrices A, If we have
found a matrix U that speeds up convergence significantly for A, and AU+TD — AG)
is small, it makes sense to reuse the matrix U, possibly extended with other search
directions, for the linear systems with AU In this case, we need to update C' to
reflect the new operator. In many cases this can be done very cheaply. This process
is not complicated, and we refer to [26] for details.

3. The DOT imaging application. In this section, we introduce the image
reconstruction problem for DOT. Here, we derive the systems of the form (1.1) that
must be solved at each step of the nonlinear reconstruction algorithm.

3.1. The forward and inverse problems. We assume that the region to be
imaged is a box with a limited number of N, sources on the top and a limited number
of N4 detectors on either the top or bottom or both. We use the diffusion model [2]
for photon flux/fluence ¢, (r) given input fs(r):

W
—VD(T)V(ZSSM(T‘) + :U/a(r)¢s,w(T) + Z;%,w (7’) = fs('r)

forr=(x,y,z) and —a<z<a, -b<y<b 0<z<c,

¢sw(r)=0 if 0 <z <candeitherc = —a, z=a, y=—-b, ory =10,

25¢s (1) + Déﬂw =0forz=0o0rz=c.

Here, D(r) denotes the diffusion, which is related to the “reduced scattering” function
wi(r) by D =1/(3u.(r)), and e (r) denotes absorption [2]. We have used i = /1,
while w represents the frequency modulation of light, and v is the speed of light in the
medium. The integer subscript s indicates the model with a single source at a known
position. The function f,(r) is the source and ¢ ., (r) is the photon flux/fluence due to
the source at frequency w, given the functions p,(r) and D(r). The function ¢ ()
is complex-valued if w is nonzero. Knowing the source and the functions p,(r), D(r),
we can compute the corresponding ¢,(r) everywhere, in particular at the detectors
(i.e., at a subset of gridpoints where z = 0 or z = ¢).

We discretize the PDE using finite differences [6] on a uniform grid in such a
way as to achieve second-order accuracy away from the boundary. The meshwidth in
each direction is h centimeters. We use first-order forward or backward differences,
as appropriate, on the boundary. The unknowns become ¢, (21, y;, zx) for [ = 1:
Ng,j =1:Ny,k =1:N,. We will order the unknowns so that ¢, ., values at points
on the top of the box come first (i.e., let £ = 1 and loop over all [, j), then the ¢,
corresponding to points on the bottom (i.e., let X = N, and loop over all [, j), followed
by the rest of the values by ordering in increasing [, then j, then k. We denote the
corresponding vector with entries ¢s ., (z1,Y;,2k) as @s,0. Likewise, we denote the
vector with entries o (21,5, 2x) as fq. The vector D is comprised from sampling D
at both whole and half integer gridpoints, because of the particular discretization we
are using.

The corresponding matrix equation, after multiplication by h2, has the following
block structure:

B Dy Ws,w _ fs(l)
(31) D2 (F+,LwThZI) :| |: T, :| - [ .fs(2) 9
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where w;,, and x;, denote the discretization of ¢s,(r) on the boundary and at
internal points, respectively. The measured data due to source s predicted by this
forward model is a subsampled version of the subvector w;,,, which we call s . It
is important to note that in our application fs(2) =0 and fs(l) = h%e;, where ¢; is
the ¢th Cartesian unit vector and the position of the 1 corresponds to the location of
the source.

Let ys,., denote the data subvector measured at all the detectors for a fixed
source s and frequency w, and let W, denote the diagonal weighting matrix whose
diagonal entries are the inverses of the standard deviations of the noise in the data.
Recall that p is a vector of parameters that describe the diffusion and absorption at
all points in the region of interest. We will briefly discuss the choice of p below and
refer the interested reader to [20] for more details. The 3D imaging problem then
becomes one of finding the parameters that minimize the difference between the data
predicted by the model and the measured data. That is, we wish to solve

(32) min D [ Wi (a0 = Do ()2 = min [W(y — ()5,

where y denotes the vector obtained by stacking the subvectors ys ., ¥(p) is the
vector obtained by stacking the subvectors v ., (p), and W is the block matrix whose
diagonal blocks are the matrices Wy ,. Let ¢(p) denote the residual vector W(y —
¥ (p)). We use the following damped GN iteration to solve this nonlinear least squares
problem [14], where J(p) denotes the Jacobian of the residual, evaluated at p:

1. compute €(py), J(pr).

2. solve J(pi)T J(pr)sk = —J (pr) T e(pr),

3. Pky1 = Dk + AkSk,
with A, chosen using a backtracking line search [14].

If the number of parameters used to define diffusion and absorption is small, the
Jacobian will only have a small number of columns, and therefore step 2, solving for
the search direction, is not computationally intensive. However, to compute €e(py)
and to compute the entries in the Jacobian using an adjoint-type approach (called a
“co-state” method in [36]) requires solutions of the matrix equation in (3.1) for every
source and every frequency. Furthermore, each line search step requires evaluation of
residual and Jacobian at a new point. Therefore, the rest of this paper is devoted to
analyzing the systems (3.1) and methods for computing their solutions efficiently.

3.2. The matrix revisited. Here, we describe properties of the matrices and
submatrices involved in solving for each ¢s . First, regarding the blocks in (3.1),
e B is an invertible diagonal matrix,
e D has at most one nonzero per row, and these occur only in the first NN,
and last NN, columns,
e D, although it has different entries, has the same sparsity pattern as DT.
A MATLAB sparsity plot of the matrix in (3.1) is given in Figure 1 to give the reader
a visual interpretation of the structure just mentioned.
To solve systems involving this matrix, we consider the decomposition G = LU,
where L is block unit lower triangular, U is block upper triangular, and G represents
the block matrix in (3.1). It can readily be shown that

oo I 0][B D,
T | DyB™Y I || 0 F—DyB™IDy+inI |’

where v = h?w/v. Hence, the system G {i:} = [st“)} can be solved as follows.
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Fic. 1. Sparsity plot of matriz G.

Step 1. Solve the equation L [Z} _ R[fso(l)};

(a) as = fs(l)a
(b) by = —Da(B~'ay).
Step 2. Solve the equation U {ww} = {Zs]

Ts,w
(a) solve (F — DoB™'Dy +iyl)xs,, = b,
(b) ws o = B~ as — D1zs.).

Multiplying with B~! can be done very cheaply because B is diagonal, and D; and D5
have only (2N, N,) nonzero entries each. The computationally intensive part of this
procedure is Step 2(a). Note that the system in Step 2(a) is exactly the system in (1.1).

We conclude this section with the proof that F'— Dy B~ D, is symmetric and pos-
itive definite. The matrix F' is symmetric and positive definite because it corresponds
to the finite difference discretization of the operator —V.D(r)VI+ u,(r)I at the inter-
nal points on the box assuming zero boundary conditions. B is a diagonal matrix of
size 2N, N, x 2N, N,, with entries .25h? + 2D, ; ., with m = 1 or m = N,. Due to the
lexicographical ordering of the internal nodes, Dy is 2N, N, X (NyNy (N, — 2)) with
only one nonzero per row and Dy is (N, Ny (N, —2)) x2N, N, with only one nonzero per
column. The nonzero entries in D are of the form —%Dl,j’m withm =1orm = N,.
The nonzero entries in Do are —Dz,j,g or _Dl,j,Nz—%- Therefore, Do B~ D is a diag-
onal matrix with nonzero (positive) entries only in the first and last N, N, positions.
We now use the previous two facts to prove the following theorem.

THEOREM 3.1. The matriz F — DoB~' Dy is symmetric and positive definite.

Proof. Symmetry follows from the symmetry of F and Dy;B~'D;. Matrices
F—D,B~!'D; and F differ only in the first and last N, N, components on the diagonal.
Since the nonzeros in the second matrix are strictly positive, the first and last N, N,
diagonal entries of F'— Dy B~ D; are smaller than the corresponding diagonal entries
of F'. Therefore, it is sufficient to consider the Gershgorin disks corresponding to these
rows. Consider the first NN, rows (the argument for the last N, N, is analogous).
From Gershgorin’s theorem we observe

D;;15D; ;1 2
VLTI VIL NN b JRPE h <,

( 0.5h + D; ;1 T Pigas | a1 =
where A is an eigenvalue. Since the first term on the left in parentheses is posi-
tive, together with lower bounds from all other Gershgorin disks, it follows that the
eigenvalues are greater than zero. 0
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4. Summary of system properties. In the previous section, we observed that
solving the forward problem efficiently boils down to solving the systems in Step 2(a)
efficiently. The remainder of this paper is therefore devoted to this cause.

In this section, we discuss those system properties that can be exploited to develop
efficient recycling Krylov methods for solving the systems in the previous section. We
repeat the form of these systems here for convenience:

(4.1) (F — DyB™*Dy +iyI)zl) = b,.
~——— ’

AG)

The superscript is used to denote dependence on the parameter vector, p;. To simplify
notation, we use :z:gj ) for the case when w = 0.

The parametric model. As in [20], we use a piecewise continuous model for
both the diffusion and absorption. In particular, we have

D=2 + (1 — El)Blﬂl and Mo = QaZo + (1 — E2)B2/62.

The vectors =; are discrete characteristic functions, having a “1” in a position cor-
responding to an anomaly and a 0 otherwise. The matrices By, By are known and
contain “basis” vectors while 31 and (3; are the unknown expansion coefficients. In a
piecewise constant model, for instance, B; and Bs would be vectors of all ones and the
B; would give the background value of diffusion and absorption, respectively. A more
realistic model, however, accounts for the fact that tissue is not homogeneous, and
in this case By, By would correspond to vectorized “images” of a lumpy background.
The vectors =; are unknown, but we assume that anomalies are modeled by ellipsoids.
In this case, the entries in the vectors are determined by the parameters specifying
center location, rotation, and axis lengths. Therefore, the list of unknown parameters
includes «;, 8;,7 = 1,2, and up to 6 length-3 vectors specifying the locations of the 2
ellipsoids. For more details, see [20].

Diffusion, absorption, and matrix updates. Typical values for p, in our
application range from .005 to .3cm ™! whereas typical values for D range from 1/6
to 1/45cm~!. Usually, we have or can obtain good approximations to the average
background values of diffusion and absorption and use these as starting guesses for
the GN iteration [20]. As the GN iteration progresses, we begin to localize and
characterize anomalous regions of absorption and diffusion whereas the background
values become well resolved early on. This is due to the fact that the anomalies
are so small relative to the size of the background that the data contains primarily
information about the average background values. This means that during a single
line search or when moving from one GN step to the next, AUtD = AU) 4 B, + Ey,
where || F1]| is small (corresponding to a slight change in the background parameters)
and Fs has small relative rank (corresponding to a change in the shape of the object
and values inside the object).

Eigenvalues and invariant subspaces. We are interested most in the smallest
eigenvalues of the AW, It appears that, for our examples, the matrices AY) have a
number of small eigenvalues occurring in clusters that remain disjoint from one system
to the next, even if the eigenvalues themselves differ from one matrix to the next (see
Figure 4, for example). This suggests that the corresponding invariant subspaces for
subsequent matrices remain close. We discuss this further in the next subsection.
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Similarity among right-hand sides. Recall that fs; has only one nonzero

_ (DQ)/V"/Sva h

. 2
coefficient in, say, position mg. It follows that bgj ) = em., and so the

bgj ) are the same up to a scalar factor. The latter has no influence on the solver.
Therefore, in the remaining discussion we study the convergence of iterative methods

applied to the systems
(4.2) (AY) +inD)2l¥), = ep,.

Similarity among solutions. From (4.2), it is easy to see that the solutions to
any pair of (nonshifted) systems, say systems k and j, during the GN iteration are
related by

2 = (A®) =140 (),

Thus, the solutions do not change much as long as the matrices AY) and A%*) remain
close, especially with respect to the smallest eigenvalues and corresponding eigenvec-
tors; see also the following discussion on smooth solutions. The reason why we expect,
in particular, the smooth components of the matrices to remain close is discussed in
section 4.1. This expectation is borne out in the numerical experiments. It is impor-
tant to note that the indices j and k need not be consecutive, nor must they refer to
systems from within the same line search. See section 5 for details.

Smooth solutions. The vector e, is comprised mostly of high frequency Fourier
components. Furthermore, the eigenvectors corresponding to the smallest eigenvalues
of AW represent low frequency (smooth) modes while the eigenvectors corresponding
to the largest eigenvalues represent high frequency modes. The matrix (A(j))*1 cor-
responds to an integration operator that acts as a blurring operator. Therefore, we
expect xgj) to be well represented in terms of the eigenvectors of A) that correspond
to the smallest eigenvalues.

Multiple frequencies. The Krylov vectors generated to solve AU )a:gj ) = Em.
also span the Krylov subspace generated by the shifted matrix (AY) + iyI) and €m.,
(see [22] and the references cited therein). When subspace recycling is used, however,
it is not straightforward to produce solutions to the complex shifted systems. We

discuss the extension of the algorithm to this case in section 5.4.

4.1. Invariant subspaces. In deciding whether or not it is worthwhile to recycle
an approximate invariant subspace corresponding to small eigenvalues obtained from
previous matrices, we must explore the relationships among these invariant subspaces
of a sequence of matrices. In the previous discussion, we noted that from experiments
it appears that the smallest eigenvalues of the A) do not change much and remain in
more or less disjoint clusters. For a small enough perturbation E = A%*) — AU this
shows that the corresponding invariant subspaces from these matrices must remain
close. Unfortunately, | E| is too large to assume this without considering further
details. However, recall the observation above that £ = E; 4+ Es, where F; corre-
sponds to very small changes in the background parameters and Fy corresponds to a
small rank update describing the shape of the object. From this we conjecture that
most of the changes in the matrix correspond to the high frequency components and
larger eigenvalues. Given this conjecture, we now show under which conditions the
invariant subspaces corresponding to the smallest eigenvalues remain about the same
even if the corresponding eigenvalues are not very well separated from the remaining
eigenvalues.
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To simplify notation, we remove all subscript and superscript notation and deal
specifically with a symmetric and positive definite matrix A and a corresponding
symmetric perturbation F.

Let A be a symmetric positive definite matrix, and let A have the eigendecompo-
sition

(4.3) A =[Q1 Q2 Q3] diag(A1, Az, A3) [Q1 Q2 Q3]

where Q = [@Q1 Q2 @3] is an orthogonal matrix, A = diag()\gl), cee )\,(Cll)), and A and
A3 are defined analogously. Furthermore,

Agl)§~-~§>\;(€11)</\§2)§~-~§>\;(€22)</\§3)§~-~§>\,f?-

In relation to our algorithm, @ corresponds to the recycled invariant subspace (or a
subspace of that), but Q2 and Q3 can be chosen to fit the theorem. Now we consider
the changes in the invariant subspace range(@:) and the eigenvalues /\51) under a
symmetric perturbation E of A, where F is not small, but the projection of E onto the
subspace range([Q1 Q2]) is small, say [[E[Q1 Q2]llr < €, and IIEQsHF =n=|E|p.
We also assume that || E||p is small relative to sep(A1, Ag) = > — Al 1) and that ¢ is
small relative to sep(A1, Ag) = )\( ) )\,(611) However, we do not need to assume that
sep(Aq, Ag) is large. We now prove that the matrix A 4+ E has an invariant subspace
range(Q1) such that the canonical angles between range(Q;) and range(Q;) are small.
This result shows that an invariant subspace whose associated eigenvalues are not well
separated from the remaining eigenvalues is still insensitive to perturbations that are
concentrated in an invariant subspace whose eigenvalues are sufficiently far removed.

We define the following notation. For two matrices Y, Z € RV*™ where N > m,
O(range(Y), range(Z)) denotes the diagonal matrix with the canonical angles between
range(Z) and range(Y") as coefficients, and 6, (range(Y"), range(Z)) denotes the largest
canonical angle between range(Z) and range(Y). We use £(A) to denote the set
of eigenvalues of A, and Apax(A) and Amin(A) to denote max £(A) and min £L(A),
respectively.

Furthermore, we assume that

(4.4) 5

min(A(lz) — ¢, )\53) —n) —2 — ()\,(:1) +e) > ¢,

22
6(1;) )\(1)+5,

and as a consequence of (4.4) that § > 2¢.

THEOREM 4.1. Let A be s.p.d. and have the eigendecomposition given in (4.3),
and let F, €, n, 6, and 6 be defined as above. Then, there exists a matriz Q1 con-
forming to Q1 such that range(Ql) is a simple invariant subspace of A+ E, and

(4.5) 6

tan 6q (range(@l) range(Ql)) %

Furthermore, for each eigenvalue )\ 0fA+E corresponding to the invariant subspace

range(Q1), there exists a value )\g such that

< 25
A A < T
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and in particular,

5T 5 M 2¢2
)\max(Ql (A+E)Q1) S)\kzl +e+ — 6
Proof. We consider the perturbation F, such that
A+ &1 0 0 0 52T1 ggl
(4.6) QT(A+E)Q = 0 Ao+ Exo &L +(& 0 0
0 E32 Az + Es3 & 0 0

By the assumptions above we also have

En
&

€117 < e, ||E22]lF < ¢, and ||E35]|F < 1. From (4.6) we see that

Li = Q1 (A+ E)Q1 = Ay + &1,

= _(A2+ & &L
Las = [Q2 Qs]" (A+ E)[Q2 Q3] = ( 2532 . As -1-32533 ) '

From [33, Corollary IV.3.4] it follows that

(4.7) Amax (A1 +E11) <A + €] <MY +e,
(4.8) Amin(Az + £22) > A2 — [[£0a] > AP —
(4.9) Amin(As + Es3) > AP — [ &5 > AP —

Now we can apply [33, Corollary IV.3.4] once more to obtain
(4.10) Amin(La3) > min(/\§2) — g, )\53) —n) — 2.

From (4.7)-(4.10) we have sep(Lq, Lag) > 8. Furthermore, let R = (A + E)Q; —
Q1L1 = Q2821 +Q3E31. Then, from symmetry it follows that Q¥ (A+E)—L,QT = RT,
and we have ||R||r = ||RT||r < . Finally, we have

T 2
IRIEIR e _ & 1
sep(Ly, Lgg)? = 62 4

and by [33, Corollary V.2.2] we know there exists a matrix 01 conforming to Q7 such
that range(Q)1) is a simple invariant subspace of A + F, and

(4.11) tané, (range(Ql),range(Ql)) < || tan© (range(Ql),range(Ql)) lr < 2%.

Since A and A + E are symmetric and we have established the existence of Ql, we
can obtain a better bound using [33, Theorem V.3.10]. This theorem conforms nicely
to our special case. However, we need to establish the minimal distance between
eigenvalues of L; and the eigenvalues of Log = QQT:,)(A + E)Qgg, where range(Qgg) =
range(@l)l and Q23 has orthonormal columns. From [33, Theorem V.2.1] specialized
to the symmetric case, we know there exists a matrix P, such that || P||r < 2¢/6 and
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L(Los) = L(Lys— PIEL EX]). From || P[EL, EX]|| < 2¢2/6 and [33, Corollary TV.3.4],
we have the following bound (with ¢ defined in (4.5)):

. 22
(4.12) Amin (La3) > min()\gm —g, )\gg) —n) — 2 — % =4.

Finally, we obtain from [33, Theorem V.3.10]

| ™

tan 6 (range(Q1 ), range(Q1)) < | tan © (range(Q1), range(Q1)) | r <

)

4.12) we
Q1 there

which is better than (4.11) by about a factor 2 or more. Analogously to
observe from [33, Theorem V.3.10] that for each eigenvalue 5\5»1) of QT (A+E

exists a number, )\z(.l), such that

~—~ —~ [«

2
XORNC 2e

In particular, this gives

2
A ( QT (A4 B)Q) <A 4o+ 2 D

Our numerical experiments confirm our conjecture except for a few GN steps,
when the new matrix is quite far from previous ones. In those cases, the projection
of F on the (smooth) invariant subspace corresponding to the smallest eigenvalues
is still small, but || E|| is large enough that the invariant subspaces corresponding to
large eigenvalues might perturb those corresponding to the smallest ones. Because of
the problem size we cannot check the projection of E on invariant subspaces corre-
sponding to medium or larger eigenvalues. However, Figures 4 and 9 include examples
with relatively large canonical angles between invariant subspaces associated with the
smallest eigenvalues for systems at the start of a line search.

5. Algorithm. Let us outline some aspects related to the optimization algo-
rithm. We combine the GN algorithm with a line search. As we will see in the
numerical results section, the final steps in each line search tend to be small. There-
fore, the solutions obtained toward the end of each line search are not too different
for a few GN iterations. However, over many GN steps they tend to differ more sig-
nificantly; see Figure 2. An obvious way to exploit this is by using the solution of the
previous step as a starting guess. However, this will work better or worse depending
on whether the previous step was the first step of a line search, towards the start
or the end of a line search, and so on. In practice, it is not easy to choose the best
among several previous solutions as the best choice is governed by the progression
of the algorithm (it is not necessarily the latest one). However, recycling a small
subspace of previous solutions for the search space relieves this problem. In fact, we
can vary this additional subspace depending on whether we are at the start of a line
search or near the end and on how large the line search parameter is. We can also
update this additional search space as we go. Strategies based on this approach turn
out to be very effective; we will give more details later in this section when we discuss
the application and the optimization algorithm. The idea to use previous solutions
was also proposed in [16], although in [16] they were only used to provide a better
initial guess.
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Fic. 2. Conceptual overview of three complete steps of the GN with line search algorithm. The
black circle marked (0) indicates the start of the overall procedure. The other black circles denote
the end of a line search (the end of the first line search is marked (1), etc.). The black stars denote
the first and intermediate steps from each line search as indicated (the first step of line search 1 is
indicated by (1.1), etc.).

The recycling strategy that we propose is based on the observations in the previous
section. In particular, we use the proximity of certain invariant subspaces and tune
which old solutions to recycle to the phase of the GN algorithm with line search.

5.1. Recycled GCRO for DOT. Consider the sequence of systems
A(j):v(lj) = €m,,

for the source s = 1. We will always recycle, in a matrix U, the most recent solution
that occurred at the end of a line search. We may recycle previous solutions from
within a particular line search. We do not know whether a line search is complete
until after the corresponding system has been solved. However, before we solve a
system, we can test whether we are “close” to the end of a line search. We assume
this is the case if the relative residual norm of the current system for the solution
at the end of the previous line search is below a certain threshold. This information
helps to keep the smallest possible recycling space. It may not be necessary to keep
a large approximate invariant subspace to reduce the initial residual over that part
of the spectrum when we keep solutions in the recycle space that have the effect of
reducing the residual over the same part of spectrum anyway (see the discussion in
section 5.2).

To keep the notation as simple as possible, we begin by reviewing a basic GCRO
algorithm that implements the recycling strategy mentioned above; then we discuss
modifications that allow us to solve for multiple right-hand sides and multiple fre-
quencies. Below, the MATLAB notation [C, R] = ¢r(C,0) is used to mean that C' is
overwritten with the orthogonal matrix from its compact QR factorization and R is
the upper triangular factor.

ALGORITHM 1.

1. Solve AWz = e, with MINRES. Set x(cvr) = z{V) g(ea) — ).
2. Form approzimate eigenvectors for A from information generated from the
MINRES run. Save these eigenvectors in the matrizc W.
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3. Forj=2,...
(a) If (JJADzw™) — e ||/||em, || < tol) and not at beginning of LS
U = [Winda x(curr)]!
Else
U= [VV, x(curr)7 x(beg)].
(b) AWU =C, [C,R] = qr(C,0), set' U=UR".
(c) Compute g = U(CTe,,). (Ensures xq is optimal in the sense that the

residual is minimized over all solutions in range(U).)
) Set P = (I —CC7T). Compute ro = Pb.
)

—
o

e) Solve PAY) Py =rq by MINRES.?
f) Update x,r.
g) If (at end of LS), z(cv) = xgj).

(h) If (at beginning of LS), x(b¢9) = xgj).
The index j is the index for the system within the GN algorithm, and therefore
the loop on j terminates when GN converges for (3.2). Here, W;,4 indicates that
we may wish to keep fewer approximate eigenvectors according to the discussion
preceding the algorithm (see also the discussion in section 5.2 and numerical example
1). The logic for tailoring the choice of the columns of U to the GN process comes
from the discussion in the previous section. First, based on our observations for
this application, we expect the approximate invariant subspace corresponding to the
smallest eigenvalues of the first matrix to be close to an invariant subspace of other
matrices in the GN sequence corresponding to the smallest eigenvalues. If the GN
iteration is converging, we expect that at the end of two consecutive line searches
the corresponding matrices will be related since the purpose of the line search is to
produce a parameter update vector that allows the GN process to converge. Likewise,
if we are at the beginning of a line search sequence, matrices from that sequence should
be related, too. An analysis of the effect of these choices on the convergence of the
MINRES steps is provided in the next subsection.

A~ —~

5.2. Algorithm analysis. Given that U always contains the matrix W, which
we assume is a good approximation for the invariant subspace corresponding to the
smallest eigenvalues for all the systems, we expect the systems in 3(e) to converge as
if the smallest eigenvalues have been deflated from AU). This is the case, in fact, as
Theorem 4.1 from [26] (which closely follows Theorem 2.1 in [32]) implies.

Next, we consider the effect of keeping a previous solution, z(¢*"") | in U. Let the
current matrix U have n. columns. For ease of discussion, we may assume that the
first column of U is z(¢*"") | since this does not change the orthogonal projector. Now,
at the end of 3(b), we observe that AW glewrr) — p e) | where ¢ is the first column of
C and p; an appropriate scaling. However, (¢ = (A®))~1e, for some previous
index k, and hence AW (A®)~1e,, = pic;. We have AW (AR)~1 = [ + E for error
matrix E = —E; (A®)~1 — By(A®)~1 with E,, Ey as the small norm and relatively
small rank terms defined previously. Therefore,

o= - clclT)ems =em, — clclT(plcl — E‘ems) =em, —pi1c1 + cl(clTE’emS).

1From an implementation standpoint, we would not perform the matrix-matrix product UR™!.
Rather, we would keep R around, and when we needed to perform UR™! times a vector, as in the
next step, we would do backward substitution with R followed by multiplication with U. However,
this explicit notation simplifies the introduction of the algorithm.

2Since all the Krylov vectors in the MINRES iteration are orthogonal to C, we do not need to
apply P on the right. This choice of notation serves only to illustrate the symmetry of the matrix
operator and therefore the applicability of MINRES.
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Then the initial residual is 7o = (I — Cy,.—1Cy )0, where Cy,, 1 contains the re-
maining columns in C'. Thus we have

ro = (I = Cn,—1Ck _1)(em. — p1c1) + (¢f Bew, )
= (I = CpoaCF _)(A®) — AU glewrn) o (T Bey,, )er.

The solution z(¢*"™) is smooth and, as seen earlier, A®) — AU is small over the
invariant subspace of A corresponding to the smallest eigenvalues. Thus, the
vector e,,, — pic1 should already be small in norm. Since C),, _1 contains approx-
imate eigenvectors corresponding to the smallest (and smoothest) eigenvectors, then
clearly ro will be even smaller in norm, particularly if (e,,, — p1c1) lies predomi-
nately in the direction of these eigenvectors anyway. Furthermore, we have c{Eems =
—cTEpatewrn) — T Byg(ewrn) | The first term in this expression is small in norm. The
second term must also be small, since Fy lies predominantly in the direction corre-
sponding to larger magnitude eigenvalues whereas z(¢*"") is smooth. In summary,
not only do we observe that the norm of ry is small, but the smoothness properties
ensure it is smallest in directions corresponding to the larger magnitude eigenvalues
and that it has been reduced in directions corresponding to the smallest magnitude
eigenvalues. This is demonstrated clearly by the reduction of the norm of the initial
residual as the GN iteration progresses in Figures 7 and 12 and also by the eigen-
vector components of r(()j ) given in Figure 5. Hence, corrections to the residual occur
primarily over the remaining subspace, which accounts for the convergence behavior
observed in our numerical examples.

5.3. Multiple right-hand sides. The next consideration is the solution for
multiple right-hand sides. First, we expand step 2 in Algorithm 1 to accommodate
the right-hand sides. Once the first system for the first source has been solved, we
have approximate eigenvector information. We can use this eigenvector information
when we solve for the remaining right-hand sides, and we can also collect additional
eigenvector information. Thus, the new step 2 becomes the following:

e Form approximate eigenvectors for A() from information generated from the
MINRES run. Save these eigenvectors in the matrix W.
e For s=2,..., N,
— Set U =W.
— Perform steps 3b—3e of Algorithm 1 (only updates of U and C).

— Update xél) with this information.

— Add columns to W if desired.
Additional (approximate) invariant subspace information might be computed either
from range(V,,) or from range([U V;,]). Then, to solve for z$ for the remaining
sources, we insert a loop over the remaining sources just after step 3 which would run
over all s and contain steps 3(a)-3(h).

In this way, all the right-hand sides use a different last column (or two) in the U
matrix, depending on the source. However, for every right-hand side, the first several
columns of the U matrix are comprised of the (final) approximate eigenvector matrix
W. Therefore, step 3(b) is cheaper for sources s > 2, since all but the last column (or
two) of C' were determined during the run on the first source.

5.4. Multiple shifts v. To account for multiple frequencies, in step 3(e), we
have vy = (I — CC)Te,,, /(I — CCT)ey, |2 and the matrix recurrence (cf. (2.1))
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where B,, = CTAV,, and the leading m x m submatrix of T,, is symmetric and
positive definite. From this recurrence, we obtain

(A+ iy D)[Vin U] = [Vin i1 (L, +7L,,) + CBr € + U]

[ T, +i, 0
= [Viny1 C U] B, I
i 0 iy
1o vELD T, +ivl, O
=Vmaa CU |0 I C'U By, I i,
0 0 N 0 iyl

where the last step involves the reduced QR decomposition of [V,,+1 C U], so that
[Vins1 C U] has orthonormal columns. Notice that [V,,+1 C] is already an orthogonal
matrix. Restricting our approximate solutions to be in range(U) @ range(V,,), we
need to solve the small least squares problem

I 0 VI, UT[T,+qL, O ter
0 I Clu B I [ o ] ~ | CTey,
00 N 0 VT 0

for every choice of 7, and put x(gjz, = Viny + Uz. This is equivalent to solving

T, +ivL, ViU Eer
(5.2) B, I +inCTU [ Y } ~ | CTep,.
0 YN 0
This equation leads to an algorithm for updating the solutions to systems in which
v # 0. After step 3(e) in Algorithm 1, we insert the following piece of code:

ALGORITHM 2a: based on solving (5.2)
For each ~
e Solve (5.2) for [Y].

o Set a:gﬂ)d =Vuy +Uz.

Care must be taken in solving (5.2) if a subspace of range(U) is very close to
an invariant subspace of AU). In particular, if range(U) is an invariant subspace of
AU then U = CA, for some A. In this case, the least squares problems simplify
considerably as both V,' ;U = 0 and N = 0. Hence, we need to solve only the
following least squares problems (compare to (2.2)):

[+ivA By } [z } N [ CTepn. ]

(5:3) 0 T, +ivl, ||y tor

Having to solve only (5.3) is the ideal situation because this problem can be solved as
two separate minimization problems: the first to compute y, the second to compute z.
However, we do not need y explicitly, only the products V,,y and B,,y = CT AV,,y,
which can be obtained from short-term recurrences using a MINRES-type approach
without keeping the vectors V,,, around. The short-term recurrences are similar to
the MINRES algorithm and therefore their derivation is left out for brevity.

ALGORITHM 2b: based on solving (5.3)

For each ~

e Determine V,,,y using short-term recurrences.
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e Determine 2.
e Set :rgjz, =Vny+Uz.
On the other hand, if the columns of U do not span an invariant subspace of AU),
we should solve (5.2). Unfortunately, there exists no short-term recurrence for V,,,y in

this case, and thus we are forced to save the V,,, in order to form x(J ) However, for
a fixed source, only one set of vectors V,,, needs to be saved from which solutions at
all other frequencies can be computed. Moreover, the generation of V,, itself requires
only short-term recurrences, so no extra work is required.

We advocate Algorithm 2b when storage is at a premium and/or when we know
that U is a good approximate invariant subspace, and Algorithm 2a otherwise.

We make one further modification to Algorithm 1 to solve these shifted systems

simultaneously with the nonshifted systems. We change step 3(a) to append to U also

the column imag(a:gcfj”')) and possibly imag(xg wg)) depending on which part of the

conditional statement is executed. The justification is as follows. Let £ = AU — AR,
and therefore E = AY) — A% as well. One can show that A(j)(xgj) - xgk)) = Bz
and Aff (xSZ, x(ku),) = Exgkg, Given the eigendecomposition AY) = QAQT, we have

(k) — (A qé Cm,
AN +ivI)”
, ( 7 Z E)\é + W

where ~ is reasonably small compared to the (real) eigenvalues A\;. Hence, the real

part of zgku)) is close to zgk) and the diﬁerence between Ezgk) and Exgku), is primarily

due to the (small) imaginary part of 2*). Since we look for solutions to the complex

system in range(U) @ range(V, ), it makes sense to include 1mag(zg 3,) in U.

We expect either algorithm to perform sufficiently well when v = h?w/v is not
too large in an absolute sense. In our application, v will typically be less than or
equal to O(107%), and we will not be solving the system for very many values of
~. This means that if MINRES had been applied directly to the shifted system, the
number of iterations required for convergence would be about the same as the number
of iterations required for the unshifted system. However, if v is much larger, neither
algorithm will necessarily produce solutions with a small relative residual norm. This
stems from the fact that in solving the projected problem, we may leave out directions
from the Krylov subspace in which the solutions to the complex systems have large
components. On the other hand, if 7 is very large relative to the smallest eigenvalue
of the AU) (which is not the case in our application), the eigenvalues of the shifted
matrix will be well clustered. In the latter case, MINRES applied to this shifted
problem would converge quickly, and recycling may not be necessary.

5.5. Computational issues. In this subsection, we briefly outline the compu-
tational complexity and storage issues associated with Algorithm 1 and its variants.
We focus on overhead introduced by our algorithmic changes compared with MIN-
RES. This overhead is offset by the reduction in iterations. Clearly, due to storage
limitations we cannot have too many columns for U if the dimension of the problem
is large. In addition, we must balance the cost of orthogonalizing the Krylov vectors
against the columns of C with the reduction in the total number of iterations times
the cost per iteration. If the cost of the matrix-vector product and preconditioning
is large we can invest more time in orthogonalizations to reduce the number of itera-
tions. In general, the idea is to find U with as few columns as possible such that the
number of MINRES iterations is significantly reduced.
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Computational cost. We consider only the complexity of computational steps
that are linear in the size of the system matrix, i.e., O(NN). The costs of the various
computations on small matrices, such as the solution of least squares problems and
the computation of (selected) eigenvalues and eigenvectors, are negligible.

The main overhead introduced by our method compared with standard MINRES
is the orthogonalization of each Krylov vector against the matrix C, indicated by the
left multiplication by P in step 3(e) in Algorithm 1. Let the number of columns in C'
be n.. Then the orthogonalizations introduce a cost of 4n.N floating point operations
(flops) per iteration. For each linear system, the initialization of z¢ and r¢ in 3(c)
and 3(d) takes about 4n.N flops, and the correction to the solution with the term
U(Bny), = (xg + Viny) — UBy (see [10]), after the MINRES iteration, costs an
additional 2n.N flops. For each new matrix (but not for each right-hand side) we
have the cost of n. matrix-vector products and the cost of the QR decomposition of
an N-by-n,. matrix (about 2n2N flops) in 3(b). If k indicates the average number of
nonzeros per row in the matrix, the cost for the matrix-vector products from which C
is formed is 2n.kN flops. However, these matrix-vector products have been accounted
for in Figures 6 and 11, whereas they do not correspond to iterations. In that respect
they actually represent a reduction in computational cost compared with MINRES.
Note that, in general, the multiplication of the matrix times a block of vectors takes
less time than multiplying each vector separately. Since we vary one or two columns in
C for each right-hand side there are an additional one or two matrix-vector products
per right-hand side.

Finally, we use the information generated by the solver for the first system matrix
and a few right-hand sides to approximate invariant subspace information. If we
approximate eigenvectors over range(V,,), the only O(N) cost arises from constructing
approximate eigenvectors for A(M) from the eigenvectors of the m x m leading principal
submatrix of T, (5.1) generated in the MINRES iteration. This costs approximately
2mN flops per approximate eigenvector, where m is the length of the MINRES run
at the time the invariant subspace is computed. This may vary and need not be at
the end of the MINRES run. Approximating eigenvectors over range([V,, U]) takes
approximately 2(m + n.)N flops per eigenvector plus 2(n? + mn.)N flops to set up
the generalized eigenvalue problem. Since the invariant subspace associated with the
smallest eigenvalues changes only little in our application and high accuracy is not
needed, this is done typically only for the first few eigenvectors for one of the matrices
early in the GN iteration. Thus, these costs are incurred only once.

For Algorithm 2a, the only additional cost of O(N) arises from the orthogonaliza-
tion of the U matrix against the matrices V11 and C and an additional 2n./N flops
for updating the residual with the U component. For the solution there is no change
in cost with respect to Algorithm 1. The additional cost of the orthogonalization is
2n.(2m+3n.)N. Note that there is significant overlap with the computation of eigen-
vectors. Thus, in steps where eigenvectors are computed or updated the additional
cost is negligible. Finally, note that the significant reduction in the number of iter-
ations per right-hand side helps in reducing the actual overhead. For Algorithm 2b
no additional costs arise. The matrix A is available from the computation of the
invariant subspace.

Parallel implementation. Realistic problems from DOT are very large and
therefore well suited to straightforward parallelization by distributing each matrix
row-wise following a good domain partitioning. The special structure of the matrix
(see section 4) allows this in spite of the factored form of the matrix. Therefore, the
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parallel implementation of the algorithms outlined above can follow the discussion
in, for example, [13, 12]. In addition, we could parallelize over the right-hand sides.
This can be done with minor variations of the algorithms presented here. Since we
can solve for multiple shifts with a single Krylov subspace, there is little benefit in
parallelizing over the shifts.

6. Numerical results. In this section, we give the results of our proposed algo-
rithm on two sequences of matrices generated from two different runs of the parametric
nonlinear inversion scheme outlined previously. In the first experiment, a piecewise
constant model for diffusion and absorption was used. In the second, we used a non-
homogenous model for the diffusion and absorption in the background whereas the
diffusion and absorption inside the anomalies were constant. There were 16 sources
and 32 detectors. In both experiments, the nonlinear inversion scheme was run using
only data for the 0 frequency case; however, we apply our algorithm to both the 0
frequency case and shifted systems at 5 MHz in order to test our algorithm. The
region was discretized® into 31 x 31 x 21 voxels of volume k3, with » = .2 cm. The
sizes of the matrices in both experiments were 18,259 x 18,259. The sources and de-
tectors were located in a 3 cm X 3 cm plane over the center of the grid. The starting
guesses for the ellipsoids describing the anomaly were the largest possible ellipsoids
fitting in the 3 cm X 3 cm X 4 cm region under the sources. Starting guesses for the
other parameters were then obtained by fixing the shape parameters and using 1-5
GN steps to find the best values for those starting ellipsoids.

All experiments were conducted in MATLAB using IEEE double precision floating
point arithmetic.

6.1. Experiment 1. We ran our algorithm on the first 40 systems that were
generated by a damped GN run trying to reconstruct piecewise constant absorption
and diffusion images. Systems numbered 2, 5, 7, 10, 13-19 (odd), 22-40 (even)
correspond to the beginning of a line search; systems numbered 4, 6, 9, 12, 14-18
(even), 21-41 (odd) correspond to the end of a line search; and the remaining systems
correspond to the middle of a line search.

First, we test our hypothesis that the invariant subspaces corresponding to the
smallest eigenvalues of these matrices do not change much, whether we compare within
a line search or across line searches. Recall that if the columns of W) form an
orthonormal basis for the eigenspace associated with the smallest M eigenvalues for
matrix A, and the same holds for W®) and A®*), then the cosines of the canonical
angles between range(W *)) and range(TW 1)) are given by [33, Corollary 1.5.4]

cos O[range(W W), range(W ¥)] = n[(W ) Tw )],

where X[V] denotes the singular values of the argument V. The sines of the canonical
angles are therefore \/1 — o2, where the o; denote the cosines of the canonical angles.
In Figure 3, we display the sines of the canonical angles between pairs of subspaces
corresponding to the smallest eigenvalues of matrices. We observe that the invariant
subspaces corresponding to the smallest eigenvalues are in fact relatively close, as
predicted by Theorem 4.1. The plots for the sines with M = 3 and M = 12 illustrate
the relative insensitivity of the invariant subspaces corresponding to the smallest 3
and smallest 12 eigenvalues, respectively. The indices have no correspondence with

3These experiments represent small test cases designed to test the regularization scheme itself.
Ideal practical implementations of the inversion routine, which are not feasible without fast forward
solvers such as those we present here, will require voxelations giving millions of unknowns.
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Fic. 4. Ezperiment 1. Smallest 12 eigenvalues of AW, j =1,2,3.

the eigenvectors themselves, nor do the canonical angles reflect the angles between
corresponding eigenvectors. The values of j and k in the pictures were selected to
illustrate the fact that the relevant invariant subspaces of matrices corresponding to
(final) updates in the GN process remain fairly close to each other (e.g., 1 and 4, 4
and 6), whereas those from matrices from distinct phases in the line search differ more
(e.g., L and 5, 1 and 10). Nevertheless, even these do not differ that much, particularly
if a larger dimensional invariant subspace is used. The smallest 12 eigenvalues of A()
for j =1,2,3 are given in Figure 4.

We tested Algorithm 1, adjusted according to section 5.3 for the multiple right-
hand side problem for zero frequency, and also adjusted for an additional nonzero
frequency of w = 5 MHz using Algorithms 2a and 2b. For the first 6 right-hand sides
in the initial phase of Algorithm 1, we saved 2 harmonic Ritz vectors at the end of
each MINRES run to approximate the invariant subspace of A1) corresponding to the
12 smallest eigenvalues. We used a threshold value of 1073, derived by trial and error,
to distinguish between the beginning of a line search step and steps near the end. The
left plot in Figure 5 shows the magnitudes of the spectral coefficients of the initial
residuals for systems 2 through 5 which correspond to the 50 smallest eigenvalues,
while the right plot gives the magnitudes corresponding to the 50 largest eigenvalues.
Systems 2, 3, and 4 are all from the same line search, and we observe that the spectral
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Fic. 5. Experiment 1. Left: Plots of (W(j))Tro Jor j = 2,3,4,5 for source 1, where w @)
corresponds to the eigenvector matriz associated with the 50 smallest eigenvalues of AU Right:
Same, except for 50 largest eigenvalues of AW .
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Fic. 6. FExperiment 1. Number of matriz-vector products per system solve for systems 1:40
and sources 1 and 4. The number of matriz-vector products for source 4 is representative of all
sources after source 1. For comparison we give the number of matriz-vector products required for
MINRES on the systems for source 1, where the starting guesses for each system were the solutions
at the end of the most recent line search. Without subspace recycling, these numbers for source 1
are representative for all sources.

components decrease by roughly one order of magnitude with each system. System
5 corresponds to the beginning of a new line search whose matrix and solution are
not as close to those from the first line search. We observe a corresponding increase
in the magnitudes of the spectral coeflicients over the small eigenvalues, whereas
a comparison of the figures shows that the initial residual is typically smaller over
the subspace corresponding to the largest eigenvalues. This behavior is consistent
both with the analysis of the initial residual in section 5.2 and with the observed
convergence behavior for system 5 in the sense that the solver must work harder to
reduce the residual significantly over these components.

Figure 6 gives the total number of matrix-vector products to solve each system
using our recycling algorithm. This number includes the matrix-vector products re-
quired to compute the columns of C. Note that these represent a lower computational
cost than actual iterations. The residuals for all the real systems were required to
have a relative norm of 107%. Note the savings in matrix-vector products for the
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Fic. 8. Experiment 1. Left: Relative residual norm per system solve, systems 1:40, sources
1 and 4, for w = 5 MHz, results computed using Algorithm 2a. Right: Relative residual norm per
system solve, systems 1:40, sources 1 and 4, for w =5 MHz computed using Algorithm 2b.

right-hand sides other than the first of a single system, because most of the columns
of C' are computed only once for each s. Moreover, the projection has the desired
effect of reducing the total number of iterations required for the projected system.

For comparison purposes, we note that if we used MINRES with a zero starting
guess for every system and right-hand side, the number of matrix-vector products
would be roughly constant at about 81 iterations for each system. Even MINRES
with the solution at the end of the most recent line search as a starting guess could
not achieve the reduction in the number of iterations we achieve with our algorithm, as
demonstrated in Figure 6. Additionally, the matrix-matrix product (AY)U) performed
prior to running MINRES on the projected system runs faster than the equivalent
number of matrix-vector products performed inside (unprojected) MINRES.

The relative residual norms for the first 20 systems, for source 1, are given in
Figure 7. Note the convergence rate becomes higher and the initial relative residual
norm becomes smaller as we move through one sequence of systems in a line search.

The plot in Figure 8 illustrates the relative residual norms that are achieved
when solving the complex system with w = 5 MHz when Algorithms 2a and 2b are
used to update the complex solution vectors. In neither case do we exactly attain
a relative residual norm of 1079, the stopping criterion for the corresponding real
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F1G. 9. Ezperiment 2. Left: Plots of sin G[range(W(j)),range(W(M)} for various (j,k) assum-
ing a subspace dimension of 3. Right: Assuming a subspace dimension of 8.
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Fic. 10. Ezperiment 2. Plot of smallest 12 eigenvalues for AU, j = 1,2,3. Note that the
smallest magnitude eigenvalues remain in clusters and do not cross clusters.

system. However, for our application we feel this is sufficient, and perhaps more than
sufficient since the measured data that defines the least squares problem contains
noise at a level several orders of magnitude larger than 1076, On the other hand, we
need to take the (unknown) conditioning of the algebraic system into account. Since
previous solutions occur in the U matrix, this accounts for the slight upward creep of
the graphs toward the end of the sequence of systems.

6.2. Experiment 2. In this experiment, the background diffusion and absorp-
tion were generated to have a “lumpy” variation [20], and thus the matrices that
were generated correspond to piecewise continuous, rather than piecewise constant,
absorption and diffusion. The total number of GN steps was 24 and the total number
of system matrices was 51. For the first 40 systems the indices corresponding to the
beginning of a line search are 2, 5, 8, 10, 13-39 (odd), while indices corresponding to
the end of a line search are 4,7, 9, 12, 14-40 (even).

The sines of the canonical angles between different pairs of invariant subspaces
associated with the smallest eigenvalues and for different subspace dimensions are
given in Figure 9. In Figure 10 the smallest 12 eigenvalues are displayed. Consistent
with Theorem 4.1 and our conjecture that the changes in the matrices are concentrated
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F1c. 12. Ezperiment 2. Relative residual norms for systems 1 to 20, source 1.

in the invariant subspaces corresponding to higher frequencies (larger eigenvalues), the
smallest eigenvalues remain in disjoint clusters.

Figures 9 and 10 seem to indicate that the smallest 8 or so eigenvalues correspond
to an invariant subspace that remains well separated from its orthogonal complement.
Therefore, in the initialization phase of Algorithm 1, we added two vectors to W
corresponding to the smallest harmonic Ritz values of T}, (i.e., the matrix in (5.3)
with v = 0) for each of the first 4 sources. In Figure 11, we see the effect of keeping
these 8 columns plus the other vectors proposed in section 5.3. In this experiment,
Wing = W, and a threshold value was used to distinguish the phase within the line
search. Just as for the first experiment, note the savings in matrix-vector products
for the right-hand sides after the first for a single system. Again, we compare our
results to MINRES with z(¢“"") from Algorithm 1 as the starting guess.

Relative residual norms for Algorithm 1 for the first 20 systems for source 1 are
given in Figure 12. We observe an increased rate of convergence and smaller initial
residuals in the course of a line search.
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Fic. 13. Ezperiment 2. Left: Relative residual norms for systems 1 to 40, sources 1 and 4,
w =5 MHz using Algorithm 2a. Right: Relative residual norms for systems 1 to 40, sources 1 and
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Finally, the relative residual norms for the complex systems at w = 5 MHz are
given in Figure 13 for Algorithm 2a and 2b. In general, the behavior is more uniform
for these systems versus those in the first experiment since the invariant subspaces
corresponding to the small eigenvalues among the matrices are more closely related.

7. Conclusions and future work. We have discussed various strategies for
Krylov subspace recycling to improve the convergence of linear solvers for a sequence
of slowly changing linear systems arising in computations for optical tomography. We
have combined strategies of recycling approximate invariant subspaces and strategies
of recycling subspaces from previous solutions. Furthermore, our algorithms are based
on a careful analysis of which strategy is most useful at each stage of the optimization
algorithm. This analysis also takes the underlying application, DOT, and matrix sym-
metry into account. Additionally, we have adapted the GCRO algorithm to combine
subspace recycling with solving for multiple shifted systems using a single Krylov sub-
space. Our numerical results, based on two model problems for DOT, show that our
strategies are quite effective. Although we have focused on a particular application
and optimization algorithm, we feel that this approach to tuning the linear solver is
applicable generally to problems where many linear systems must be solved.

Important future work includes the study of how characteristics of the matrices
arising in DOT, such as invariant subspaces and eigenvalues, change for small changes
in model parameters. This may lead to further improvements for linear solvers and
also improved line search strategies for the nonlinear solver. This issue is, of course,
equally important for other applications where we must solve a long sequence of slowly
changing problems, such as crack propagation [26]. Future work will combine modeling
aspects from applications with matrix theory. Other useful extensions that we plan
to research are the use of GCROT-like techniques [11] to measure the effectiveness
of the recycled subspace and update the space accordingly, to combine our current
algorithms with a block approach [37], and to further tune the nonlinear algorithm,
in particular the line search.
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