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Abstract. In partial differential equation-based (PDE-based) inverse problems with many mea-
surements, many large-scale discretized PDEs must be solved for each evaluation of the misfit or
objective function. In the nonlinear case, evaluating the Jacobian requires solving an additional
set of systems. This leads to a tremendous computational cost, and this is by far the dominant
cost for these problems. Several authors have proposed randomization and stochastic programming
techniques to drastically reduce the number of system solves by estimating the objective function
using only a few appropriately chosen random linear combinations of the sources. While some have
reported good solution quality at a greatly reduced cost, for our problem of interest, diffuse optical
tomography, the approach often does not lead to sufficiently accurate solutions. We propose two
improvements. First, to efficiently exploit Newton-type methods, we modify the stochastic estimates
to include random linear combinations of detectors, drastically reducing the number of adjoint solves.
Second, after solving to a modest tolerance, we compute a few simultaneous sources and detectors
that maximize the Frobenius norm of the sampled Jacobian to improve the rate of convergence and
obtain more accurate solutions. We complement these optimized simultaneous sources and detec-
tors by random simultaneous sources and detectors constrained to a complementary subspace. Our
approach leads to solutions of the same quality as obtained using all sources and detectors but at
a greatly reduced computational cost, as the number of large-scale linear systems to be solved is
significantly reduced.
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1. Introduction. The solution of nonlinear inverse problems requires solving
many large-scale discretized PDEs in the evaluation of the forward problem. In pa-
rameterized inverse problems, we can compute the response of the system for a par-
ticular input by numerically solving the PDE. The forward model used in this paper
(see section 2) is already regularized using the parametric level set (PaLS) approach
[1], and we focus on efficiently solving the nonlinear least squares problem

min
\bfp 

f(p) := min
\bfp 

1

2
\| \BbbM (p) - d\| 22,(1.1)

where \BbbM (p) is the vector of computed measurements given by the forward model for
the parameter vector p, and d is the vector of measured data at the detectors.

Each evaluation of f(p) requires the solution of the PDE for all inputs and each
frequency. Moreover, to efficiently compute derivative information using the costate
approach [29], we also need to solve linear systems with the adjoint for each detector
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and each frequency. This leads to an enormous computational bottleneck, as rapid
advances in technology allow for large numbers of sources and detectors. Multiply
this by the number of frequencies, and the number of linear systems to solve in the
solution of (1.1) is very large indeed. For the main application discussed in this paper,
diffuse optical tomography (DOT), the number of sources and the number of detectors
may each be a thousand or more; the number of frequencies used is typically modest
(less than ten) [9].

To solve the minimization problem (1.1), we use the trust region algorithm with
Gauss--Newton regularized model solution (TREGS) [10] that has proven very effective
for parameterized problems of the type we consider in this paper. In [9], we use
reduced order models to approximate both the function evaluation as well as its
derivatives to compute regularized Gauss--Newton steps in TREGS. Here, we explore
an alternative approach, following the work by Haber, Chung, and Herrmann [12]. The
main idea in their paper was to drastically reduce the number of systems to be solved
by exploiting randomization [12], posing the problem as a stochastic optimization
problem [26]. In their approach, the misfit or objective function is estimated using only
a few random linear combinations of the sources, referred to as random simultaneous
sources, that are kept fixed over many optimization steps. In [26], this approach is
referred to as the sample average approximation (SAA) method.

The use of random simultaneous sources has been well studied in several papers;
see [3, 22, 18, 25, 28] and the references therein. While replacing the original objective
function by the stochastic optimization problem seems to work well for direct current
resistivity and seismic tomography [12], we find that the approach does not lead to
accurate recovery of the parameters for the DOT problem. Therefore, we propose two
innovations to the use of random simultaneous sources.

First, we extend the idea of random simultaneous sources to the randomized
treatment of the detector solves for efficiently computing the Jacobian in Newton-type
methods. Second, we propose to combine random simultaneous sources and detectors
with optimized simultaneous sources and detectors to best capture the sensitivity and
hence obtain more accurate estimates of the dominant singular components of the
Jacobian and the corresponding components of the gradient.

The first innovation drastically reduces the cost of Newton-type methods. In
particular, we derive a stochastic optimization problem, analogous to randomized
simultaneous sources, that allows us to reduce the number of adjoint solves for the
detectors.

The second innovation avoids stagnation in the residual norm decrease of the
stochastic optimization approach due to poor or less effective estimates of derivative
information. This is typically more important closer to the solution than early in the
optimization, and several authors have addressed this problem by dynamically varying
the sample size in the stochastic algorithm or increasing it slowly; see, for example,
[6, 25]. We propose an alternative method to improve the estimates of derivative
information that keeps the sample size fixed (and small) for efficiency. Comparing
the two approaches in detail is future work. For the DOT problem, using random
simultaneous sources and detectors does provide moderately accurate parameter so-
lution estimates at a drastically reduced number of linear system solves. Thus, in
our new approach, we first solve with a fixed set of random simultaneous sources and
detectors to an intermediate tolerance. After reaching this intermediate tolerance, we
compute a few simultaneous sources and detectors that maximize the Frobenius norm
of the sampled Jacobian (see section 3); we refer to these as optimized simultaneous
sources and detectors. We complement these optimized sources and detectors by ran-
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dom simultaneous sources and detectors constrained to a complementary subspace
(see section 3). After this update, the optimization converges rapidly to a solution of
the same quality as obtained using all sources and detectors. Our use of optimized
simultaneous sources and detectors is based on two motivations. First, the regular-
ized model problem solves in TREGS [10] focus on the directions corresponding to
the large singular values of the Jacobian. Second, the directions corresponding to the
large singular values are best informed by the data. More details follow at the end of
section 2.

This paper is organized as follows. In section 2, we briefly review DOT, PaLS,
and TREGS. In section 3, we introduce an alternative stochastic problem that in-
cludes random simultaneous detectors, to reduce the number of adjoint solves. In
section 3.2, we introduce optimized simultaneous sources and detectors combined
with random simultaneous sources and detectors constrained to a complementary
subspace. In section 3.3, we provide an overall algorithm for our approach. We also
give an outline of our implementation strategies. In section 4, we demonstrate the
effectiveness of combining random and optimized simultaneous sources and detectors
using a 2-dimensional (2D) and a 3-dimensional (3D) experiment. Finally, we draw
some conclusions and discuss future work in section 5.

2. Background on DOT, PaLS, and TREGS. We assume that the region
to be imaged is a rectangular prism with sources and detectors on the top and or the
bottom. We consider the diffusion model for the photon flux \eta (x) obtained by an
input source g(x) as in [2]. Let the diffusion (or the scattering) and the absorption
coefficients be given by D(x) and \mu (x), respectively. Then, the mathematical model
of the problem in the frequency domain is given by

 - \nabla \cdot (D(x)\nabla \eta (x)) + \mu (x)\eta (x) +
\imath \omega 

\nu 
\eta (x) = g(x)

(2.1)

for x = (x1, x2, x3)
T and  - a < x1 < a,  - b < x2 < b, 0 < x3 < c,

\eta (x) = 0 if 0 \leq x3 \leq c and either x1 = \pm a or x2 = \pm b,

0.25\eta (x) +
D(x)

2

\partial \eta (x)

\partial \xi 
= 0 for x3 = 0 or x3 = c,

where \xi is the outward unit normal, \omega is the frequency modulation of light, and \nu is
the speed of light in the medium.

Assuming that the diffusion coefficient is known (a common assumption for breast
imaging), we use measurements and the forward model to recover the absorption
coefficient of the medium, which can be used to distinguish healthy tissue from tumors
[4]. Typical inversion methods would optimize for the desired physical quantity over
a collection of grid points/voxels resulting in a parameter vector with at least O(106)
unknowns. Instead, we assume that the absorption field, \mu (x), is expressible as \mu (x;p)
with a modest number of (unknown) parameters, p = [p1, p2, . . . , pnp

]T , where np is
the number of parameters. We use the PaLS approach [1, 9] and parameterize the
absorption \mu (x;p) as follows.

Let \varphi :\BbbR + \rightarrow \BbbR be a smooth, compactly supported radial basis function (CSRBF),1

\gamma be a positive, small, real number, and \| x\| \dagger :=
\sqrt{} 
\| x\| 22 + \gamma 2 denote the (regularized)

Euclidean norm. Then the PaLS function \phi with a vector of unknown parameters p

1The CSRBF used here, \varphi (r), is the Wendland function \psi 2,1(r) = (1 - r)4(4r + 1) [1, Table 1].
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Fig. 2.1. (a) Surface and contour plot of a test anomaly on 100 \times 100 mesh with 25 basis
functions where the cutoff is at c = 0.15. (b) The PaLS function of the test anomaly on the left.
If \phi (x,p) \geq 0.15, then x is inside the anomaly (light) and if \phi (x,p) < 0.15, then x is outside the
anomaly (dark).

consisting of expansion coefficients \alpha j , dilation coefficients \beta j , and center locations
\chi \chi \chi j is defined as

\phi (x,p) :=

m0\sum 
j=1

\alpha j\varphi (\| \beta j(x - \chi \chi \chi j)\| \dagger ).(2.2)

The PaLS approach uses an approximate Heaviside function H\epsilon (r), where r is a scalar,
to create a differentiable, but sharp transition from anomaly to background. The
absorption \mu (x,p) takes the value \mu in(x) if x is inside the region and \mu out(x) if x is
outside the region,

(2.3) \mu (x,p) = \mu in(x)H\epsilon (\phi (x,p) - c) + \mu out(x)(1 - H\epsilon (\phi (x,p) - c)),

where c \in \BbbR is a chosen cutoff parameter for the level set.
Figure 2.1 illustrates how PaLS represents the absorption field. Using PaLS, edges

and complex boundaries can be captured with relatively few basis functions. More-
over, the PaLS representation with a modest number of basis functions regularizes
the problem, hence, no further regularization is needed. Since there is no point in
reducing the misfit below the (known or estimated) norm of the noise in the data,
we stop the optimization when the objective function reaches this noise level. This is
called the discrepancy principle [29]. For further discussion of the PaLS parameters
for DOT, we refer the reader to [1, 9].

Let nd, ns, and n\omega denote the number of detectors, sources, and frequencies,
respectively. The discretization of (2.1) leads to computed measurements, mi(\omega j ,p) \in 
\BbbC nd , for each source term, bi,

(2.4) mi(\omega j ,p) = CT
\Bigl( \imath \omega j

\nu 
E+A(p)

\Bigr)  - 1

bi,

where the rows of CT correspond to the detectors.2 A(p) derives from a finite differ-
ence discretization of the diffusion and absorption terms in (2.1), and E derives from

2In practice, we also split mi into its real and imaginary parts.
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the frequency term in (2.1). E is almost the identity except that it has zero rows for
points on the boundary, x3 = 0, x3 = c, in (2.1); so, E is singular.

For simplicity, we consider the nonlinear residual for a single frequency, \omega j = 0.
In vector form, the residual is defined as follows:

(2.5) r(p) =

\left[   r1(p)
...

rns(p)

\right]   =

\left[   m1(p) - d1

...
mns

(p) - dns

\right]   =

\left[   CTA - 1(p)b1  - d1

...
CTA - 1(p)bns

 - dns

\right]   ,

where ri \in \BbbR nd , di is the data vector with the measurements from the detectors
corresponding to source bi, and the nonlinear least squares problem (1.1) becomes

(2.6) min
\bfp 

1

2
\| r(p)\| 22.

Let J be the Jacobian of r(p),

(2.7) J =
\partial r(p)

\partial p
=

\biggl[ 
\partial r(p)

\partial p1
. . .

\partial r(p)

\partial pnp

\biggr] 
,

where the components of J are given by the small vectors

(2.8) Jjk(p) =
\partial 

\partial pk
(CTA - 1(p)bj) =  - CTA - 1(p)

\partial A(p)

\partial pk
A - 1(p)bj \in \BbbR nd .

Evaluating the objective function at a given p requires solving ns \cdot n\omega large linear
systems. Once r(p) and A - 1(p)bj are available, evaluating J using the costate ap-
proach [29] requires solving an additional nd \cdot n\omega adjoint systems for the detectors.
As a result, standard optimization approaches require O(103  - 104) large linear sys-
tem solves at each optimization step. The size of a realistic linear system is at least
O(106). This leads to an enormous computational bottleneck, and new computational
techniques are needed.

We use TREGS [10] to solve the nonlinear least squares problem (2.6). The
TREGS algorithm combines a trust region method with a regularized minimization
of the Gauss--Newton model [11]. The local Gauss--Newton model at the current
parameter vector, pc, is given by

(2.9) f(pc + \delta \delta \delta ) \approx mGN (pc + \delta \delta \delta ) =
1

2
rc

T rc + rTc Jc\delta \delta \delta +
1

2
\delta \delta \delta TJc

TJc\delta \delta \delta ,

and its minimization is equivalent to the least squares problem

(2.10) min
\delta \delta \delta 

\| Jc\delta \delta \delta + r(pc)\| 22.

The TREGS algorithm favors updates corresponding to (1) the large singular values
and (2) the left singular vectors with large components in r as determined by a gen-
eralized cross validation-like criterion. Since the Jacobian tends to be ill-conditioned,
the emphasis on large singular values leads to relatively small steps that provide rela-
tively large reductions in the Gauss--Newton model (2.9). We refer the reader to [10]
for more details of TREGS.
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3. A randomized approach. We recast the nonlinear least squares problem as
a stochastic optimization problem using randomization to drastically reduce the num-
ber of large linear system solves in (2.5) and (2.8). The columns of B = [b1 \cdot \cdot \cdot bns

]
are source terms, and we refer to any linear combination of these sources as a simul-
taneous source. Simultaneous random sources, Bw, with w \in \BbbR ns a random vector,
have been used in several areas [3, 21, 22, 12]. In this section, we introduce the concept
of optimized simultaneous sources and detectors to improve the rate of convergence of
the optimization and the quality of the inverse solution.

3.1. A stochastic optimization approach. To recast (2.5)--(2.6) as a stochas-
tic optimization problem, we first write the residual in matrix form. For a single
frequency, we get

R(p) = [r1(p) r2(p) \cdot \cdot \cdot rns
(p)] = CTA - 1(p)B - D,(3.1)

where the vectors ri \in \BbbR nd are defined in (2.5) and, consequently, r(p) = vec(R(p)).3

The columns of D = [d1 \cdot \cdot \cdot dns
] are the measurements corresponding to source bi.

We have

min
\bfp 

\| r(p)\| 22 = min
\bfp 

ns\sum 
j=1

\| CTA - 1(p)bj  - dj\| 22 = min
\bfp 

\| CTA - 1(p)B - D\| 2F .(3.2)

Each evaluation of the objective function requires solving ns \cdot n\omega linear systems.
Haber, Chung, and Herrmann [12] reduce this cost using simultaneous random sources
combined with (stochastic) trace estimators, following Hutchinson [15].

Let w be a random vector with mean 0 and identity covariance matrix, and let
\BbbE denote the expected value with respect to the random vector w. Then

\BbbE 
\bigl[ 
wTR(p)TR(p)w

\bigr] 
= trace

\bigl( 
R(p)TR(p)

\bigr) 
= \| R(p)\| 2F .

As a particular choice, we choose w to be a realization from the Rademacher
distribution, where each component of w is independent and identically distributed
(i.i.d.) taking values from \{  - 1,+1\} , each with probability 1

2 . Then, as shown in
[15], wTR(p)TR(p)w is a minimum variance and unbiased estimator of the trace of
R(p)TR(p). Thus, the nonlinear least squares problem can be written as a stochastic
minimization problem

min
\bfp 

\| R(p)\| 2F = min
\bfp 

trace R(p)TR(p) = min
\bfp 

\BbbE 
\bigl( 
wTR(p)TR(p)w

\bigr) 
.(3.3)

For a random vector w and simultaneous random source Bw, we have

(3.4) R(p)w = (CTA - 1(p)B - D)w = CTA - 1(p)Bw  - Dw.

So, computing | | R(p)w| | 22 requires a single PDE solve rather than ns solves, which
drastically reduces the cost of a function evaluation.

In contrast to the approach in [12], we use a Newton-type method, so we also
need to reduce the cost of Jacobian evaluations. Therefore, we propose a variation

3For multiple frequencies, we need to compute the residual for each frequency,
[R(\omega 1,p) R(\omega 2,p) \cdot \cdot \cdot ] = [CTA - 1(\omega 1,p)B - D1 CTA - 1(\omega 2,p)B - D2 \cdot \cdot \cdot ].
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that also drastically reduces the cost of computing A - T (p)C for the Jacobian. Let
v \in \BbbR nd and w \in \BbbR ns with all components i.i.d. uniformly from \{  - 1,+1\} . Using the
well-known cyclic property of the trace [20, p. 110], we get

\BbbE 
\Bigl[ \bigl( 
vTRw

\bigr) 2\Bigr] 
= \BbbE 

\bigl[ \bigl( 
vTRw

\bigr) \bigl( 
wTRTv

\bigr) \bigr] 
= \BbbE 

\bigl[ 
trace

\bigl( 
vvTRwwTRT

\bigr) \bigr] 
= trace

\bigl( 
\BbbE 
\bigl( 
vvTRwwTRT

\bigr) \bigr) 
= trace

\bigl( 
RRT

\bigr) 
= | | R| | 2F ,(3.5)

which requires a single additional adjoint solve rather than an additional nd solves
for the Jacobian.

Typically, we need multiple random samples wj and vj to make the variance in
our stochastic estimates sufficiently small. Hence, we set

(3.6) W =
1\surd 
\ell s
(w1 w2 \cdot \cdot \cdot w\ell s) \in \BbbR ns\times \ell s ,

where each column vector wj is i.i.d. with zero expectation and covariance equal to
the identity and \ell s \ll ns. Similarly, we set

(3.7) V =
1\surd 
\ell d

(v1 v2 \cdot \cdot \cdot v\ell d) \in \BbbR nd\times \ell d ,

where each column vector vj is i.i.d. with zero expectation and covariance equal to
the identity and \ell d \ll nd. It is easily verified that these choices give

\BbbE [WWT ] = Ins
and \BbbE [VVT ] = Ind

.(3.8)

Next, we replace the sourcesB by simultaneous random sourcesBW and the detectors
C by simultaneous random detectors CV. Assume that W and V are independent
and we compute unbiased estimates for \| R(p)\| 2.

Theorem 3.1. Let W \in \BbbR ns\times \ell s and V \in \BbbR nd\times \ell d be as given above. Let R \in 
\BbbR nd\times ns . Then

\BbbE 
\bigl[ 
\| VTRW\| 2F

\bigr] 
= \| R\| 2F .(3.9)

Proof.

\BbbE 
\bigl[ 
\| VTRW\| 2F

\bigr] 
= \BbbE 

\bigl[ 
trace

\bigl( 
WTRTVVTRW

\bigr) \bigr] 
= \BbbE 

\bigl[ 
trace

\bigl( 
WWTRTVVTR

\bigr) \bigr] 
= trace

\bigl( 
\BbbE 
\bigl[ 
WWT

\bigr] 
RT\BbbE 

\bigl[ 
VVT

\bigr] 
R

\bigr) 
= trace

\bigl( 
RTR

\bigr) 
= \| R\| 2F .(3.10)

Since TREGS has proven very effective for the nonlinear least squares problem
in DOT with PaLS, we continue to use the TREGS algorithm in the stochastic mini-
mization problem

(3.11) min
\bfp 

\BbbE 
\bigl[ 
| | VTR(p)W| | 2

\bigr] 
= min

\bfp 
| | R(p)| | 2.

We derive the least squares problem used in TREGS to compute a regularized
Gauss--Newton update for the stochastic problem as follows. For any p,

(3.12) vec
\bigl( 
VTR(p)W

\bigr) 
=

\bigl( 
WT \otimes VT

\bigr) 
vec(R(p)) =

\bigl( 
WT \otimes VT

\bigr) 
r(p);

see [14, Lemma 4.3.1]. Using a first order approximation to r(p+ \bfitdelta ) gives\bigl( 
WT \otimes VT

\bigr) 
r(p+ \bfitdelta ) \approx 

\bigl( 
WT \otimes VT

\bigr) 
(r(p) + J\bfitdelta ),
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Fig. 3.1. Reconstruction of a test anomaly on a 201\times 201 mesh with 32 sources, 32 detectors,
using only the zero frequency. (a) Initial configuration with 25 basis functions arranged in a 5 \times 5
grid where 12 basis functions have positive expansion factors (visible as high absorption regions)
and 13 basis functions have negative expansion factors (invisible). (b) True shape of the anomaly.
(c) Reconstruction using all sources and detectors. (d) and (e) Two reconstruction results using
simultaneous random sources and detectors with \ell s = \ell d = 10.

which leads to the (sampled) least squares problem

(3.13) min
\delta \delta \delta 

\| (WT \otimes VT )J\delta \delta \delta + (WT \otimes VT )r(p)\| 22,

replacing (2.10). Note that setting up the least squares problem (3.13) does not require
any computations beyond A - 1(p)(BW) and A - T (p)(CV). In addition, (3.13) has
the following desirable properties for the sampled Jacobian and residual, which follow
directly from (3.8) and well-known properties of the Kronecker product:

\BbbE 
\Bigl[ \bigl( 
(WT \otimes VT )J

\bigr) T
(WT \otimes VT )r

\Bigr] 
= JT\BbbE [WWT \otimes VVT ]r = JT r,(3.14)

\BbbE 
\Bigl[ \bigl( 
(WT \otimes VT )J

\bigr) T
(WT \otimes VT )J

\Bigr] 
= JT\BbbE 

\bigl[ 
WWT \otimes VVT

\bigr] 
J = JTJ.(3.15)

So, the proposed randomization provides unbiased estimates for the gradient and the
Gauss--Newton Hessian.

Two approaches to stochastic optimization are commonly used [26]. One ap-
proach, stochastic approximation (SA), uses a new random vector (or small batch of
random vectors) in each optimization step. The other approach, SAA, uses a fixed
set of random vectors over multiple (or many) optimization steps. In this paper, we
focus on the SAA approach [26] to solve the stochastic problem (3.11). The SAA
approach approximates (3.11) by the sample average problem. At each iteration, this
approach requires solving only \ell s + \ell d linear systems for each frequency to estimate
the objective function and the Jacobian rather than ns + nd.

We give two representative solutions for our problem using the SAA approach in
Figure 3.1. For DOT, the use of simultaneous random sources and detectors initially
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leads to good progress. However, later in the iteration the convergence slows down,
and in many cases, for our problem, it does not lead to sufficiently accurate solutions.
In fact, with the SAA approach, (typically) the residual norm does not reach the noise
level, the stopping criterion used (see the discussion of PaLS in section 2), while the
standard optimization using all sources and all detectors does converge to the noise
level. We will demonstrate this in section 4. In the next section, we provide a solution
to this problem.

3.2. Improving the randomized approach. In the standard SAA approach,
when convergence slows down or a minimum is found for the chosen sample (but not
for the true problem), a new sample is chosen to improve the approximate solution.
However, for our problem this approach leads to slow convergence and stagnation,
unless we obtain more accurate estimates of the dominant singular components of the
Jacobian and the corresponding components of the gradient (see also [10]). Hence,
after exploiting the relatively fast initial convergence for our problem, we want to
avoid stagnation of convergence in the next phase. One approach is to add additional
random simultaneous sources and detectors, that is, increase the sample size, as pro-
posed in [25, 6, 5, 23, 24], with good results. However, this requires progressively
more, expensive, solves. Therefore, for efficiency, we choose to keep the number of
simultaneous sources and detectors fixed. To improve convergence, we exploit the
(often fairly good) approximate solution at a chosen modest intermediate tolerance
to obtain a small number of simultaneous sources and detectors that are optimized
to provide more accurate estimates of the desired derivative information. Since this
optimization is local for the current p, we complement these optimized vectors by
random simultaneous sources and detectors. We make this precise below.

The nonlinear least squares algorithm TREGS focuses on the dominant singu-
lar values of the Jacobian to compute good updates to the parameter vector [10].
The corresponding right singular vectors capture the directions in parameter space
of largest sensitivity in the objective function. Hence, we want to update W and V
so as to best approximate the dominant right singular subspace of J while respecting
the Kronecker product structure in (3.13). This is important for two reasons. First,
for the same (fixed) small number of simultaneous sources and detectors, this gives
us locally (at the current p) the best approximation to what TREGS would do using
all sources and detectors. Second, the directions corresponding to the dominant right
singular vectors are best informed by the data.

So, when a chosen intermediate tolerance is reached, our method computes the
full Jacobian J once, which requires a total of ns + nd solves. Then, we compute
a small number, qs respectively qd, of orthonormal, optimized simultaneous sources
(\widehat W) and detectors (\widehat V). In practice, small qs and qd, 2 to 4, seem to be sufficient.
We provide some experimental results regarding the number of optimized directions
in section 4. Since J is typically of rank substantially lower than np [1, 10], we
expect that computing optimized directions can be done with an accurate approxi-
mation to J that is computed efficiently using one of the sampling approaches from
Halko, Martinsson, and Tropp [13] combined with knowledge of the structure of J
[1, 10]. The effort will be substantially less than solving for all sources and detectors
(for each frequency) [13]. However, the details are beyond the scope of the current
paper.

We would like to maximize

\| (\widehat WT \otimes \widehat VT )J\| 2F .(3.16)
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B238 ASLAN, DE STURLER, AND KILMER

However, the Kronecker product structure combined with the constraints that \widehat W
and \widehat V be isometric matrices leads to a nonlinear constrained optimization problem.
For efficiency, we exploit the tensor structure of this problem, that is, we consider the
Jacobian as a third order array, \scrJ , with components

\scrJ ijk = cTi A
 - 1 \partial A

\partial pk
A - 1bj .(3.17)

This allows us to use an alternating least squares algorithm, a variant of the higher
order orthogonal iteration (HOOI) [8], to find \widehat V \in \BbbR nd\times qd and \widehat W \in \BbbR ns\times qs that
approximately maximize (3.16); details follow in the next section. The algorithm is
only guaranteed to find a local maximum [19, 8]. However, in a number of numerical
tests carried out, the tensor algorithm discussed below seems to always converge to
the global maximum. A similar observation is reported in [8]. In our experiments, the
algorithm also attains the same solutions as the MATLAB fmincon routine, which
optimizes for \widehat W and \widehat V simultaneously.

In the remainder of this section, we first discuss computing the optimized simul-
taneous detectors (\widehat V) and sources (\widehat W) and then complementing these with random

simultaneous sources constrained to Range(\widehat W)\bot and random simultaneous detectors

constrained to Range(\widehat V)\bot .

3.2.1. Computing optimized simultaneous sources and detectors. This
problem is closely related to the truncated higher-order SVD [7, 17] or, more precisely,
to a truncated Tucker2 decomposition [27, 17], as we do not need truncation in the

parameter-derivative direction (the columns of J). As \widehat W and \widehat V are both isometric

matrices, so is their Kronecker product,X = \widehat W\otimes \widehat V. Let [X Xc] be a (real) orthogonal
matrix, and let Sk\times \ell = \{ \Theta \in \BbbR k\times \ell | \Theta T\Theta = I\ell \} (the set of all k \times \ell isometric
matrices). Then, it follows from standard properties of the Frobenius norm that
\| J\| F = \| [X Xc]

TJ\| F and

\| J\| 2F = \| XTJ\| 2F + \| XT
c J\| 2F .

Since \| (I - XXT )J\| F = \| XT
c J\| F , we have that the maximization problem

arg max\widetilde \bfW \in \bfS ns\times \ell s\widetilde \bfV \in \bfS nd\times \ell d

\| (\widetilde WT \otimes \widetilde VT )J\| 2F(3.18)

is equivalent to the minimization problem

arg min\widetilde \bfW \in \bfS ns\times \ell s\widetilde \bfV \in \bfS nd\times \ell d

\| J - (\widetilde W \otimes \widetilde V)(\widetilde W \otimes \widetilde V)TJ\| 2F ;

see also [8, Theorem 4.1] and [17, p. 477]. We solve the maximization problem by a
slight variation of the HOOI algorithm [8] to compute a truncated Tucker2 decompo-
sition [27, 17]. We do not need any compression of the column dimension of J (the
direction corresponding to the parameter derivatives).

We briefly outline the algorithm in tensor form; a MATLAB pseudocode is given
in subsection 3.3. Let \scrJ be the tensor representation of the Jacobian J, where \scrJ ijk =
cTi A

 - 1 \partial \bfA 
\partial pk

A - 1bj ; the dependence on p in A, J, and \scrJ is suppressed for brevity.
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(1) We compute the SVD of the matrix obtained by unfolding the tensor \scrJ along

its lateral slices \scrJ :,j,: and computing the SVD of the resulting matrix \widetilde J:
U\Sigma YT = \widetilde J =

\bigl[ 
\scrJ :,1,: \scrJ :,2,: \cdot \cdot \cdot \scrJ :,ns,:

\bigr] 
.(3.19)

Next, we set the initial \widetilde V = [u1 u2 \cdot \cdot \cdot uqd ] (the leading qd left singular vectors of \widetilde J).
Subsequently, we iterate the following two steps until the change in the approxi-

mate solution, the tuple (\widetilde V, \widetilde W), is sufficiently small.
(2) Let the tensor \scrK be defined as

\scrK jk\ell =

nd\sum 
m=1

(\widetilde v\ell )m\scrJ m,j,k for \ell = 1, . . . , qd,

where the vectors \widetilde v\ell are the columns of \widetilde V (\ell = 1, . . . , qd). We compute the SVD of

the matrix \widetilde K obtained by unfolding \scrK along its frontal slices \scrK :,:,\ell ,

\Phi \Omega \Psi T = \widetilde K =
\bigl[ 
\scrK :,:,1 \scrK :,:,2 \cdot \cdot \cdot \scrK :,:,qd

\bigr] 
,(3.20)

and we set \widetilde W = [\bfitvarphi 1 \bfitvarphi 2 \cdot \cdot \cdot \bfitvarphi qs ] (the leading qs left singular vectors of \widetilde K).
(3) Define the tensor \scrL by

\scrL ik\ell =

ns\sum 
m=1

(\widetilde w\ell )m\scrJ i,m,k for \ell = 1, . . . , qs,

where the vectors \widetilde w\ell are the columns of \widetilde W (\ell = 1, . . . , qs). We compute the SVD of

the matrix \widetilde L obtained by unfolding \scrL along its frontal slices \scrL :,:,\ell ,

U\Sigma YT = \widetilde L =
\bigl[ 
\scrL :,:,1 \scrL :,:,2 \cdot \cdot \cdot \scrL :,:,qs

\bigr] 
,(3.21)

and we set (the new) \widetilde V = [u1 u2 \cdot \cdot \cdot uqd ].

Finally, after convergence, we set \widehat V = \widetilde V and \widehat W = \widetilde W.
While this procedure gives good approximate solutions, in general only a local

maximum of (3.16) is guaranteed [8]. However, in a number of numerical tests carried
out, the tensor algorithm seems to always converge to the globally optimal solution.
This experience was also reported in [8]. Moreover, we have the following useful result
for the case that \| J\| F can be preserved exactly.

Theorem 3.2. If isometric matrices \widetilde W \in \BbbR ns\times qs and \widetilde V \in \BbbR nd\times qd exist such
that

\| (\widetilde WT \otimes \widetilde VT )J\| F = \| J\| F ,(3.22)

then, in one iteration, steps (1)--(3) above compute isometric matrices \widehat W \in \BbbR ns\times qs

and \widehat V \in \BbbR nd\times qd such that

\| (\widehat WT \otimes \widehat VT )J\| F = \| J\| F .
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B240 ASLAN, DE STURLER, AND KILMER

Proof. This result follows from the error bound (Property 10) in [7], which in the
(matrix) notation of this paper is given by

\| J - (\widetilde W \otimes \widetilde V)(\widetilde W \otimes \widetilde V)TJ\| 2F \leq 
nd\sum 

i=qd+1

\sigma 2
i +

ns\sum 
j=qs+1

\omega 2
j .(3.23)

The assumption (3.22) implies that Range(\widetilde J) \subseteq Range(\widetilde V), which in turn implies that

Rank(\widetilde J) \leq qd and hence that \sigma qd+1 = 0, \sigma qd+2 = 0, . . . , \sigma nd
= 0. In a similar fashion,

from assumption (3.22) combined with the choice for \widetilde V from step (1) (see (3.19)),

it follows that Range( \widetilde K) \subseteq Range(\widetilde W), which implies that Rank( \widetilde K) \leq qs and hence
\omega qs+1 = 0, \omega qs+2 = 0, . . . , \omega ns

= 0.
Substitution of \sigma qd+1, . . . , \sigma nd

, \omega qs+1, . . . , \omega ns
into (3.23) shows that the algorithm

will have converged at this point. The algorithm then sets \widehat W = \widetilde W and \widehat V = \widetilde V.

Since \widehat W and \widehat V are only optimal at the current p, we complement these optimized
simultaneous sources and detectors with a new set of random simultaneous sources
and detectors constrained to the orthogonal complement of the span of the optimized
directions, keeping the total number of columns in W and V the same as before. This
procedure can be carried out periodically or for a sequence of prescribed tolerances,
but in our experiments it never needs to be done more than once.

3.2.2. Computing complementary random simultaneous sources and
detectors. We extend the optimized sources and detectors with random simultaneous
sources and detectors. Let Wf = [\widehat WWc] \in \BbbR ns\times ns and Vf = [\widehat VVc] \in \BbbR nd\times nd be
orthogonal matrices. We have

\| R(p)\| F = \| VT
f R(p)Wf\| F

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl[ \widehat VTR(p)\widehat W \widehat VTR(p)Wc

VT
c R(p)\widehat W VT

c R(p)Wc

\Biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

.(3.24)

The (1, 1)-block of this matrix can be computed using the known optimized sources
and detectors. We estimate the remaining blocks, proceeding more or less as be-
fore. We pick random matrices Y = (\ell s  - qs)

 - 1/2[y1 y2 \cdot \cdot \cdot y\ell s - qs ], where each
column vector yj \in \BbbR \ell s - qs is i.i.d. with zero mean and identity covariance and
Z = (\ell d  - qd)

 - 1/2[z1 z2 \cdot \cdot \cdot z\ell d - qd ], where each column vector zj \in \BbbR nd - qd is i.i.d.
with zero mean and identity covariance. In our numerical experiments, we again use
the Rademacher distribution. Next, we set the new matrices W and V to

W = [\widehat W (WcY)],(3.25)

V = [\widehat V (VcZ)].(3.26)

We have the following result.
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Theorem 3.3. Let W \in \BbbR ns\times \ell s and V \in \BbbR nd\times \ell d be given in (3.25) and (3.26),
respectively. Let R \in \BbbR nd\times ns . Then,

\BbbE [WWT ] = Ins
,(3.27)

\BbbE [VVT ] = Ind
,(3.28)

\BbbE [\| VTR(p)W\| 2F ] = \| R(p)\| 2F .(3.29)

Proof. For (3.27), we have

\BbbE 
\Bigl[ 
[\widehat W (WcY)][\widehat W (WcY)]T

\Bigr] 
= \widehat W\widehat WT + \BbbE [WcYYTWT

c ]

= \widehat W\widehat WT +Wc\BbbE [YYT ]WT
c = Ins

.

An analogous derivation holds for (3.28). The proof for the last equation follows the
proof for Theorem 3.1, using the results above.

As a result of Theorem 3.3, the new W and V again give for the expectation of
the sampled gradient and the expectation of the sampled Gauss--Newton Hessian the
true gradient and Gauss--Newton Hessian,

\BbbE [((WT \otimes V)J)T (WT \otimes V)r] = JT r,

\BbbE [((WT \otimes VT )J)T ((WT \otimes VT )J)] = JTJ.

3.3. Implementation. In this section, we first outline the efficient computation
of the sampled residual and sampled Jacobian. Next, we give the overall algorithm
for solving the inverse problem in Algorithm 4.1. We give the details of computing
optimized sources and detectors in Algorithm 4.2, which is based on the matrix rep-
resentation of the Jacobian as defined in (2.8). We estimate the norm of the residual
using
(3.30)

(WT \otimes VT )r(p) =

\left[   VTCTA - 1(p)Bw1  - VTDw1

...
VTCTA - 1(p)Bw\ell s  - VTDw\ell s

\right]   =

\left[   VTCT z1  - VTDw1

...
VTCT z\ell s  - VTDw\ell s

\right]   ,

where we solve A(p)zi = Bwi for zi, i = 1, . . . , \ell s. This reduces the number of large
solves from ns to \ell s per frequency. To compute the Jacobian, we solve the systems,
AT (p)yj = Cvj for yj , j = 1, . . . , \ell d. This reduces the additional number of large
solves from nd to \ell d per frequency. We can use iterative solvers or sparse direct solvers
depending on the size of the system [16]. To obtain the kth column of (WT \otimes VT )J,
we compute \Bigl[ 

yT
1

\partial \bfA (\bfp )
\partial \bfp k

z1 \cdot \cdot \cdot yT
\ell d

\partial \bfA (\bfp )
\partial \bfp k

z1 yT
1

\partial \bfA (\bfp )
\partial \bfp k

z2 \cdot \cdot \cdot yT
\ell d

\partial \bfA (\bfp )
\partial \bfp k

z\ell s

\Bigr] T
,(3.31)

where \partial A(p)/\partial pk is a diagonal matrix if we only invert for absorption. If we also
invert for diffusion, this matrix has 5 (in 2 dimensons) or 7 (in 3 dimensions) diago-
nals. Moreover, after a few iterations, the changes in A(p) are highly localized, and
\partial A(p)/\partial pk contains mostly zero coefficients; see [9]. In that case, first we find the
few nonzero components of \partial A(p)/\partial pk for each k and the corresponding nonzeros

in zj and yi, and next we efficiently compute yT
i

\partial \bfA (\bfp )
\partial \bfp k

zj referencing only the few

nonzero components in (\partial A(p)/\partial pk)zj .
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Algorithm 4.1 Inversion using random and optimized simultaneous sources and
detectors.

Pick standard initial guess \bfp  \triangleleft see Fig. 3.1
\tau = \delta  \triangleleft set intermediate tolerance \tau based on

noise level \delta (section 4)

\bfW = \ell 
 - 1/2
s (\bfw 1 \cdot \cdot \cdot \bfw \ell s)  \triangleleft pick \ell s random simultaneous sources, cf. (3.6)

\bfV = \ell 
 - 1/2
d (\bfv 1 \cdot \cdot \cdot \bfv \ell d)  \triangleleft pick \ell d random simultaneous detectors, cf. (3.7)\widehat \bfD = \bfV T\bfD \bfW  \triangleleft with columns \widehat \bfd j (used below)

Solve \bfA (\bfp )\bfz j = \bfB \bfw j , for j = 1, . . . , \ell s\widehat \bfr (\bfp ) = (\bfW T \otimes \bfV T )\bfr (\bfp ) = \bfv \bfe \bfc (\widehat \bfr 1(\bfp ) \cdot \cdot \cdot \widehat \bfr \ell s(\bfp )) with \widehat \bfr j(\bfp ) = (\bfC \bfV )T \bfz j  - \widehat \bfd j

\bfw \bfh \bfi \bfl \bfe \| \widehat \bfr (\bfp )\| 22 > \tau \bfd \bfo 
\{ compute optimization step \} 
Solve \bfA T (\bfp )\bfy i = \bfC \bfv i, for i = 1, . . . , \ell d
Compute \widehat \bfJ = (\bfW T \otimes \bfV T )\bfJ using \bfy T

i
\partial \bfA (\bfp )
\partial \bfp k

\bfz j  \triangleleft see discussion starting below (3.30)

Compute update \bfitdelta \bfp by solving (3.13) using \widehat \bfJ and \widehat \bfr  \triangleleft with TREGS or alternative
\bfp = \bfp + \bfitdelta \bfp ; Update \bfA (\bfp ) (if explicitly stored)
Solve \bfA (\bfp )\bfz j = \bfB \bfw j , for j = 1, . . . , \ell s\widehat \bfr (\bfp ) = (\bfW T \otimes \bfV T )\bfr (\bfp )  \triangleleft implemented as above

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
\{ compute optimized simultaneous sources and detectors \} 
Compute \bfJ = \partial \bfr (\bfp )

\partial \bfp 
following (2.8) or an accurate approximation by sampling

Compute \widehat \bfV and \widehat \bfW using Algorithm 4.2  \triangleleft see discussion in section 3.2.1
\{ compute the complementary random simultaneous sources and detectors \} 
\bfW =

\Bigl[ \widehat \bfW (\bfW c\bfY )
\Bigr] 
; \bfV =

\Bigl[ \widehat \bfV (\bfV c\bfZ )
\Bigr] 

 \triangleleft see discussion in section 3.2.2\widehat \bfD = \bfV T\bfD \bfW 
Solve \bfA (\bfp )\bfz j = \bfB \bfw j , for j = 1, . . . , \ell s\widehat \bfr (\bfp ) = (\bfW T \otimes \bfV T )\bfr (\bfp )  \triangleleft implemented as above
\bfw \bfh \bfi \bfl \bfe \| \widehat \bfr (\bfp )\| 22 > \tau 2 \bfd \bfo 

\{ compute optimization step \}  \triangleleft same steps as above
\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

4. Numerical experiments. In this section, we provide two numerical experi-
ments, a 2D and a 3D test case, to demonstrate the effectiveness of combining random
simultaneous sources and detectors with optimized simultaneous sources and detec-
tors. The results show that our approach not only produces reconstruction results that
are close to those obtained using all sources and all detectors, but it also substantially
reduces the computational cost.

Our experimental set up is the same as that in [9], where model reduction was
used to reduce the cost of inversion in DOT. The absorption images for the initial
sets of parameters for the 2D and 3D experiments are given in Figure 4.1. For each
test case, we construct anomalies in the pixel basis, and we add a small normally
distributed random heterogeneity to both the background and the anomaly to make
the medium inhomogeneous. We use this pixel-based absorption image to compute
the (true) measured data and add 0.1\% white noise to the measured data. This is the
same noise level as used in [9]. Then, we reconstruct the absorption images using the
PaLS [1] repesentation and TREGS [10] for optimization.

2D experiment. We use a 201\times 201 grid, which yields 40,401 unknowns in the
discretized PDE (2.1). The model has 32 sources, 32 detectors, and we use only the
zero frequency. Our model has 25 CSRBFs, which leads to 100 parameters (four per
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Algorithm 4.2 Compute optimized sources and detectors.

\{ compute \widetilde \bfJ and its qd leading left singular vectors \} \widetilde \bfJ = [ ];  \triangleleft initialize \widetilde \bfJ as empty matrix
\bff \bfo \bfr j = 1:ns \bfd \bfo \widetilde \bfJ = [\widetilde \bfJ \bfJ (j - 1)nd+1:jnd,1:k]  \triangleleft add next block from tensor \scrJ 
\bfe \bfn \bfd \bff \bfo \bfr 
[\bfU ,\bfSigma ,\bfY ] = SVD(\widetilde \bfJ ); \widetilde \bfV = [\bfu 1 \bfu 2 \cdot \cdot \cdot \bfu qd ]  \triangleleft keep qd leading left singular vectors of \widetilde \bfJ 
\bfw \bfh \bfi \bfl \bfe not converged \bfd \bfo 

\{ compute \widetilde \bfK and its qs leading left singular vectors \} \widetilde \bfK = [ ]  \triangleleft initialize \widetilde \bfK as empty matrix
\bff \bfo \bfr \ell = 1:qd \bfd \bfo \widetilde \bfK \ell = [ ]

\bff \bfo \bfr j = 1:ns \bfd \bfo 
( \widetilde \bfK \ell )j,1:k = \bfv T

\ell \bfJ (j - 1)nd+1:jnd,1:k  \triangleleft compute row j of \widetilde \bfK \ell 

\bfe \bfn \bfd \bff \bfo \bfr \widetilde \bfK = [ \widetilde \bfK \widetilde \bfK \ell ]  \triangleleft add next block of \widetilde \bfK 
\bfe \bfn \bfd \bff \bfo \bfr 
[\bfPhi ,\bfOmega ,\bfPsi ] = SVD( \widetilde \bfK ); \widetilde \bfW = [\bfitvarphi 1 \bfitvarphi 2 \cdot \cdot \cdot \bfitvarphi qs

]  \triangleleft keep qs leading left singular vectors of \widetilde \bfK 
\{ compute \widetilde \bfL and its qs leading left singular vectors \} \widetilde \bfL = [ ]
\bff \bfo \bfr \ell = 1:qs \bfd \bfo \widetilde \bfL \ell =

\sum ns
j=1(\widetilde \bfw \ell )j\bfJ (j - 1)nd+1:jnd,1:k\widetilde \bfL = [\widetilde \bfL \widetilde \bfL \ell ]  \triangleleft add next block of \widetilde \bfL 

\bfe \bfn \bfd \bff \bfo \bfr 
[\bfU ,\bfSigma ,\bfY ] = SVD(\widetilde \bfL ); \widetilde \bfV = [\bfu 1 \bfu 2 \cdot \cdot \cdot \bfu qd ]  \triangleleft keep qd leading left singular vectors of \widetilde \bfJ 

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe \widehat \bfV = \widetilde \bfV ; \widehat \bfW = \widetilde \bfW 
2D basis function) for the nonlinear optimization. We use the same starting guess for
each trial, (see Figure 4.1(a), with the 25 basis functions arranged in a 5\times 5 grid, where
12 basis functions have a positive expansion coefficient (visible as high absorption
regions) and 13 basis functions have a negative expansion coefficient (invisible).

We use 10 random simultaneous sources and detectors. We update the simul-
taneous sources and detectors as discussed in section 3 after a chosen intermediate
tolerance has been reached. We find that, in general, the noise level, \delta , is a good choice
as the intermediate tolerance: | | r(p)| | 22 = \delta . Since the PaLS representation regularizes
the problem, we consider the problem converged when | | r(p)| | 22 \leq \delta 2. This is called
the discrepancy principle (the factor 1

2 in (1.1) is dropped for convenience). We run
the 2D experiment for 50 trials. In each trial, the random simultaneous sources and
detectors are chosen independently to get representative reconstruction results.

Example 1. The true absorption image for Example 1 is given in Figure 4.2(a). We
also include the reconstruction results using all sources and detectors for comparison
(see Figure 4.2(b)). As can be seen in Figure 4.2(c) at the intermediate tolerance, SAA
gives a good localization of the anomaly; however, there is little further improvement
using SAA (see Figures 3.1(d)--(e) and Figure 4.3(a)). Figures 4.2(d)--(f) show that us-
ing optimized simultaneous sources and detectors leads to solutions of the same quality
as obtained using all sources and detectors. We report the total number of PDE solves
required for each approach in Table 4.1 for a representative result from 50 trials.

While initially the SAA estimate is unbiased, a systematic underestimation of
the residual/misfit (bias) [26, section 5.1.2] arises, since we optimize for a specific
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Fig. 4.1. (a) Initial configuration for the 2D experiment with 25 basis functions arranged in a
5\times 5 grid, where 12 basis functions have positive expansion factors (visible) and 13 basis functions
have negative expansion factors (invisible). (b) Initial configuration for the 3D experiment with 27
basis functions arranged in a 3\times 3\times 3 grid, where 13 basis functions have positive expansion factors
(visible) and 14 basis functions have negative expansion factors (invisible).
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Fig. 4.2. Results for Example 1. Reconstruction of a test anomaly on a 201 \times 201 mesh
with 32 sources and detectors, 25 basis functions, and using only the zero frequency. The SAA
approach uses 10 random simultaneous sources and detectors. (a) True shape of the anomaly. (b)
Reconstruction using all sources and all detectors. (c) Reconstruction using the SAA approach at a
chosen intermediate tolerance. (d) Reconstruction with SAA and 1 optimized simultaneous source
and detector. (e) Reconstruction with SAA and 2 optimized simultaneous sources and detectors. (f)
Reconstruction with SAA and 3 optimized simultaneous sources and detectors.

small set of random simultaneous sources and detectors. As a result, the algorithm
generally stops prematurely. This can make a big difference, since often substantial
improvement in the shape of the anomaly occurs towards the end of the optimization.
Figure 4.3 demonstrates how poor the reconstructions using only the SAA approach
can be at the convergence tolerance when underestimation of the residual norm is
severe. To make a fair comparison in terms of the number of large systems solved, we
check the true function evaluation of the SAA approach on the side. Table 4.2 shows
that in terms of the true function evaluation, the SAA approach does not reach the
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Fig. 4.3. Two examples of poor SAA reconstructions for the 2D problem after the maximum
number of iterations. Reconstruction of a test anomaly on a 201 \times 201 mesh with 32 sources and
detectors, 25 basis functions, and using only the zero frequency.

Table 4.1
Example 1 results. The total number of iterations, function evaluations, Jacobian evaluations,

and PDE solves required on average for 50 trials to reach the stopping criterion, \| r(p)\| 22 = \delta 2.
Parentheses indicate that the SAA approach does not reach the tolerance.

Iteration
number

Function
evaluations

Jacobian
evaluations

Total PDE
solves

Tol

SAA \star (intermediate tol) 10 11 6 170 \delta 
1 opt simult src/det 18 19 10 524 \delta 2

2 opt simult srcs/dets 18 19 10 524 \delta 2

3 opt simult srcs/dets 16 17 8 484 \delta 2

All srcs/All dets 71 72 47 3808 \delta 2

SAA \star  \star (32) (33) (19) (520) \delta 2

SAA  \star  \star  \star 

(92) (93) (67) (1700) \delta 2

 \star The first row gives the cost to reach the intermediate tolerance for the SAA approach,
\| r(p)\| 22 = \delta .
 \star  \star Since the SAA estimate becomes biased and underestimates the objective function, the
algorithm stops prematurely.
 \star  \star  \star The SAA approach measuring the convergence with the true objective function.

convergence tolerance. Once we use a few optimized sources and detectors, this is no
longer an issue (see Table 4.2).

The main purpose of the SAA approach and our modification is to reduce the
large number of discretized PDE solves required for the inversion. In Table 4.1, we
give a comparison of the total number of PDE solves for Example 1. Our approach
drastically reduces the number of large-scale linear systems that need to be solved.
Additionally, it substantially improves the reconstruction results of the SAA approach.

3D experiment. We use a 32 \times 32 \times 32 grid, which gives 32,768 unknowns in
the discretized PDE (2.1). The model has 225 sources at the top and 225 detectors
on the bottom, and we use only the zero frequency. In the PaLS approach, we
use 27 CSRBFs, which leads to 135 parameters (five per 3D basis function) for the
nonlinear optimization. The absorption image using the initial set of parameters is
given in Figure 4.1(b) where 13 basis functions have a positive expansion coefficient
(visible as high absorption regions) and 14 basis functions have a negative expansion
coefficient (invisible). In our approach, we use only 12 random simultaneous sources
and detectors.

Example 2. The true absorption image for Example 2 is given in Figure 4.4(a).
The reconstruction using all sources and detectors is given in Figure 4.4(b). Fig-
ure 4.4(c) shows that the SAA approach gives a good localization of the anomaly at the
intermediate tolerance. However, little further improvement appears using the SAA
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Table 4.2
Subset of results for Example 1. The comparison of the true objective function \| r\| 22 and its

SAA estimate relative to the stopping criterion (\delta 2) for selected iterations. For the SAA approach,
the estimated residual is obtained with 10 random simultaneous sources and detectors. Parentheses
indicate that the SAA approach does not reach the tolerance. The estimated residual norms using
random and optimized simultaneous sources and detectors are obtained using 3 optimized simulta-
neous sources and detectors.

SAA approach Rand and optimized simult src/det

Iter True \| r\| 22 (\delta 2) Estimated \| r\| 22 (\delta 2) Iter True \| r\| 22 (\delta 2) Estimated \| r\| 22 (\delta 2)
1 118940 38820 1-5 (SAA) \star (SAA) \star 

6 1192.5 391.15 6 1194.9 1197.3
11 56.550 22.575 13 118.73 118.56
15 3.748 0.8650 16 19.894 19.929
(99)  -  - 22 0.8403 0.8389

 \star indicates that we initially use the SAA approach up to the intermediate tolerance.

(a) (b) (c)

(d) (e) (f)

Fig. 4.4. Results for Example 2. Reconstruction of a test anomaly on a 32 \times 32 \times 32 mesh
with 225 sources and detectors, 27 basis functions, and using only the zero frequency. The SAA
approach uses 15 random simultaneous sources and detectors. (a) True shape of the anomaly. (b)
Reconstruction using all sources and all detectors. (c) Reconstruction using the SAA approach at the
intermediate tolerance. (d) Reconstruction using the SAA approach after the maximum iterations.
(e) Reconstruction with SAA and 2 optimized simultaneous sources and detectors. (f) Reconstruction
with SAA and 4 optimized simultaneous sources and detectors.

approach, even after the maximum iterations; see Figure 4.4(d). In Figures 4.4(e)--(g),
we show the reconstruction results when combining random and optimized simulta-
neous sources and detectors.

The straightforward inversion using all sources and detectors requires 9,225 large
linear solves. Table 4.3 shows that our approach reduces the number of large linear
solves by about a factor 12 compared with using all sources and detectors, while
approximating the original shape well. Clearly, there is a large improvement to be
gained by using a small number of optimized simultaneous sources and detectors. For
larger problems with many sources and detectors and using multiple frequencies, we
expect much larger gains.
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Table 4.3
Example 2 Results. The total number of iterations, function evaluations, Jacobian evaluations,

and PDE solves required to reach the stopping criterion, \| r(p)\| 22 = \delta 2. Parentheses indicate that
the SAA approach does not reach the tolerance.

Iteration
number

Function
evaluations

Jacobian
evaluations

Total PDE
solves

Tol

SAA \star (intermediate tol) 4 5 6 132 \delta 
2 opt simult srcs/dets 12 13 6 726 \delta 2

4 opt simult srcs/dets 9 10 3 762 \delta 2

All srcs/all dets 25 26 15 9225 \delta 2

SAA  \star  \star (99) (100) (67) (2505) \delta 2

 \star The first row gives the costs to reach the intermediate tolerance for the SAA approach,
\| r(p)\| 22 = \delta .
 \star  \star The SAA approach measuring the convergence with the true objective function.

Overall, our approach improves the rate of convergence of the optimization and
reduces the number of large-scale linear system solves. Moreover, combining random
and optimized simultaneous sources and detectors improves the quality of the inverse
solution.

5. Conclusions and future work. We use the SAA approach to estimate the
objective function, the Jacobian, and the gradient using only a few simultaneous
random sources and detectors in DOT problems. While this approach is reasonably
effective for the application in [12], it does not work quite that well for DOT. Since
convergence slows down in later iterations before the noise level is reached, and the
standard SAA approach regularly does not converge to the noise level, we propose
using optimized simultaneous sources and detectors. With the addition of optimized
directions, we observe faster convergence, good quality reconstructions, and robust-
ness. This technique could be quite useful in other applications as well.

Several further improvements should be considered in the future. In particular,
approximating the, typically low rank, Jacobian at low cost but sufficiently accu-
rately to compute effective optimized simultaneous sources and detectors would lead
to a further substantial reduction in the number of large linear solves. Potentially,
computing such a low rank approximation can be combined more efficiently with the
tensor form of the Jacobian.

Although our approach has proved successful experimentally, we aim to under-
stand the underlying theory better. In the future, we plan to analyze, more fun-
damentally, what are the most effective simultaneous sources and detectors for fast
convergence of the inverse problem: randomized, optimized (and in what sense), and
their combination. An alternative approach to improve convergence, studied in mul-
tiple papers [25, 6, 5, 23, 24], is to slowly increase the sample size as the optimization
progresses or dynamically choose the sample size. In future work, we plan to compare
these approaches with the approach proposed in this paper. We also plan to test and
evaluate SA approaches for inversion in DOT.

We intend to update the TREGS algorithm and study how small we can make the
number of simultaneous sources and detectors (random and optimized) and still obtain
good solutions and fast convergence. Moreover, finding more appropriate stopping
criteria for the randomized approach may also improve our results.

As shown in [9], using parameterized interpolatory model reduction can also re-
duce the cost of inversion for DOT. We plan to combine model reduction with the
randomized approach.
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