
Journal of Computational Physics 303 (2015) 222–237
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Recycling Krylov subspaces for CFD applications and a new 

hybrid recycling solver

Amit Amritkar a,b,∗, Eric de Sturler b, Katarzyna Świrydowicz b, Danesh Tafti a, 
Kapil Ahuja c,1

a Department of Mechanical Engineering, Virginia Tech, United States
b Department of Mathematics, Virginia Tech, United States
c Computer Science and Engineering, IIT Indore, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2015
Received in revised form 4 September 2015
Accepted 22 September 2015
Available online 28 September 2015

Keywords:
Linear solver
Krylov subspace recycling
CFD
Preconditioner
Recycling GCROT
Recycling BiCGStab

We focus on robust and efficient iterative solvers for the pressure Poisson equation 
in incompressible Navier–Stokes problems. Preconditioned Krylov subspace methods are 
popular for these problems, with BiCGStab and GMRES(m) most frequently used for 
nonsymmetric systems. BiCGStab is popular because it has cheap iterations, but it may 
fail for stiff problems, especially early on as the initial guess is far from the solution. 
Restarted GMRES is better, more robust, in this phase, but restarting may lead to very slow 
convergence. Therefore, we evaluate the rGCROT method for these systems. This method 
recycles a selected subspace of the search space (called recycle space) after a restart. 
This generally improves the convergence drastically compared with GMRES(m). Recycling 
subspaces is also advantageous for subsequent linear systems, if the matrix changes slowly 
or is constant. However, rGCROT iterations are still expensive in memory and computation 
time compared with those of BiCGStab. Hence, we propose a new, hybrid approach that 
combines the cheap iterations of BiCGStab with the robustness of rGCROT. For the first few 
time steps the algorithm uses rGCROT and builds an effective recycle space, and then it 
recycles that space in the rBiCGStab solver.
We evaluate rGCROT on a turbulent channel flow problem, and we evaluate both rGCROT 
and the new, hybrid combination of rGCROT and rBiCGStab on a porous medium flow 
problem. We see substantial performance gains for both the problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The current study focuses on iterative solvers for computational fluid dynamics (CFD) applications on structured grids, 
solving the Navier–Stokes (N–S) and energy equations. For very large problems direct methods are impractical, and even for 
moderate three-dimensional problems they are typically more expensive than iterative methods in work and storage. This 
is the case even for systems with many right hand sides; see, e.g., [1].

* Corresponding author at: Department of Mechanical Engineering, Virginia Tech, 445 Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 
24061.

E-mail addresses: amritkar@vt.edu (A. Amritkar), sturler@vt.edu (E. de Sturler), kswirydo@vt.edu (K. Świrydowicz), dtafti@exchange.vt.edu (D. Tafti), 
kahuja@iiti.ac.in (K. Ahuja).

1 Worked on this project when graduate student at Virginia Tech. Currently Assistant Professor at IIT Indore, India.
http://dx.doi.org/10.1016/j.jcp.2015.09.040
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.09.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:amritkar@vt.edu
mailto:sturler@vt.edu
mailto:kswirydo@vt.edu
mailto:dtafti@exchange.vt.edu
mailto:kahuja@iiti.ac.in
http://dx.doi.org/10.1016/j.jcp.2015.09.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.09.040&domain=pdf


A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 223
The N–S equations are nonlinear partial differential equations (PDEs) that are commonly discretized in space using the 
Finite Volume Method (FVM), and occasionally the Finite Element Method (FEM). The pressure–velocity coupling frequently 
requires special consideration. This has given rise to various coupled and decoupled solution algorithms, where the choice 
of nonlinear solution algorithm leads to particular systems of linear equations. In terms of computational cost, the solution 
of the pressure Poisson equation is the most critical, and incompressible N–S solvers deal with this equation in several 
ways. The pressure Poisson equation is elliptic in nature but leads to nonsymmetric matrices for non-Cartesian meshes or 
due to certain boundary conditions. Such systems are typically solved by preconditioned Krylov subspace methods [2] with 
a suitable preconditioner. For symmetric positive definite systems on regular meshes, multigrid preconditioners or multigrid 
methods are advised, but for nonsymmetric systems the case is less clear. In this paper, we use relatively simple multilevel 
preconditioners that are particularly suited for implementation on graphical processing units (GPUs); see below for further 
details. More general multilevel preconditioners or multigrid methods are interesting next steps. However, these are not 
considered here.

We solve the N–S equations at discrete time steps to capture the transient flow characteristics in unsteady flows or to 
converge to a steady state solution, leading to a sequence of linear systems of equations. For these systems, originating 
from a Newton-type iteration, there is little or no change in the coefficient matrix (A), and only the right hand side (b) 
changes for subsequent time steps. In this case, recycling a judiciously selected subspace of the search space typically 
reduces the number of iterations substantially. This is referred to as Krylov subspace recycling [3]. There are several algorithms 
that take advantage of recycling for subsequent systems as well as for restarts of generalized minimal residual (GMRES) 
type methods, such as the generalized conjugate residual method with inner orthogonalization (GCRO) [4,5], GCRO with 
deflated restarting (GCRODR) [3], GMRES with deflated restarting (GMRES-DR) [6] (only for a single system) and GCRO with 
optimal truncation (GCROT) [7]. For a sequence of nonsymmetric linear systems, bi-Lanczos-based recycling algorithms, like 
recycling biconjugate gradient stabilized (rBiCGStab) [8], have the advantage of a short-term recurrence, and hence low 
storage requirements and fewer orthogonalizations compared with GMRES variants.

Krylov subspace recycling for sequences of systems has been sporadically applied to structured grid CFD calcula-
tions. Several studies in the area of aerodynamic shape optimization show that Krylov subspace recycling with simplified 
GCROT(m, k) [9] improves convergence [10,11]. In a study by Carpenter et al. [12], using an enriched GMRES method with 
subspace recycling for a long sequence of linear systems for steady convection–diffusion problems and flow over a wind tur-
bine, solver parameter tuning yields improved convergence and even eliminates stagnation in some cases. For CFD matrices 
from the Harwell—Boeing Sparse Matrix Collection, the GCRO-DR algorithm is accelerated by avoiding small skip angles [13]. 
A study by Meng et al. [14] shows that block GCROT(m, k) performs better than block GMRES(m) for most of the Poisson 
and convection–diffusion problems. There are some cases where recycling has not worked particularly well. A study by 
Mohamed et al. [15] observed poor performance of GCRO-DR compared with GMRES(m) for both restarting and sequences 
of systems for a variety of aerodynamic flows. These previous efforts on Krylov recycling in CFD applications all concen-
trate on variants of GMRES. Here, we extend recycling for CFD applications to the bi-Lanczos-based method rBiCGStab, and 
we propose a new hybrid method as well. The new hybrid method exploits a simplified and more efficient version of the 
rBiCGStab algorithm derived in [8]. This more efficient version made possible by restricting the type of recycling. In this 
paper, we first demonstrate the advantages of Krylov subspace recycling for a turbulent channel flow problem by comparing 
the results of BiCGStab, GMRES(m) and recycling GCROT (rGCROT). Next, we introduce a novel method for building the outer 
recycle space for the rBiCGStab algorithm. We use rGCROT to build the recycle space and then switch to rBiCGStab using the 
same recycle space for subsequent systems. This hybrid method combines the robustness of rGCROT in the initial phase of 
the simulation, when the starting residual (r0) is large, with the economy of BiCGStab iterations when r0 drops as the flow 
develops. We test our hybrid method on the pressure Poisson equation for a porous media flow problem with 2.56 million 
unknowns. We believe this is the first application of preconditioned Bi-Lanczos based recycling algorithms to CFD.

Below, we use rGCROT(m, k) to denote the main parameters, m and k, giving the dimensions of the inner Krylov space 
(as for GMRES(m)) and the outer recycle space, respectively. In the next section, we briefly outline the CFD applications and 
the GenIDLEST package, and we discuss the preconditioners and linear solvers. Section 3 describes our CFD test problems. 
Results from numerical experiments are discussed in Section 4 and conclusions in Section 5.

2. Methodology

In this section, we present a brief overview of the GenIDLEST package and the CFD applications it is used for, along with 
details of the linear solvers used. We briefly discuss Krylov subspace recycling and we suggest an improved algorithm for 
rBiCGStab.

2.1. GenIDLEST

The GenIDLEST (Generalized Incompressible Direct and Large-Eddy Simulations of Turbulence) code used in this study 
solves the incompressible, time-dependent, Navier–Stokes and energy equations in a generalized structured body-fitted 
multiblock framework. It has been extensively used in propulsion, biological flows, and energy related applications that 
involve complex multi-physics flows [16]. GenIDLEST has various turbulence modeling capabilities including Reynolds Aver-
age Navier–Stokes (RANS), Detached Eddy Simulation (DES) and Large Eddy Simulation (LES) with subgrid stresses modeled



224 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
using the dynamic Smagorinsky eddy viscosity model [17]. The code uses a finite volume formulation with fractional step 
algorithm using the semi-implicit Adams–Bashforth/Crank–Nicolson method or a fully-implicit Crank–Nicolson method for 
a predictor step. The corrector step solves a pressure Poisson equation to satisfy mass continuity [18]. The non-dimensional 
pressure Poisson equation in generalized coordinates has the following form in GenIDLEST [18],

∂

∂ξ j

(√
g g jk〈 ∂

∂ξk
pn+1〉

)
= 1

�t

∂〈√gŨ j〉
∂ξ j

, (1)

where 
√

g is the Jacobian of the spatial transformation, g jk is the contravariant metric tensor, pn+1 is the pressure at time 
level n + 1 (with density absorbed in the pressure), �t is the time step and 〈√gŨ j〉 is the conserved contravariant flux 
based on an intermediate velocity ũi . Using finite volume discretization, this Poisson equation is transformed into a linear 
system, Ax = b, with pressure as the unknown. The pressure coefficient matrix (A) consists of geometric quantities from 
the left hand side of (1). The right hand side (b) is evaluated from a local balance of the intermediate volume fluxes at cell 
faces surrounding a finite volume. The current study focuses on the solution of linear system arising from (1).

The GenIDLEST code spans over 300,000 lines and more than 600 subroutines, and it has modules for the Arbi-
trary Lagrangian–Eulerian (ALE) Method [19], the Discrete Element Method (DEM) [20], the Immersed Boundary Method 
(IBM) [21], and for Fluid Structure Interaction (FSI) [22]. The computational algorithms are optimized to take maximum ad-
vantage of state-of-the-art hierarchical memory and parallel architectures, with a focus on Message Passing Interface (MPI) 
and OpenMP-based codes for central processing units (CPUs) [23] and more recently for GPUs [24].

Data layout
GenIDLEST uses a non-staggered grid topology; so, all the unknowns are defined and calculated at the computational 

cell center except the contravariant volume fluxes, which are defined and calculated at cell faces. The coefficient matrix is 
stored in structured banded sparse storage format (also diagonal storage) [25, Section 11.5]. For every unknown, only the 
coefficients for the 7 or 19 point stencil, for orthogonal or non-orthogonal grids respectively, are stored. Although this format 
(potentially) stores coefficients more than once, it avoids building the stencil more than once and has contiguous memory 
storage patterns for efficient utilization of CPU cache memory and vectorization. If orthogonal meshes are used, and the 
domain decomposition leads to matching interfaces at mesh block boundaries, the matrices from (1) are symmetric positive 
definite and conjugate gradient method (CG) is well-suited. In all other cases, the system matrices are nonsymmetric and 
nonsymmetric linear solvers must be used. The sparsity pattern of the matrices depends on the boundary conditions. In 
GenIDLEST, the matrix from the pressure Poisson equation changes only when there is ALE/IBM grid movement or for IBM 
related boundary flux correction.

Preconditioners in GenIDLEST
Preconditioners are essential for Krylov subspace methods, as they greatly improve the rate of convergence for many 

problems. In some cases, they are required for convergence. Preconditioners are the most expensive operation in the 
GenIDLEST framework. Thus a good choice for the preconditioner is imperative.

GenIDLEST uses domain decomposition-based preconditioners that have been optimized for parallel [26] execution on 
CPUs and, more recently, on GPUs [27,24]. Optimizations for serial implementations have also been done [28], but here 
we focus on preconditioners that run fast in parallel. In particular for high performance on GPUs, it is important to have 
a preconditioner tuned for the architecture [29]. For preconditioning, we partition the domain into many overlapping sub-
domains, and we use an additive or multiplicative Schwarz method.

The subdomain equations are solved inexactly using a few (local) iterations of Jacobi or SSOR methods. The substructured 
overlapping subdomain blocks are well-suited to exploit SIMD parallelism and the hierarchical memory of CPUs. Global 
coupling between distant subdomains is provided by Jacobi iteration on the global problem [26].

Since the forward- and backward substitution in SSOR is less suited to GPUs, we focus on Jacobi iterations for precon-
ditioning in this paper. Five sweeps of the Jacobi method with a relaxation parameter (under-relaxation) are applied on the 
local sub-domains, followed by a sweep of point Jacobi smoothing on the global domain. This preconditioner is referred 
to as the Jacobi preconditioner in this paper. Additional details of the preconditioners can be found in Wang et al. [26]. 
The preconditioners are applied from the left of the coefficient matrix, except for BiCGStab, where right preconditioning is 
used.

2.2. Linear solvers

In GenIDLEST, linear solvers are needed for the solution of decoupled momentum equations and the pressure equation. 
We need to solve three linear systems in 2D or four in 3D for every time step. CG is used for symmetric systems, and 
BiCGStab or GMRES(m) are used for non-symmetric systems. In this paper, we introduce and test in GenIDLEST the recycling 
Krylov subspace solvers rGCROT [3,7] and rBiCGStab [8], with a new hybrid approach for the latter. In the applications 
considered here, the momentum equations converge rapidly (≤ 2 iterations) and are always solved with BiCGStab. However, 
the pressure Poisson equation is more difficult to solve, and we consider various linear solvers described in this section. 



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 225
Since the quantity of interest is the pressure correction from (1), at the start of each time step an initial zero pressure field, 
x0 = 0, is used for all the solvers. Thus, the initial residual is r0 = b − Ax0 = b for every time step.

GMRES/GMRES(m)

Algorithm 1 (GMRES(m)).

1. Choose x0, compute r0 = b − Ax0, ‖r0‖2, and set i = 0.
2. Choose tol, m, and max_itn.
3. while ‖ri‖2 > tol ∗ ‖b‖2 and i ≤ max_itn
4. v1 = ri/‖ri‖2
5. for j = 1 . . .m
6. v j+1 = Av j ; i = i + 1
7. for k = 1 . . . j do
8. hk, j = v T

k v j+1; v j+1 = v j+1 − vkhk, j
9. end

10. h j+1, j = ‖v j+1‖2; v j+1 = h−1
j+1 v j+1

11. end { Arnoldi: AVm = Vm+1Hm }
12 Solve y = arg min ỹ∈Rm

∥∥e1‖r0‖2 − Hm ỹ
∥∥

2 { where Hm = (hk, j) }
13. xi = xi−m + Vm y; { where Vm = [v1 v2 . . . vm], analogous for Vm+1 }
14. ri = b − Axi ; { alternatively ri = ri−m + Vm+1(Hm y) }
15. end

Note: For ease of exposition, a few simplifications are made in this presentation. Our actual implementation handles all these 
cases properly. First, the algorithm given above does not check convergence in the inner cycle of m iterations. An estimate of 
the residual is available at each iteration, and the algorithm can be stopped at an arbitrary iteration. Second, the algorithm can 
stop early if at any point ‖v j+1‖2 = 0; this is not checked in the algorithm above.

The Generalized Minimum Residual Method (GMRES) [30], given in Algorithm 1, is an iterative method for linear systems. 
At iteration m, the method minimizes the residual norm, ‖b − Axm‖2, over all vectors x in the Krylov subspace, Km(A, b) =
span{b, Ab, . . . , Am−1b}, where A and b can be considered as the preconditioned matrix and right hand side, respectively. 
The Arnoldi recurrence, lines 4–11, generates a sequence of orthogonal vectors that span the Krylov space [31]. These vectors 
satisfy the (standard) Arnoldi recurrence relation

AVm = Vm+1Hm. (2)

The solution to the least squares system, line 12, provides an approximate solution by orthogonal projection. For a non-
symmetric system, each new Arnoldi vector must be explicitly orthogonalized against all previous ones. Therefore storage 
increases linearly with iteration count, until convergence or a restart (line 15), and work increases quadratically with itera-
tion count. To limit high costs in storage and computation, restarted versions of the method, referred to as GMRES(m) [30], 
are used. However, restarting often results in a significant increase in the total number of iterations. The storage cost associ-
ated with GMRES(m) in our current implementation is (m + 1)N + 4N , in addition to the system matrix (here 19N), where 
N is the number of unknowns and m is the restart frequency.

BiCGStab

Algorithm 2 (BiCGStab).

1. Choose x0, compute r0 = b − Ax0, ‖r0‖2, and set i = 0. Choose r̃.
2. Choose tol and max_itn
3. while ‖ri‖2 > tol ∗ ‖b‖2 and i ≤ max_itn
4. ρ = r̃T ri
5. if ρ == 0 then breakdown occurred; exit gracefully
6. if i == 0 then p = ri else β = (ρ/ρold)(α/ω); p = ri + β(p − ωv) end
7. v = Ap;
8. α = ρ/(r̃T v); s = ri − αv;
9. if ‖s‖2 ≤ tol ∗ ‖b‖2 then

10. xi+1 = xi + αp; ri+1 = s; exit triumphantly (converged)
11. end
12. t = As;
13. ω = (tT s)/(tT t)
14. xi+1 = xi + αp + ωs;



226 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
15. ri+1 = s − ωt;
16. ρold = ρ; i = i + 1;
17. end

Note: Typically, r̃ is either chosen as a random vector or equal to r0.

Unlike GMRES, BiCGStab does not need to store the entire Krylov subspace, nor does it perform a full orthogonal-
ization (Gram–Schmidt process). Instead, BiCGStab relies implicitly on a (non-optimal) oblique projection to define its 
iterations [32], which requires only a short recurrence. The BiCGStab method was developed by Henk A. van der Vorst [33]
and quickly gained popularity due to its robustness and low computational cost. The BiCGStab algorithm is given in Algo-
rithm 2. The short term recurrence in BiCGStab, in iteration i, builds the residual as the product of two polynomials,

ri = Q i(A)Pi(A)r0. (3)

As a result, BiCGStab requires two (preconditioned) matrix-vector products per iteration, with the possible exception of the 
last iteration if convergence is attained at line 9 (Algorithm 2). The storage cost of BiCGStab is 8N , in addition to the system 
matrix (here 19N).

2.3. Recycling Krylov subspaces

Algorithm 3 (rGCROT(m, k)/GCRODR(m, k)).

1. Choose x̂; compute r̂ = b − Ax̂, ‖b‖2, and set i = 0.
1a. Choose/Given U , compute C̃ = AU and C̃ = C R (thin QR decomposition)
1b. ξ = C T r̂; r0 = r̂ − Cξ ; ρ0 = ‖r0‖2; x0 = x̂ + U (R−1ξ)

2. Choose tol, m, and max_itn.
3. while ρi > tol ∗ ‖b‖2 and i ≤ max_itn
4. v1 = ri/ρi
5. for j = 1 . . .m
6. v j+1 = Av j ; i = i + 1
6a. for 	 = 1 . . .k do
6b. b	, j = cT

	 v j+1; v j+1 = v j+1 − c	b	, j

6c. end { v j+1 = v j+1 − CC T v j+1 }
7. for 	 = 1 . . . j do
8. h	, j = v T

	 v j+1; v j+1 = v j+1 − v	h	, j
9. end
10. h j+1, j = ‖v j+1‖2; v j+1 = h−1

j+1, j v j+1

11. end { augmented Arnoldi: AVm = C B + Vm+1Hm }
12 Solve y = arg min ỹ∈Rm ‖e1ρi−m − Hm ỹ‖2
12a. z = −B y { where B = (b	, j) }
13. xi = xi−m + Vm y
13a. xi = xi − U (R−1z)
14. ri = b − Axi ; ρi = ‖ri‖2 { alternatively ri = ri−m + Vm+1(Hm y) }
14a. Update U and C if desired { for details see [7,3] }
15. end

Note: The changes from the GMRES(m) algorithm are given in lines 1a–1b, 6a–6c, 12a, 13a, and 14a.

When solving a sequence of slowly changing linear systems, A j x j = b j , the Krylov subspaces Km(A j, b j) typically contain 
smaller subspaces that are all close to each other and can be approximated by some recurring subspace (which need not 
be a Krylov space). The idea of Krylov subspace recycling is (1) to compute this recurring subspace efficiently while solving 
subsequent linear systems and (2) to improve the rate of convergence of the iterative solves by iterating orthogonally to this 
space.

To get an idea of the effectiveness of this approach, consider restarted GMRES for a single system. If GMRES(m) restarts 
while little progress has been made, the method restarts with almost the same residual as before. Hence GMRES(m) explores 
a search space very close to the search space from the previous m steps. Since it has already computed the optimal solution 
from that space, this leads to very slow convergence or even stagnation. By keeping a judiciously selected subspace after 
restarting (or for the next linear system), recycling methods compute a new search space orthogonal to this recycled space, 
which prevents searching near a previous space and often leads to much faster convergence [3,4,7].

Next, we discuss how to implement recycling for the GMRES-like methods rGCROT and GCRODR and for the short 
recurrence method BiCGStab.



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 227
Recycling GMRES: rGCROT and GCRODR
The rGCROT(m, k) (or GCRODR(m, k)) algorithm is given in Algorithm 3. Let U ∈ R

N×k and range(U ) be a subspace we 
want to recycle. If U has been updated or the matrix has changed, we compute the (thin) QR-decomposition

C R = AU ,

where C ∈ R
N×k has orthonormal columns and R ∈ R

k×k is upper triangular; see line 1a. In line 1b, we orthogonalize the 
initial residual r̂ against C , and update the initial (solution) guess accordingly. This ensures

r0, v1 ⊥ C .

After this initialization, recycling is implemented by an augmented Arnoldi recurrence, lines 4–11 in Algorithm 3, the so-
lution of a modified least squares problem, lines 12–12a, and a modified update for the approximate solution, lines 13–13a. 
Otherwise, the method proceeds like GMRES(m); compare corresponding lines in Algorithms 1 and 3. Lines 6a–6c extend 
the standard Arnoldi recurrence given in lines 4–11 of Algorithm 1, orthogonalizing the new v j+1 against C before orthog-
onalizing against v1, . . . , v j . This gives

Vm+1 ⊥ C (4)

and the augmented Arnoldi recurrence relation, see (2) for comparison,

AVm = C B + Vm+1Hm, where B = C T AVm. (5)

Hence, we approximate the residual in a space, range(Vm+1Hm), that is indeed orthogonal to the (previously used) space 
range(C). The optimal update to the solution from the space range(U ) + range(Vm) leads to a modified least squares prob-
lem. We have

xm = x0 + Vm y + U R−1z ⇒ rm = r0 − AVm y − C z, (6)

then substituting the augmented Arnoldi recurrence (5) gives

(y, z) = arg min
ỹ∈Rm,z̃∈Rk

∥∥Vm+1(e1‖r0‖2 − Hm ỹ) − C(B ỹ + z̃)
∥∥

2 . (7)

Using (4), we can minimize separately for the Vm+1 component (cf. Algorithm 1, line 12) and the C component. The latter 
is minimized by taking z = −B y (line 12a).

If the recurring subspace approximately persists from one system to the next, recycling is very effective. The overhead 
consists mostly of the additional orthogonalizations in lines 6a–6c. Compared with GMRES(m) recycling variants may even 
reduce memory requirements, because m can be much smaller while the number of columns in U and C is often modest; 
see [7]. Nevertheless, the memory requirements are typically substantially higher than for short recurrence methods like 
BiCGStab.

GCROT and GCRODR differ only in how they select the space range(U ). The GCRO-DR algorithm uses approximate in-
variant subspaces for U , whereas GCROT measures angles between successive search spaces to approximate the recurring 
subspace directly [3]. We refer to GCROT with recycling for a sequence of systems as rGCROT here. For our applications of 
interest, rGCROT gives faster convergence and is a more robust solver for the initial time steps. The additional storage cost 
of the rGCROT solver over GMRES(m) is 2kN , where k is the (maximum) dimension of the recycle space.

rBiCGStab

Algorithm 4 (rBiCGStab with one recycle space (used for the hybrid algorithm)).

1. Choose x̂, compute r̂ = b − Ax̂, ‖b‖2, and set i = 0.
1a. Choose/Given U and possibly C and R (provided by rGCROT for the hybrid algorithm).
1b. if C and R not given then compute C̃ = AU and C̃ = C R (thin QR decomposition) end
1c. Compute η1 = C T r̂; r0 = r̂ − Cη1; and ξ = −η1 { accumulate U -updates for x in ξ }
2. Choose tol, max_itn, and r̃.
3. while ‖ri‖2 > tol ∗ ‖b‖2 and i ≤ max_itn
4. ρ = r̃T ri
5. if ρ == 0 then breakdown occurred; exit gracefully
6. if i == 0 then p = ri else β = (ρ/ρold)(α/ω); p = ri + β(p − ωv) end
7. v = Ap;
7a. η1 = C T v; v = v − Cη1

8. α = ρ/(r̃T v); s = ri − αv
9. if ‖s‖2 ≤ tol ∗ ‖b‖2 then
10. xi+1 = xi + αp; ri+1 = s
10a. ξ = ξ + αη1; exit triumphantly (converged)



228 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
11. end
12. t = As
12a. η2 = C T t; t = t − Cη2

13. ω = (tT s)/(tT t)
13a. ξ = ξ + αη1 + ωη2 { accumulate Uk updates for x }
14. xi+1 = xi + αp + ωs
15. ri+1 = s − ωt
16. ρold = ρ; i = i + 1
17. end
17a. xi = xi − U (R−1ξ) { add accumulated updates to solution }

Note: As the solution is needed only at the very end, all updates with the U vectors (updates of the type x = x − U R−1z) are 
postponed, reducing #its ∗ 4Nk work to 2Nk work. The length k vector ξ accumulates these postponed updates. The changes 
from the standard BiCGStab algorithm are given in lines 1a–1c, 7a, 10a, 12a, 13a, and 17a.

As we saw above, BiCGStab builds polynomials of the type (3). In general, for recycling in BiCGStab we would recycle 
two subspaces, each augmenting one of the two Krylov subspaces in the underlying bi-Lanczos recurrence [8]. However, as 
shown in [8, Section 5, Example 1], this is not always necessary. If only one recycle space is used, range(U ), the algorithm 
simplifies substantially. To see how such a recycling BiCGStab can be implemented, we rearrange the augmented Arnoldi 
recurrence relation (5) for A as a standard Arnoldi recurrence relation for AC = (I − CC T )A. Moving the term C B to the left 
and using B = C T AVm , we get

AVm = C B + Vm+1Hm ⇔ (I − CC T )AVm = Vm+1Hm. (8)

Hence, as for rGCROT, we can generate the Krylov subspace Km(AC , r0) with the operator AC and with r0 orthogonalized 
against C ; see lines 1a, 7a, and 12a in Algorithm 4. This leads to polynomials of the type

rrBiCGStab
i = Q i(AC )Pi(AC )r0, (9)

with starting residual r0 = (I − CC T )r̂. So, we run BiCGStab with a modified initial residual, AC replacing A, and special 
updates for the solution as for rGCROT. The special updates for the solution can be derived from the fundamental relation 
between solution updates and residual updates in Krylov methods,

xi+1 = xi + z ⇒ ri+1 = ri − Az, (10)

which implies

z = A−1(ri − ri+1). (11)

Note that (11) still holds when the residual is computed as in (9). Hence, the residual update s = ri − αAC p (lines 7–8) 
corresponds to the solution update

xi+1 = xi + A−1(αAc p) = xi + αp − U (αR−1η1) (see lines 10–10a) , (12)

where the U -component of the update, U (αR−1η1), is postponed till the end; see line 17a. The residual update in line 15 
leads to an analogous update for the approximate solution.

This implementation also avoids some expensive updates if possible. The algorithm for the general case of rBiCGStab and 
its derivation can be found in [8,34]. The additional storage for rBiCGStab compared with BiCGStab is 2kN , where again k is 
the (maximum) dimension of the recycle space.

2.4. Hybrid approach

Although the rGCROT method is more robust and often converges in fewer iterations than BiCGStab, its iterations are 
relatively expensive. As a result, for later time steps, the run time for rGCROT might be higher than for (r)BiCGSTab. In our 
application, the additional robustness and fast convergence of rGCROT are important mainly in the first few time steps. For 
later time steps, we can use BiCGStab or, for faster convergence and improved robustness, rBiCGStab. Therefore, we propose 
a hybrid strategy that starts with rGCROT and switches to rBiCGStab, recycling the subspace computed by rGCROT for 
previous systems. The recycle spaces constructed in rGCROT, range(U ) and range(C), remain constant during the rBiCGStab 
calculations. Thus a large recycle space can be used efficiently in this approach. An alternative approach of intermittent 
solves with rGCROT to update the recycle space can be used when the system matrix changes for certain time steps. 
Moreover, if convergence is poor at an intermediate phase, we can switch back to rGCROT. This was not necessary in the 
applications discussed in this paper. We list the advantages and disadvantages of the various solvers in Table 1. The hybrid 
approach is designed to combine the advantages of the robust rGCROT algorithm and the cheaper rBiCGStab iterations.



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 229
Table 1
Advantages and disadvantages of various linear solvers considered.

Solver Advantages Disadvantages

BiCGStab · Cheap iterations (in time) with low storage requirements · Irregular and/or slow convergence for stiff problems, possible accuracy 
problems

· Often fast in run time

rBiCGStab · Relatively cheap iterations (in time) · Improved but irregular convergence
· Higher storage requirement

GMRES(m) · Min. residual over m iterations · Large storage requirement
· Monotonic residual norm decrease · Expensive iterations due to orthogonalization

rGCROT · Fast convergence (in iterations) because of recycling · Higher storage requirement
· Monotonic residual decrease · Expensive iterations due to additional orthogonalizations

Fig. 1. Turbulent channel flow showing vorticity.

3. CFD problem description

In this study, we consider two problems where the pressure coefficient matrix remains constant for all subsequent time 
steps,

1. Turbulent channel flow,
2. Flow through porous media.

3.1. Turbulent channel flow

Turbulent channel flow has been used extensively as a canonical problem that embodies most of the physical com-
plexities of wall bounded turbulent flow. For this reason, turbulent channel flow, depicted in Fig. 1, is a good problem to 
evaluate the linear solvers. In this study, we use a three-dimensional, orthogonal computational grid, leading to a seven 
point stencil, with a single mesh block of 64 × 64 × 64 computational cells. A higher grid density near the wall is used 
to resolve the boundary layer, and periodic boundary conditions are used in the flow direction to mimic an infinitely long 
turbulent channel. We specify a fixed mean pressure gradient in the flow direction to balance the wall friction. Prescribed 
perturbations in the flow, based on the mean turbulent channel flow profile, are given as the initial conditions to trigger 
the onset of turbulence. The flow is allowed to evolve in time until the solution reaches a stationary state. A skin friction 
Reynolds number (Reτ ) of 180, based on channel half width and wall friction velocity, is used to compare with the study of 
Moser et al. [35]. First, the simulation is run using the rGCROT algorithm until the flow turbulence has become statistically 
stationary in time (stationary flow). For performance comparison, 30 time steps of 5 × 10−5 second are run at the start and 
end (after 2.5 seconds) of the calculations with various solvers. An absolute tolerance of 10−6 is used as the convergence 
criterion on the L2 norm of the residual. The Jacobi preconditioner with 5 inner iterations is used for all the solvers.



230 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
Fig. 2. Flow through porous media with u velocity contours.

3.2. Flow through porous media

Porous media flow has a wide variety of applications. In the current study, we model the porous medium using IBM to 
resolve the porous structure, which is constructed using the stochastic reconstruction procedure, as shown in Fig. 2. The IBM 
scheme uses indirect forcing of sharp interfaces on the background mesh [21]. We use a 2D background mesh consisting 
of 2.56 million orthogonal cells and 16 mesh blocks (100 × 800 × 2 × 16) to simulate a bulk flow Reynolds number (Reb) 
of 10−4. In the current IBM framework, two computational cells are needed in the Z direction for 2D calculations. The 
porous medium has wall boundaries on the top and the bottom, with inlet and outlet boundaries on the left and right, 
respectively. The pressure coefficient matrix remains constant for every time step, as the IBM related flux corrections at 
the immersed boundaries are not applied. For the performance comparison, ten time steps of 10−8 second are run at the 
start of the calculations with various solvers. A relative tolerance of 10−10 on the L2 norm of the residual is used as the 
convergence criterion, as the initial residual norm is large and no solver would converge to an absolute tolerance of 10−6 , 
since this is too close to the relative machine precision. The preconditioner uses 5 inner iterations of either Jacobi iterative 
smoothing or SSOR smoothing. Although the SSOR algorithm is more appropriate for symmetric matrices, it can be applied 
to nonsymmetric coefficient matrices as a preconditioner, as this only requires an approximate solution.

4. Results

The turbulent channel flow simulation is performed serially on a local system (Dual Intel®Xeon®CPU X5650 @ 2.67 GHz 
& 48 GB memory), whereas the flow through porous media study is performed using 16 CPU cores (Dual Intel®Xeon®CPU 
E5-2670 @ 2.60 GHz & 64 GB memory) with MPI parallelism on the BlueRidge HPC system at Virginia Tech.

In the experiments discussed in this section, we check the convergence for BiCGStab and rBiCGStab only at the end of 
one complete execution of the while-loop, that is, going once through lines 3–17, in Algorithms 2 and 4. Therefore, one 
iteration of (r)BiCGStab includes two (preconditioned) matrix-vector products. Similarly, for GMRES(m) and rGCROT(m, k) 
we check convergence only at the end of one complete execution of the while-loop, that is, going once through lines 3–15, 
in Algorithms 1 and 3. In the context of restarted GMRES(m) and rGCROT(m, k), this is often called a cycle. A cycle involves 
m steps of the (augmented) Arnoldi recurrence, and hence involves m matrix-vector products. Notice that the number of 
matrix-vector products determines the dimension of the Krylov space from which a solution is computed. Therefore, in com-
paring how fast methods converge, we compare the number of matrix-vector products until a specified tolerance is reached. 
Since the number of flops (and hence run time) per GMRES(m) or rGCROT(m, k) iteration, typically defined as one iteration 
of the (augmented) Arnoldi recurrence, is not constant, we provide some of the timing/performance information below per 
cycle (m matrix-vector products). Similarly, we provide some of the timing/performance information for (r)BiCGStab per 
iteration (2 matrix-vector products).

In our comparisons of the various solvers, we have to make a choice of either running each solver independently in 
GenIDLEST for the specific problem, or choosing one solver as the master and make the solutions computed by that solver 
determine the linear systems solved by all the other solvers. The first approach has the advantage that the performance 
numbers reported are the actual results obtained for running GenIDLEST with that solver. It has the disadvantage that the 
solvers being compared all solve slightly different problems, potentially impacting the comparison. In our case, only the right 
hand sides are slightly different. The second approach avoids this problem, but will compute performance characteristics that 
would not actually be observed using these solvers independently for GenIDLEST.

Since we compare the solvers over a fairly large number of time steps (linear systems), we prefer the first approach. 
The effect of a few potentially unfortunate right hand sides for, say, one solver will mostly be averaged out. Moreover, 
we are careful to ensure that the right hand sides for each time step don’t vary much among the solvers. The starting 
point for all the solvers is the same, and we use a relatively high convergence criterion to ensure that the solutions of linear 
systems (which determine subsequent right hand sides), are very close. So, although the right hand sides are not exactly the 
same across all solvers, we don’t expect this to have a large impact on the average and total matrix-vector product counts 
and on the run time required for convergence. As will be clear from the reported results, for most solvers the number of 



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 231
Fig. 3. Number of matrix-vector products for rGCROT(30, 130) to converge for each time step (right y-axis) and the initial ‖r0‖2 for each time step (left 
y-axis).

matrix-vector products for convergence does not fluctuate much from time step to time step; see Figs. 4 and 5. This suggests 
the convergence rates are not particularly sensitive to the variations in typical right hand sides.

4.1. Turbulent channel flow

There are 6 parameters associated with the rGCROT algorithm [3]: the maximum number of steps of the augmented 
Arnoldi recurrence (lines 5–11 in Algorithm 3), m2; the (max) dimension of the recycle space, or outer search space, k; the 
number of outer vectors after truncation of the outer space, here k − 10; the number of inner vectors to select outer vectors 
from, here m/2; the number of inner vectors selected to extend the outer space, here 1; and, the number of latest inner 
vectors kept to extend the outer space, here 0.

In this study, we focus on the two most influential parameters, m and k. The other parameter values are given as 
constants or in terms of m and k (as stated above). To analyze optimal performance, k is varied from 20 to 170, and m is 
varied from 20 to 100, both with increments of 10, at the start of the simulations and also at the end of simulations. At 
the start of the simulations, rGCROT(30, 130) is optimal with respect to solution time, whereas rGCROT(20, 130) is optimal 
after the flow becomes stationary. Additional details regarding the rGCROT parameters and selection guidelines can be found 
in [3].

Fig. 3 gives the number of matrix-vector products needed to converge for a long sequence of time steps with the 
rGCROT(30, 130) solver. It also shows the L2 norm of the initial residual (‖r0‖2 = ‖b‖2) for every time step. The variation 
in ‖r0‖2 is directly associated with the flow physics. At the first time step, the initial guess for the velocity with prescribed 
perturbations in the flow is farthest from the solution, so the ‖r0‖2 value is maximum. As the flow starts to develop, ‖r0‖2
goes down and drops by 3 orders of magnitude. After about 1000 time steps, ‖r0‖2 goes back up by an order of magnitude, 
because rapid changes in the flow rate cause relatively large changes in subsequent right hand sides (b). Once the flow 
becomes stationary, the flow rate and consequently ‖r0‖2 settle down to quasi-steady values. The number of matrix-vector 
products needed to converge for a given time step is influenced by the variations in ‖r0‖2, since an absolute convergence 
tolerance of 10−6 is used. For the rGCROT algorithm, the dimension and quality of the recycle space also influences the 
number of matrix-vector products needed to converge. Initially, the dimension of the recycle space is small and the recurring 
subspace has not been constructed yet, and thus the number of matrix-vector products to converge is higher. As a recurring 
subspace is discovered and captured by the recycle space, the number of matrix-vector products drops to 30 or one cycle. 
When the flow develops, the right hand side changes considerably with each time step due to rapid changes in flow rate. 
This warrants intermittent updates to the recycle space, and the number of cycles (each 30 matrix-vector products) to 
converge fluctuates between one and two. As the ‖r0‖2 values goes back up, the number of cycles increases to two, since 
the relative reduction required in the residual norm also increases. After this phase of fluctuations, the flow settles and the 
number of cycles is again one or two.

Tables 2 and 3 give the time to solution and the average number of matrix-vector products to converge. From the 
results it is clear that the parameter-tuned rGCROT solver takes the least number of matrix-vector products per time step 
and has the lowest time to solution. Notice that the time for a BiCGStab iteration, which takes 2 matrix-vector products 
and a few orthogonalizations, is very small compared with a rGCROT(30, 130) cycle, which takes 30 matvecs and many 

2 The parameter m also gives the maximum dimension of the inner search space, span(v1, . . . , vm), and it is similar to the restart frequency of GMRES.



232 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
Table 2
Solver performance at the start of the calculations.

First 30 time steps BiCGStab GMRES(50) rGCROT(30, 130)

Total time to solution (s) 365 12 680 323
Average number of matrix-vector products per time step 184 4350 69
Average number of iterations (its) or cycles (c) per time step 92 (its) 87 (c) 2.3 (c)
Solver time per iteration (s/it) or per cycle (s/c) 0.132 (s/it) 4.84 (s/c) 4.68 (s/c)

Table 3
Solver performance when the flow is stationary.

30 time steps at end BiCGStab GMRES(50) rGCROT(20, 130)

Total time to solution (s) 242.7 336.7 164.8
Average number of matrix-vector products per time step 112 100 30
Average number of iterations (its) or cycles (c) per time step 56 2 1.5
Solver time per iteration (s/it) or per cycle (s/c) 0.144 5.52 3.66

Fig. 4. Number of matrix-vector products for each solver to converge to an absolute tolerance of 10−6 for each time step when the flow is stationary.

Table 4
Solver storage cost comparison for the turbulent channel case.

Solver Additional storage cost

BiCGStab 8N
GMRES(50) 55N
rGCROT(30, 130) 293N

orthogonalizations. However, it takes many more BiCGStab iterations to converge than rGCROT(30, 130) cycles. At the start 
of the calculations, GMRES(m) did not converge in 1000 matrix-vector products if the restart frequency, m, was chosen less 
than 50. This prolonged stagnation in convergence is a typical issue with GMRES(m) for small m. All the solvers converge 
faster when the flow becomes stationary, because ‖r0‖2 is smaller.

The number of matrix-vector products to converge, after the flow becomes stationary, is shown in Fig. 4 for a sequence 
of 30 time steps. The number of matrix-vector products for rGCROT(20, 130) remains constant once the recycle space 
has captured the dominant subspace. The method convergences in one cycle (20 matvecs). The number of matrix-vector 
products to converge for GMRES(m) also remains constant (100 matvecs or 2 cycles), but the time to solution is much 
larger as we have to build the search space from scratch after every restart. The number of matrix-vector products for 
BiCGStab fluctuates only modestly.

The storage costs of the various solvers for the turbulent channel flow problem are listed in Table 4. We only list 
storage costs beyond the standard costs in every solver, for the system matrix, the right hand side, and the approximate 
solution, and that are at least O (N), where N is number of unknowns. Required auxiliary and temporary vectors used in the 
solvers are counted towards the storage overhead. As mentioned in Section 2.2, the BiCGStab solver has the lowest storage 
requirements, and the rGCROT solver often has substantially higher storage requirements. For the same amount of storage, 
it has been shown that the rGCROT algorithm tends to outperform GMRES(m) [3]. When storage is cheap, the rGCROT solver 
typically shows superior performance compared with other solvers.



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 233
Fig. 5. Comparison of solvers using the Jacobi preconditioner (solid lines) and using the SSOR preconditioner (dashed lines): (a) Time to converge (seconds), 
(b) Number of matrix–vector products to convergence to a relative tolerance of 10−10.

In summary, rGCROT is a robust solver that is capable of converging in very small numbers of cycles (or matrix-vector 
products) by exploiting subspace recycling. However, an rGCROT cycle may be relatively expensive in time and in storage. On 
the other hand, BiCGStab has cheap iterations but may take many more iterations (or matrix-vector products) to converge. 
This suggests a hybrid approach that combines the robustness of rGCROT with the cheap iterations of BiCGStab by using 
the rGCROT recycle space in rBiCGStab as discussed below. We also tested this hybrid approach for the turbulent channel 
flow problem, but the method was not faster (in time) than rGCROT. However, for the porous media application in the next 
section the hybrid method does produce shorter runtimes.

4.2. Flow through porous media

Next, we analyze several solvers for the simulation of porous media flow. We determine optimal parameters for 
rGCROT(m, k) and GMRES(m) and compare the solvers and preconditioners for those parameters. Finally, the tuning of 
the hybrid approach is discussed.

Parameter study for rGCROT(m, k) and GMRES(m)
For a fair comparison, the parameters of rGCROT and GMRES(m) are optimized independently for each solver. For rGCROT, 

we consider the performance with the Jacobi preconditioner while varying the restart frequency (m) and the dimension of 
the recycle space (k). The parameter k is varied from 10 to 210, with increments of 10, and m is varied from 10 to 80, 
with increments of 5. For the other parameters, we take the following values: k − 10 for the number of outer vectors after 
truncation of the outer space; m/2 for the number of inner vectors to select outer vectors from; 2 for the number of inner 
vectors selected to extend the outer space; and, 0 for the number of latest inner vectors kept. We obtained the minimum 
runtime for rGCROT(10, 40), and this choice is used throughout this section.

The restart frequency for GMRES(m) with the Jacobi preconditioner is varied from 15 to 55, with increments of 5, 
and with the SSOR preconditioner from 30 to 60, with increments of 10. GMRES(30) with the Jacobi preconditioner and 
GMRES(50) with the SSOR preconditioner gave the optimal performance in terms of time to solution for the first 10 time 
steps, and this choice is used for further comparison.

Comparison of solvers and preconditioners
We compare the average number of matrix-vector products and total time taken for the first 10 time steps in Table 5. 

Note that the average numbers of matrix-vector products for BiCGStab are based on a maximum of 1000 iterations (2000 
matrix-vector products) for a time step, and for several time steps this method did not reach the convergence tolerance 
(see Fig. 5). We continued the simulation for the purpose of comparison. The average number of matrix-vector products for 
the hybrid approach is taken only over the time steps that were solved using rBiCGStab. For the hybrid approach, hybrid(n) 
indicates n time steps with rGCROT(10, 40) and (10 − n) time steps with rBiCGStab.



234 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
Table 5
Average number of Matrix-Vector products per time step and total time for 10 time steps of the porous media flow problem for various solvers and 
preconditioners. The dashes below for GMRES(m) indicate that the convergence for the other m-value was faster (we aim to compare only for the optimal 
parameters).

Solver Average number of matrix-vector products Total time (s)

Jacobi SSOR Jacobi SSOR

BiCGStab 1480 (max 2000) 1432 (max 2000) 3185 4202
Hybrid(5) 454 310 2682 2076
GMRES(30) 1800 – 6497 –
GMRES(50) – 950 – 5539
rGCROT(10, 40) 420 280 3028 2943

Table 6
Convergence comparison for the tenth time step of the porous media flow problem. The dashes below for GMRES(m) indicate that the convergence for the 
other m-value was faster (we aim to compare only for the optimal parameters).

Solver Number of matrix-vector products Solution time (s)

Jacobi SSOR Jacobi SSOR

BiCGStab (2000) (2000) 423.1 582.1
rBiCGStab 436 298 215.9 178
GMRES(30) 1740 – 617.5 –
GMRES(50) – 950 – 523.2
rGCROT(10, 40) 420 280 298.5 293.4

The results in Table 5 show that the hybrid method has the lowest time to solution with both preconditioners and 
requires only a moderate average number of matrix-vector products for convergence. We also see that rGCROT(10, 40) 
itself is competitive, only losing to the hybrid solver in run time while having the lowest average number of matrix-vector 
products required for convergence. However, the difference in matrix-vector products is small, and as rBiCGStab is cheaper 
in terms of orthogonalizations it reduces the runtime substantially, especially with the SSOR preconditioner.

Using the SSOR preconditioner reduces the average number of matrix-vector products for all solvers, indicating that it is 
the more effective preconditioner for this problem. For all solvers except BiCGStab, the total time also decreases with the 
SSOR preconditioner.

Fig. 5 shows the number of matrix-vector products to converge and the time to solution per time step for the various 
solvers. This complements Table 5, which only gives the average results. The results for the hybrid solver are given only 
for the time steps solved with rBiCGStab, as the results for the initial steps with rGCROT(10, 40) are already given. The 
number of iterations remains almost constant for all the solvers except for BiCGStab. As can be seen, BiCGStab (with either 
preconditioner) did not converge to the required relative tolerance for several time steps. Clearly, BiCGStab is not robust 
enough for this problem.

Table 6 shows the number of matrix-vector products for convergence and the solution time for the tenth time step. We 
focus on this time step, because the hybrid approach is tuned based on this time step as discussed in the next subsection. 
The hybrid approach is represented by rBiCGStab, since the tenth time step is solved by rBiCGStab using the recycle space 
from 5 initial time steps of rGCROT(10, 40). The rBiCGStab solver with the SSOR preconditioner has by far the lowest time 
to solution.

Fig. 6 plots the convergence of the relative residual norm for each solver, ‖rk‖2/‖r0‖2, against the number of matrix-
vector products, for the tenth time step. The residual norms of both GMRES(m) and rGCROT decrease monotonically, whereas 
the residual norm of BiCGStab shows irregular convergence towards the end and the method does not converge. The residual 
norm of rBiCGStab also displays some (modest) irregular convergence towards the end. When comparing the precondition-
ers, for all solvers the initial residual (‖r1‖2/‖r0‖2) and initial slope are about the same, except for GMRES(m) since the 
restart frequencies differ.

The L2 norm convergence curves in Fig. 6 are given for the true residuals (b − Axi ), except for the rBiCGStab solver, where 
it is given for the updated residual (ri+1 = s − ωt , line 15 in Algorithm 4). The update from the outer projection space to 
the solution vector in rBiCGStab is performed only after convergence (see line 17a Algorithm 4). So, the calculation of the 
true residual for every iteration would introduce additional overhead, and is therefore avoided.

The storage costs for the various solvers for the porous media flow problem are listed in Table 7. Similar to the discussion 
in Section 4.1, the storage cost for the BiCGStab solver is the lowest, and it is the highest for the rGCROT algorithm. The 
hybrid approach with rBiCGStab has slightly lower persistent storage requirements than rGCROT(10, 40) but higher than for 
the other solvers. However, it has the lowest time to solution. So, there is a trade-off between performance and storage, and 
the selection of the best solver may depend on the availability of storage and data access costs.

Hybrid approach tuning
We analyze and tune the performance of the hybrid approach to obtain the best parameter choices. This analysis provides 

the parameter choices for the experiments discussed in the previous subsection. We vary the dimension of the recycle 



A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 235
Fig. 6. Convergence comparison for the tenth time step using BiCGStab, Hybrid, GMRES and rGCROT solvers with (a) the Jacobi preconditioner and (b) the 
SSOR preconditioner.

Table 7
Solver storage cost comparison for flow through porous media case.

Solver Additional storage cost

BiCGStab 8N
GMRES(50) 55N
rGCROT(10, 40) 93N
Hybrid(rBiCGStab) 88N

Table 8
Effect of the number of initial time steps with rGCROT(10, 40) on the solution 
time for the hybrid approach.

Number of initial time 
steps with rGCROT(10, 40)

Solution time for the 
tenth time step (s)

Total time (s)

1 Unstable –
2 Unstable –
3 239.5 3089
4 248.3 3003
5 215.9 2682
6 232.8 2792
7 233.9 2945
8 252.3 2928
9 234.4 2967

space, k, and the time step, n, at which we switch the solver from rGCROT(10, 40) to rBiCGStab. We vary k from 10 to 210, 
with a step of 10, while using six time steps to build the recycle space using rGCROT. The optimal run time for the hybrid 
approach is also obtained with rGCROT(10, 40). For a larger recycle space, the cost of projection becomes too high, whereas 
for a smaller recycle space, the number of matrix-vector products for convergence becomes too large.

Table 8 lists the time to solution for the tenth time step and the total time for several n in the hybrid(n) approach. We 
use the Jacobi preconditioner for the tuning. If we run 1 or 2 time steps with rGCROT(10, 40) and then switch to rBiCGStab, 
the rBiCGStab solver becomes unstable, generating ever larger residual norms. This suggests that the recycle space is not 
yet of good quality. However, with further initial time steps by rGCROT(10, 40), the recycle space becomes better, and 
subsequent systems are solved faster. With the minimum runtime as the criterion, the optimal switching point is after 5 
time steps of rGCROT(10, 40).

The convergence histories for the tenth time step (with rBiCGStab) for several n are shown in Fig. 7. The convergence 
histories for all n > 2 are fairly close to each other, suggesting that once a good recurrent subspace is discovered, the need 
to update this space further is minimal. These results also show that the choice of time step to switch from rGCROT to 
rBiCGStab is not particularly sensitive, although care should be taken not to switch too early. For some problems, it might 
be useful to update the recycle space after a certain number of time steps, based on the changes to the system matrix 
and/or right hand side. This was not investigated in the current study.



236 A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237
Fig. 7. Effect of the number of initial time steps with rGCROT(10, 40) on the convergence of the tenth time step with rBiCGStab.

The hybrid approach is appropriate for problems where the condition number of the preconditioned system matrix is 
high or the spectrum is otherwise unfavorable, requiring a large number of iterations to converge, and there is a sequence of 
such systems to be solved. In this case, typically, performance gains from reducing the number of iterations outweighs the 
overhead per iteration associated with orthogonalization against the recycle space. Finally, as our results show, the hybrid 
approach with rBiCGStab significantly reduces overall runtime for certain CFD applications at the cost of a moderate increase 
in storage costs.

5. Conclusions and future work

The Krylov subspace recycling linear solvers rGCROT and rBiCGStab are tested for two important CFD applications that 
lead to a sequence of linear systems, and they are compared with the standard solvers GMRES(m) and BiCGSTab. For a 
turbulent channel flow problem, the parameter tuned rGCROT solver performs better than both BiCGStab and GMRES(m) in 
terms of time to solution and number of matrix-vector products to converge. A novel approach to build the recycle space 
for recycling BiCGStab is proposed and tested for a porous media flow simulation. This hybrid approach has the fastest time 
to solution with a moderate number of matrix-vector products for convergence compared with BiCGSTAB, GMRES(m) and 
rGCROT.

Several other solver aspects provide further important directions of research. We should consider a similar study to 
analyze which preconditioners provide the best performance, both in terms of convergence and robustness, including conver-
gence on a sequence of finer meshes, and in terms of high performance implementations. In particular, it will be interesting 
to analyze what type of multilevel preconditioners are most effective for the CFD problems considered in this paper and 
allow high performance on modern architectures, for example, multiple GPU cards. The optimal interaction between Krylov 
recycling and preconditioning would be an important aspect of such a study. Analogously, it would be important to consider 
how finer discretizations might affect the benefits of recycling. Of course, such an analysis cannot be separated from choices 
how to precondition for a sequence of finer meshes.

Acknowledgements

This work was funded in part by the Air Force Office of Scientific Research (AFOSR) Computational Mathematics Pro-
gram via Grant Number FA9550-12-1-0442 and in part by the National Science Foundation (USA) under Grant Numbers
DMS-1025327 and DMS-1217156. The authors also acknowledge Advanced Research Computing at Virginia Tech for provid-
ing computational resources.

Finally, we thank the anonymous reviewers for their careful and helpful suggestions, which greatly helped us to improve 
this paper.

References

[1] S. Wang, E. de Sturler, G.H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, Int. J. Numer. 
Methods Eng. 69 (2007) 2441–2461.

[2] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.A. van der Vorst, Templates for the Solution of Linear 
Systems: Building Blocks for Iterative Methods, 2nd edition, SIAM, Philadelphia, PA, 1994.

[3] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti, Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput. 28 (5) 
(2006) 1651–1674.

[4] E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math. 67 (1) (1996) 15–41.

http://refhub.elsevier.com/S0021-9991(15)00633-6/bib57616E6732303037s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib57616E6732303037s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib74656D706C61746573s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib74656D706C61746573s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7061726B733230303672656379636C696E67s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7061726B733230303672656379636C696E67s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6465313939366E6573746564s1


A. Amritkar et al. / Journal of Computational Physics 303 (2015) 222–237 237
[5] E. de Sturler, Inner-outer methods with deflation for linear systems with multiple right-hand sides, in: Householder Symposium XIII, in: Proceedings 
of the Householder Symposium on Numerical Algebra, Pontresina, Switzerland, 1996, pp. 193–196.

[6] R.B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput. 24 (1) (2002) 20–37.
[7] E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal. 36 (3) (1999) 864–889.
[8] K. Ahuja, P. Benner, E. de Sturler, L. Feng, Recycling BiCGStab with an application to parametric model order reduction, SIAM J. Sci. Comput. (2015), in 

press, available from http://arxiv.org/abs/1406.2831.
[9] J.E. Hicken, D.W. Zingg, A simplified and flexible variant of GCROT for solving nonsymmetric linear systems, SIAM J. Sci. Comput. 32 (3) (2010) 

1672–1694.
[10] J. Hicken, M. Osusky, D. Zingg, Comparison of parallel preconditioners for a Newton–Krylov flow solver, in: A. Kuzmin (Ed.), Computational Fluid 

Dynamics 2010, Springer, Berlin, Heidelberg, 2011, pp. 457–463.
[11] T.M. Leung, D.W. Zingg, Aerodynamic shape optimization of wings using a parallel Newton–Krylov approach, AIAA J. 50 (3) (2012) 540–550.
[12] M.H. Carpenter, C. Vuik, P. Lucas, M. van Gijzen, H. Bijl, A general algorithm for reusing Krylov subspace information. I. Unsteady Navier–Stokes, 

NASA/Technical Memorandum 2010-216190, 2010.
[13] Q. Niu, L.-Z. Lu, G. Liu, Accelerated GCRO-DR method for solving sequences of systems of linear equations, J. Comput. Appl. Math. 253 (2013) 131–141.
[14] J. Meng, P.-Y. Zhu, H.-B. Li, A block method for linear systems with multiple right-hand sides, J. Comput. Appl. Math. 255 (2014) 544–554.
[15] K. Mohamed, S. Nadarajah, M. Paraschivoiu, Krylov recycling techniques for unsteady simulation of turbulent aerodynamic flows, in: 26th International 

Congress of the Aeronautical Sciences, Anchorage, Alaska, International Council of the Aeronautical Sciences, 2008.
[16] D.K. Tafti, GenIDLEST – A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows, 2001, New York 10016–5990.
[17] D.K. Tafti, S.P. Vanka, A numerical study of the effects of spanwise rotation on turbulent channel flow, Phys. Fluids A: Fluid Dyn. (1989–1993) 3 (4) 

(1991) 642–656.
[18] D.K. Tafti, Time-accurate techniques for turbulent heat transfer analysis in complex geometries, in: R.S. Amano, B. Sundén (Eds.), Computational Fluid 

Dynamics and Heat Transfer: Emerging Topics, WIT, Southampton, UK, ISBN 978-1-84564-144-3, 2010, pp. 215–264.
[19] P. Gopalakrishnan, D.K. Tafti, A parallel boundary fitted dynamic mesh solver for applications to flapping flight, Comput. Fluids 38 (8) (2009) 1592–1607.
[20] A.R. Amritkar, S. Deb, D.K. Tafti, Efficient parallel CFD-DEM simulations using OpenMP, J. Comput. Phys. 256 (2014) 501–519.
[21] K. Nagendra, D.K. Tafti, K. Viswanath, A new approach for conjugate heat transfer problems using immersed boundary method for curvilinear grid 

based solvers, J. Comput. Phys. 267 (2014) 225–246.
[22] P. Gopalakrishnan, D.K. Tafti, Effect of wing flexibility on lift and thrust production in flapping flight, AIAA J. 48 (5) (2010) 865–877.
[23] A.R. Amritkar, D.K. Tafti, R. Liu, R. Kufrin, B. Chapman, OpenMP parallelism for fluid and fluid–particulate systems, Parallel Comput. 38 (9) (2012) 

501–517.
[24] A. Amritkar, D. Tafti, Computational fluid dynamics computations using a preconditioned Krylov solver on graphical processing units, J. Fluids Eng. 

138 (1) (2015) 011402.
[25] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[26] G. Wang, D.K. Tafti, Performance enhancement on microprocessors with hierarchical memory systems for solving large sparse linear systems, Int. J. 

High Perform. Comput. Appl. 13 (1) (1999) 63–79.
[27] A.R. Amritkar, D.K. Tafti, CFD computations using a preconditioned Krylov solver on GPUs, in: ASME 2014 4th Joint US–Europe Fluids Engineering 

Division Summer Meeting and the 12th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical 
Engineers, 2014.

[28] G. Wang, D.K. Tafti, Uniprocessor performance enhancement with additive Schwarz preconditioners on Origin 2000, Adv. Eng. Softw. 29 (3) (1998) 
425–431.

[29] K. Świrydowicz, E. de Sturler, C.J. Roy, X. Xu, Efficient solvers and preconditioners for CFD applications on GPUs, Parallel Comput. (2015), in preparation.
[30] Y. Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (3) 

(1986) 856–869.
[31] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math. 9 (1) (1951) 17–29.
[32] V. Simoncini, D.B. Szyld, Interpreting IDR as a Petrov–Galerkin method, SIAM J. Sci. Comput. 32 (4) (2010) 1898–1912.
[33] H.A. van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. 

Comput. 13 (2) (1992) 631–644.
[34] K. Ahuja, Recycling Krylov subspaces and preconditioners, Ph.D. thesis, Virginia Tech, Adviser: Eric de Sturler, 2011.
[35] R.D. Moser, J. Kim, N.N. Mansour, Direct numerical simulation of turbulent channel flow up to Re = 590, Phys. Fluids 11 (4) (1999) 943–945.

http://refhub.elsevier.com/S0021-9991(15)00633-6/bib646531393936696E6E6572s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib646531393936696E6E6572s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6D6F7267616E32303032676D726573s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6465313939397472756E636174696F6Es1
http://arxiv.org/abs/1406.2831
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6869636B656E3230313073696D706C6966696564s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6869636B656E3230313073696D706C6966696564s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6869636B656E32303130706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6869636B656E32303130706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6C65756E67323031326165726F64796E616D6963s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib63617270656E7465723230313067656E6572616Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib63617270656E7465723230313067656E6572616Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib4E697532303133313331s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6D656E6732303134626C6F636Bs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6D6F68616D65646B72796C6F76s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6D6F68616D65646B72796C6F76s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib746166746967656E69646C657374s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7461667469313939316E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7461667469313939316E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib74616674693230303974696D65s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib74616674693230303974696D65s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib676F70616C616B726973686E616E32303039706172616C6C656Cs1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303134656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6E6167656E647261323031346E6577s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6E6167656E647261323031346E6577s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib676F70616C616B726973686E616E32303130656666656374s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib416D7269746B617232303132353031s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib416D7269746B617232303132353031s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303136677075s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303136677075s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7361616432303033697465726174697665s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib77616E6731393939706572666F726D616E6365s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib77616E6731393939706572666F726D616E6365s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303134677075s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303134677075s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib616D7269746B617232303134677075s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib77616E6731393938756E6970726F636573736F72s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib77616E6731393938756E6970726F636573736F72s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6B6173696132303135s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7361616431393836676D726573s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib7361616431393836676D726573s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib61726E6F6C6469313935317072696E6369706C65s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib53696D537A793130s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib76616E313939326269s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib76616E313939326269s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6168756A613230313172656379636C696E67s1
http://refhub.elsevier.com/S0021-9991(15)00633-6/bib6D6F73657231393939646972656374s1

	Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver
	1 Introduction
	2 Methodology
	2.1 GenIDLEST
	2.2 Linear solvers
	2.3 Recycling Krylov subspaces
	2.4 Hybrid approach

	3 CFD problem description
	3.1 Turbulent channel ﬂow
	3.2 Flow through porous media

	4 Results
	4.1 Turbulent channel ﬂow
	4.2 Flow through porous media

	5 Conclusions and future work
	Acknowledgements
	References


