
then it can be shown that for the Pi of Equation 1 under the assumption that each Hi provides 

a new row of A, 

Thus, in a sense, it is not possible to do better than the reflection coefficients Pi. Although 

this measure of optimality is not the most appropriate for the problem, the canonical set of 

reflection coefficients, Pi, can provide insights into the conditioning of transformations used 

in the generalized Schur algorithm. 

As a short digression, it is worth noting that the decomposition given in Equation (2) applies 

when the matrix to be eliminated by H, B, is rank one and A is triangular, yielding a 

novel way of looking at Cholesky downdating. Suppose that for some upper triangular e 
and some vector x, ere - xxT is positive definite. Then the downdating problem is to 

find upper triangular C such that 6T 6 = ere - xxT. The two standard algorithms for 

this are the Linpack algorithm and Chambers' algorithm. Chambers algorithm computes 

hyberbolic transformations and applies them in factored form to compute a downdate. The 

Linpack algorithm solves a triangular set of equations to obtain a sequence of plane rotations 

which would solve the updating problem 6T 6 + xxT, thus solving the downdating problem 

indirectly. 

IfyTe = xT and yTQ = IIYllef then efQTe = xT/IIYII- It is possible to construct Q from 

plane rotations so that QT e will be upper Hessenberg. Thus, it is possible to transform e 
to a Hessenberg matrix for which the downdating is trivial. This is essentially a special case 

of Equation (2). Although this yields a downdating algorithm which is distinct from the two 

more conventional algorithms, it doesn't appear to have any advantages. When the plane 

rotations needed to restore the downdated H to triangular structure are taken into account 

it is clearly less efficient than either of the other two algorithms. 

The main direction of this work is an attempt to understand the stability properties of the 

Schur and generalized Schur algorithms. We have looked at the remarkable robustness of the 

stability properties of the algorithm for Toeplitz matrices, its implications for semi-definite 

Toeplitz matrices and we have attempted to explain why stability is more delicate for other 

types of structured matrices. 
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Inner-outer Methods with Deflation for Linear Systems with Multiple 
Right Hand Sides 
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We will discuss inner-outer iterative methods with deflation for the solution of non-Hermitian 

complex linear systems with multiple right hand sides, and an application to problems that 
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arise in lattice QCD [2]. The outer method is formed by GCR, which computes the optimal 
approximation over a set of (outer) search vectors. The inner method computes new search 
vectors by approximately solving the residual equation with a deflated operator. The deflation 
is computed using the approximate inverse from the outer GCR iteration [3, 4). If we use a 
few steps (say five) of GMRES [7] as inner method the resulting scheme converges almost as 
fast as full GMRES, however at much lower cost. Other inner methods, like BiCGSTAB [8], 
also perform well, combining an optimal outer iteration with a cheap, short recurrence, inner 
method. Moreover, for each new right hand side we can reuse the approximation to the inverse 
computed for previous right hand sides and also improve the deflation at each iteration. This 
leads to a large reduction in the total number of iterations, while still solving for only one 
right hand side at a time. 

We will briefly outline the method for a single right hand side [3]. The extension to multiple 
right hand sides is then straightforward. We solve the system Ax = b. 

After k outer-iteration steps without truncation we have the following relations: 

Cf/Ck =h, 
rk = (I - CkCf/)b, 

Auk= ck, 
Xk = UkC{!b. 

If we now make m (non-fixed) inner GMRES steps with (I - CkC/!)A followed by an outer 
step we have 

AVm = 
H -

CkCk AVm + Vm+1Hm, where C/!Vm = 0, 

Ck+I = Vm+1Hmv/llVm+1HmYII, 

Uk+l 
H -

(VmY - ukck AVmy)/IIVm+1HmYII, 

rk+I 
H = rk - Vm+IHmY, - rk - Ck+ 1 ck+l rk 
H 

Xk+l = Xk + Uk+l ck+I rk, 

where y is chosen to minimize the (inner GMRES) residual. It is easy to show that this leads 
to the optimal approximation to A-1b over range(Uk) Eb range(Vm) in minimum residual 
sense [4]. Instead of GMRES we can also use other methods for the inner iteration, e.g. 
BiCGSTAB, where we also use the approximate inverse from the outer GCR for deflation to 
improve the convergence. After some number of inner iterations an outer step is computed 
as follows: 

Ck+1 

Uk+I 

rk+l 

Xk+I 

= rkter _ rinner /[lr,kter _ Tinner II, 
_ Xinner /llrkter _ Tinner II, 

H 
rk - Ck+1Ck+1rk, 

H 
Xk + Uk+1Ck+1rk. 

Notice that the update of the outer residual and approximate solution with ck+l and Uk+! are 
the same whether we use GMRES or some other method for the inner iteration. In fact one 
may also consider the outer iteration combined with the inner deflation as a way to improve 
the convergence of another iterative scheme. The variant with GMRES (typically for a small 
number of steps, say five or ten) as inner method generally leads to a convergence very close 
to that of full GMRES but at a much lower cost. Apart from updating the matrices Uk 
and Ck as indicated above, we can also add additional vectors to the set of outer vectors to 
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improve the convergence further, e.g. eigenvectors corresponding to a suitable part of the 
spectrum. 

Obviously, the approximate inverse from the outer GCR can be used to compute good initial 
approximations for successive right hand sides and to improve the convergence in the inner 
method for successive right hand sides. If the total number of iterations becomes very large, 
we 'truncate' the matrices Uk and Ck by making suitable combinations of the vectors, that 
is, we set U1 = UkW1, and C1 = CkW1 with W1HW1 = Ii, and l < k. We will discuss several 
strategies for choosing Wz. The overall scheme leads to an efficient method that can combine 
the information from the iterations for successive right hand sides, while still solving for one 
right hand side at a time (in contrast to block methods). Therefore, the same amount of 
memory is needed independent of the number of right hand sides. It also allows us to improve 
the convergence for right hand sides that are not known before a previous system has been 
solved. 

rhs GCRO(5) BiCG-y5 
1 738 803 
2 1097 1604 
3 1379 2393 
4 1681 3277 
5 2002 4074 
6 2353 4862 
7 2702 5653 
8 3066 6437 
9 3427 7242 
10 3789 8039 
11 4154 8829 
12 4514 9611 

Table 1: Cumulative iteration counts (matrix-vector products) for GCRO(5) and BiCG-y5 for 
twelve right hand sides 

We apply these methods to problems arising in Lattice Quantum Chromo-Dynamics [2}, 
where the matrix is of the form A = (I - r.M), and we solve for a small multiple of twelve 
right hand sides. In the 'simple' case, where r;; is real, several methods with cheap iterations 
still perform well. One important example of such a method is BiCG where one exploits 
the fact that a Hermitian (but not positive) matrix P exists such that AP is Hermitian 
and PP = I, and hence AH = PAP. So Bi CG can be implemented very cheaply with an 
appropriate choice of the starting residuals [5, 6, l]. If P would be positive definite, this BiCG 
would actually amount to CG with a special inner product. Although this is not the case, 
the convergence of the method is nearly optimal. In Table 1 we compare the convergence of 
this special Bi CG (BiCG-y5) with that of the method outlined above with 5 steps of GMRES 
as inner method (GCRO(5)) and a maximum of 100 outer vectors. We give the cumulative 
iteration counts to reach a relative reduction of the residual norm of l.Oe - 10 for twelve 
right hand sides. In the 'harder' case r;; is complex and most of the methods with cheap 
iterations do not converge anymore (most notably BiCG-y5). However, the nested methods 
still converge well. We will discuss different strategies for selecting vectors from the inner 
iteration to be kept in the outer iteration to improve the effect of the deflation, and better 
truncation schemes. Also the possibility to combine different methods at different stages will 
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be discussed. For example, one could use GMRES as inner method for the first two right 
hand sides, to compute accurate eigenvector approximations to be added to the set of outer 
vectors, and then switch to use BiCGSTAB or BiCGSTAB(k) for the other right hand sides. 

Bibliography 

[1] A. Borici and P. De Forcrand Fast Krylov space methods for calculation of Quark Prop
agator. In Proceedings of Physics Computing '94, August 1994, Lugano, Switzerland. 

[2] P. De Forcrand. Progress on lattice QCD algorithms. IPS Research Report No. 95-24, 
Interdisciplinary Project Center for Supercomputing, Swiss Federal Institute of Technol
ogy, Zurich, Switzerland, 1995. To appear in Nuclear Physics B (LAT95 Proceedings). 

[3] E. De Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogonal- . 
ity. In N. Duane Melson, T. A. Manteuffel, and S. F. McCormick, editors, Sixth Copper 
Mountain Conference on Multigrid Methods, NASA Conference Publication 3224, Part 
1, pages 111-125, Hampton, VA, USA, 1993. NASA Langley Research Center. 

[4] E. De Studer. Nested Krylov methods based on GCR. Technical Report 93-50, Faculty 
of Technical Mathematics and Informatics, Delft University of Technology, Delft, The 
Netherlands, 1993. Accepted for publication in Journal of Comp. and Appl. Mathematics, 
North-Holland. 

[5] R. W. Freund. Lanczos-type algorithms for structured non-Hermitian eigenvalue prob
lems. In J. David Brown, Moody T. Chu, Donald C. Ellison, and Robert J. Plemmons, 
editors, Proceedings of the Cornelius Lanczos International Centenary Conference, SIAM 
Proceedings Series, pages 243-245, Philadelphia, PA 19103-5052, USA, 1994. SIAM Pub
lications. 

[6] A. Fro=er et al. Preprint, available from hep-lat/9504020 

[7] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving 
nonsy=etric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986. 

[8] H. A. Van der Vorst. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for 
the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631-644, 
1992. 

196 




