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Abstract

In recent years, a number of constitutive equations have been derived from repta-
tion theory to describe the rheology of both linear and branched polymer melts.
While their predictions in rheometrical flows have been discussed in detail, not
much is known of their behaviour in complex flows. In the present paper, we study
by way of numerical simulation the transient, start-up flow of branched polymers
through a planar contraction/expansion geometry. The constitutive equation is the
so-called pom-pom model introduced by McLeish and Larson [1], and later modified
by Blackwell et al. [2]. By combining the Backward-tracking Lagrangian Particle [3]
and Deformation Field [4] methods, we obtain results for the original, integral pom-
pom model which makes use of the Doi–Edwards orientation tensor. Two simplified
versions of the pom-pom model are also considered, namely one based on the Cur-
rie approximation for the orientation tensor, and a differential constitutive equation
proposed in [1]. Finally, the simulation results are compared to those obtained with
the so-called MGI model proposed recently by Marrucci et al. [5] for describing
linear polymer melts.
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1 Introduction

Since Doi and Edwards [6] introduced the tube model to describe the rheol-
ogy of entangled polymer melts and concentrated solutions, much progress has
been made on the modelling of both linear and branched polymers. The ex-
cessive shear thinning in fast shearing flows present in the basic Doi–Edwards
model has recently been alleviated for both type of polymers, though in a very
different manner. For branched polymers, on which we focus in this paper, a
separate relaxation mechanism for the orientation and stretch of the polymer
molecules has been introduced by McLeish and Larson [1]. Using a single-
mode model, this allowed to qualitatively predict the behaviour in both shear
and elongation of a low-density polyethylene melt. The resulting pom-pom
model is of integral type and includes the Doi–Edwards orientation tensor,
i.e. it involves statistical averages over tube segments. This rather elaborate
orientation tensor is usually replaced by a simpler version when rheometri-
cal results are calculated. It is replaced in [1] by the Currie approximation
[7], which does not include CPU time intensive statistical averages, while the
independent alignment approximation is used in [8].

As a further simplification, and to facilitate numerical computation in complex
flow geometries, an approximate differential equation is proposed in [1]. Differ-
ential equations are numerically less demanding, both in memory requirements
and computation time. It is on the differential version of the pom-pom model
that subsequent papers have focused. Bishko et al. [9] performed numerical
simulations of contraction flows with the one-mode differential approximation,
showing qualitative agreement with experimental data. However, a consider-
able solvent viscosity was included in the total stress, which masks possible
stability problems with the differential pom-pom model. Inkson et al. [10] have
shown that a quantitative fit can be obtained over a wide range of strain rates
for both the shear and extensional viscosities of various branched low-density
polyethylenes by introducing multiple, decoupled, relaxation modes into the
differential pom-pom approximation. Recently, the pom-pom model has been
further refined by Blackwell et al. [2] through the introduction of so-called
local branch-point displacement. This allows for a smoother fit of the elonga-
tion viscosity, in contrast with the sharp transitions obtained in the previous
models.

For comparison, we also consider the MGI model [5] which is developed for
monodisperse linear polymer melts. In this model, the introduction of con-
vective constraint release overcomes the excessive shear thinning observed in
the original Doi–Edwards model. A further refinement in this model is the
introduction of a force balance on the entanglement nodes. This results in
a different orientation tensor that better predicts the normal stress ratio in
simple shear flow.
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The correspondence between the models derived from reptation theory and the
related approximate equations is not obvious, particularly in complex flow. In-
deed some discrepancies between the integral and differential pom-pom models
already exist in rheometrical flow as shown in [8]. Recent numerical develop-
ments, however, have produced efficient methods for transient simulations of
integral models. This allows for a more complete verification of the approxi-
mate equations.

To efficiently simulate time-strain separable integral models, the so-called de-
formation field method has been introduced by Peters et al. [4]. In a subse-
quent paper, Peters et al. [11] have shown that the method can equally well
be applied to the elaborate integral equations that are obtained from repta-
tion theory. In [11], the method was applied to the Mead–Larson–Doi model.
To perform the simulations at higher Weissenberg numbers, however, it was
necessary to add a solvent contribution to the polymeric stress. By incorpo-
rating the deformation field method in the framework of Lagrangian particle
methods, Wapperom and Keunings [12] were able to perform complex flow
simulations with the MGI model without adding a solvent stress contribution.
In this manner, a better comparison can be made because the solvent may
have a considerable impact at high Weissenberg numbers.

In this paper, we focus on branched polymers which can be described by the
pom-pom model. We consider in turn the original model with the Doi–Edwards
orientation tensor Q, the Currie approximation of Q, and the approximate dif-
ferential equation proposed by [1]. Besides a brief review of the equations of
the various stress models and the numerical method, we discuss the behaviour
of a one-mode pom-pom melt in rheometrical and complex flows. To distin-
guish the behaviour of branched and linear polymers, the MGI model is used
for comparison.

2 The pom-pom and MGI models

In the integral pom-pom model derived by McLeish and Larson [1], the poly-
meric stress tensor T is related to an orientation tensor S by the algebraic
equation

T = Gλ2S, (1)

where G is 15/4 times the plateau modulus G0 and λ represents the dimen-
sionless backbone stretch given by the evolution equation,

Dλ

Dt
= λκ : S − 1

τs
(λ− 1) eν

∗(λ−1), (2)
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where κ is the transpose of the velocity gradient, τs the stretch relaxation
time, and ν∗ a free parameter of order one. The exponential factor has been
introduced by Blackwell et al. [2] to remove the sharp transitions in the elon-
gational viscosity that are present in the original equation given in [1]. The
original equation can be recovered by taking ν∗ = 0.

The orientation tensor S, which measures the distribution of unit vectors
describing the orientation of tube segments, is given by an integral equation
of the form

S =

t∫
−∞

µ(t; t′)Q(t; t′) dt′, (3)

where µ(t; t′) is a memory function that weights the contribution of the past
deformations represented by Q. For the pom-pom model, the memory func-
tion is equal to the Doi–Edwards memory function which can be calculated
analytically,

µ(t; t′) =
1

τb
exp

(−(t− t′)
τb

)
, (4)

where τb denotes the backbone relaxation time.

The tensor Q(t; t′) denotes an orientation tensor at current time t that mea-
sures the average orientation of the tube segments with respect to a reference
time t′ in the past. For both the pom-pom and the Doi–Edwards model this
tensor is given by

Q =
1

〈|F · u|〉
〈

F · u F · u
|F · u|

〉
, (5)

where the unit vector u represents the orientation of a tube segment and the
brackets denote an ensemble average. Note that we take the original Doi–
Edwards Q tensor, i.e. without the independent alignment approximation.
The deformation gradient tensor F in Eq. (5) fulfils the differential equation

DF

Dt
= κ · F . (6)

The integral pom-pom model used in the calculations of [1] applies the so-
called Currie approximation [7] for the Doi–Edwards tensor Q, wherein the
orientation tensor S is directly related to the Finger strain B and the Cauchy
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strain B−1 by

Q =
4

3(J − 1)
B − 4

3(J − 1)(I2 + 3.25)1/2
B−1. (7)

Here, J = I1 +2(I2 +3.25)1/2 and I1 and I2 are the first and second invariants
of B, respectively. The model is completed by an evolution equation for the
Finger tensor

DB

Dt
= κ · B + B · κT . (8)

Since integral models are computationally more expensive than differential
constitutive equations, a differential approximation of Eqs. (3), (7) has been
proposed as well in [1]. The approximation consists of a different orientation
tensor S, which is now obtained from a deformation tensor A which fulfils an
evolution equation,

SA = A/tr A, (9)

DA

Dt
= κ · A + A · κT − 1

τb
(A − I) . (10)

Except for the modulus G which now equals 3G0, the equations for the stress
(1) and stretch (2) remain identical.

For comparison, we also discuss the MGI model which has recently been pro-
posed for monodisperse linear polymer melts [5]. This model does not include
tube stretch, so the stress is given by

T = GS, (11)

where G = 6G0. The memory function µ in Eq. (3) now depends on the flow
conditions and can be written in integral form as

µ(t; t′) =
1

τ(t′)
exp


−

t∫
t′

dt′′

τ(t′′)


 . (12)

The overall relaxation time includes a relaxation time due to reptation and
one due to convective constraint release (CCR),

1

τ
=

1

τd
+
β

G
max(0,κ : T ), (13)
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where β is a numerical coefficient somewhat larger than unity to ensure an
ever-increasing shear stress as a function of shear rate. Following [12], CCR
is made inactive for a negative stress work. (Otherwise, the relaxation time
τ could become negative when the velocity gradient changes sign while the
stress remains positive due to a finite relaxation time.) The orientation tensor
Q is obtained from a force balance on the entanglement nodes [5] and depends
on the square root of the Finger tensor,

Q =

√
B

tr
√

B
. (14)

Note that for this strain measure no averaging over tube segments is involved,
contrary to the Doi–Edwards Q tensor.

3 Fluid parameters and rheometrical flows

In our simulations, we have used values of the model parameters similar to
Bishko et al. [9] for a molecule with five arms. The ratio of the relaxation times
for the orientation and stretch is τb/τs = 3.24. To have a direct comparison
with our previous results for the MGI model [12], we have taken τb = 1.
Henceforth, all times and strain rates are expressed relatively to τb (or τd
in case of the integral MGI model), and stresses are measured relatively to
G0. The extra parameter ν∗ = 0.64 is obtained from an empirical constant
k∗ = 0.36, as suggested in [2]. All parameter values we use are listed in Table 1.

Table 1
Fluid parameters for pom-pom and MGI models.

pom-pom G0 = 1 τb = 1 τs = 0.308 ν∗ = 0.64

MGI G0 = 1 τd = 1 - β = 3.8

For these parameter values, we now discuss the rheometrical predictions of
the various models. All results have been obtained with a simplified version
of the numerical method that we discuss briefly in section 4.

The two rheometrical properties that mainly determine our results in a planar
complex flow are the shear and (planar) elongation viscosities. The steady vis-
cosities are depicted in Fig. 1. Indicated in the shear viscosity plot is the −1
slope, which clearly shows the excessive shear thinning of the pom-pom mod-
els at high shear rates, particularly for the differential approximation. Up to
τbγ̇ ' 100, the curves for the pom-pom integral models resemble the MGI vis-
cosity. At higher shear rates, a stronger shear thinning becomes apparent. The

6



10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

DOI−EDWARDS Q      
CURRIE Q           
DIFFERENTIAL POMPOM
MGI INTEGRAL       

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

DOI−EDWARDS Q      
CURRIE Q           
DIFFERENTIAL POMPOM
MGI INTEGRAL       

η

γ̇

η

ε̇

−1 slope

Fig. 1. Shear viscosity η and planar extensional viscosity η for pom-pom and MGI
models.

difference between linear and branched model polymers is clearly seen in the
elongational viscosity curves. The pom-pom models show a slight elongational
thickening followed by weak thinning. The MGI model, on the other hand,
shows extreme elongational thinning, although this is probably too strong due
to the lack of tube stretch in that model.

The transient shear viscosity η+ and planar elongational viscosity η+ are shown
in Fig. 2 for a low, medium, and high deformation rate. As expected, all
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Fig. 2. Transient shear viscosity η+ and planar elongational viscosity η+ for
pom-pom and MGI models.

models give identical predictions at small strain rates (here γ̇ or ε̇ = 0.01).
The shear viscosity of the pom-pom models shows an overshoot at higher shear
rates, which is absent with the MGI model. The differential approximation is
accurate until the maximum viscosity is reached, but after the overshoot the
correspondence is very poor. This has also been observed in [8] for different
values of the fluid parameters. On the other hand, the correspondence between
the various pom-pom models in transient elongational flow is quite good. Here,
the contrast with the strongly elongational thinning MGI model is notable.
At high elongation rates, the MGI model predicts much lower steady-state
values, that are attained much faster and in a smoother manner.
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The first and second normal stress coefficients (Fig. 3) look at first sight quite
similar for all models, the exception being the differential pom-pom model

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

DOI−EDWARDS Q      
CURRIE Q           
DIFFERENTIAL POMPOM
MGI INTEGRAL       

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DOI−EDWARDS Q
CURRIE Q     
MGI INTEGRAL 

ψ1

γ̇

−ψ2

γ̇

Fig. 3. First and (negative) second normal stress coefficients ψ1 and −ψ2 for
pom-pom and MGI models.

which has a vanishing second normal stress coefficient. The small differences,
like the limiting values of ψ2 at small shear rates and the different asymptotic
behaviour at large shear rates, are more apparent in Fig. 4 which shows the
ratio of the normal stress differences. At small γ̇, the original pom-pom model
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Fig. 4. Normal stress ratio −N2/N1 and recoverable shear SR for pom-pom and
MGI models.

gives the well-known value of −N2/N1 = −ψ2/ψ1 = 1/7 which is characteristic
of the Doi–Edwards Q tensor. Higher asymptotic values, closer to experimental
data, are obtained with the Currie approximation and the MGI model. Also
note that, for large strain rates, the pom-pom models give a vanishing stress
ratio, while the MGI model predicts a finite positive value.

Also shown in Fig. 4 is the recoverable shear which is a measure of elasticity
defined as

SR =
N1

2Txy
. (15)
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Due to the strong shear thinning of the pom-pom models, the recoverable
shear grows rapidly. This is particularly true for the extremely shear thinning
differential approximation. On the contrary, for the MGI model, SR only in-
creases slightly at higher shear rates. At γ̇ = 500, the recoverable shear is still
as low as 1.21.

4 Governing equations and numerical method

The conservation laws for incompressible, isothermal, and inertialess flow read:

∇ · v = 0, (16)

−∇p + ∇ · T = 0, (17)

where v is the fluid velocity, p the hydrodynamic pressure, and the polymeric
stress T is given by either Eq. (1) for the pom-pom models or Eq. (11) for the
MGI model. Note that Eq. (17) does not contain any purely viscous component
to the stress.

We solve the governing equations by combining the Backward-tracking La-
grangian Particle Method [3] and the method of deformation fields [4]. At
each time step, the Eulerian solution of the conservation equations is decou-
pled from the Lagrangian computation of the polymer stress. In this manner,
we can allow for a different solution method well-suited for evolution equa-
tions. Since a detailed description of the numerical method can be found in
two previous papers [3,12], we only summarise its main characteristics.

The equations of motion (16), (17) are discretised with the aid of the Galerkin
finite element method. To increase the stability of the overall numerical scheme,
the well-known Discrete Elastic-Viscous Stress Splitting (DEVSS) method [13]
has been used.

To compute the integral in Eq. (3) we use the deformation field method as
introduced in [4]. A number of Nd deformation fields are introduced that
describe the deformation between Nd reference past times and the current
time. For the pom-pom models, we define Nd deformation gradient fields when
the Doi–Edwards Q tensor is used, and Nd Finger strain fields in case of
the Currie approximation. For the MGI model, we define Nd fields for the
Finger strain and the memory function µ. The integral in Eq. (3) can then be
approximated by a weighted, finite sum of functions of these fields. In case of
the pom-pom model with the Doi–Edwards Q tensor, the ensemble average
in Eq. (5) has to be evaluated. We approximate this average by distributing
evenly Nu unit vectors on the surface of the unit sphere at the time of creation,
as described by van Heel et al. [14]. After accounting for the deformation that
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these unit vectors undergo, the Q tensor is then obtained by replacing the
brackets by the average over the obtained Nu tensors F ·u F ·u/|F · u| and
the Nu scalars |F · u|.

Finally, to solve the approximate differential model or the evolution equation
for the deformation tensors and the stretch parameter, we use the Backward-
tracking Lagrangian Particle Method (BLPM) described in [3]. In short, we
define fixed particle locations at the nodes of quadratic finite elements. Then,
for every particle location, we predict at every time step the trajectory of the
particle that arrives there by tracking one time step ∆t backward in time. At
the starting point of the trajectory, we initialise the integrand by interpolation
of the nodal point values of a stored finite element field at the corresponding
time level t − ∆t. Finally, the ordinary differential equations are integrated
along the particle trajectories to obtain the integrand at the fixed particle
locations at current time t.

5 Problem description

We consider the start-up flow through a planar 4:1:4 constriction with rounded
corners, as depicted in Fig. 5. Around the smallest gap of width H , the con-

� -H

?H

6
x = 0

��	

I
@@R

II

-

6

x

y

Fig. 5. Zoom of 4:1:4 constriction geometry with rounded corners and medium mesh.

striction wall is circular with diameter H . The lengths of the inlet and outlet
regions are taken 19.5H , and at both inlet and outlet we impose fully de-
veloped velocity boundary conditions, which have been calculated separately.
No-slip velocity boundary conditions are specified at the wall and symmetry
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conditions hold at the centreline. Henceforth, all coordinates are expressed
relatively to H .

The results shown below have been obtained with the ”medium” mesh used
in [12] for the MGI model. That mesh, depicted in Fig. 5, contains 1288
quadrilateral elements and is particularly fine near the constriction wall where
steep boundary layers may develop. The smallest element has an area of Ωe =
2.0 · 10−3. In [12], this mesh was shown to be sufficiently refined for the MGI
model. To assure that this mesh is also fine enough for the pom-pom model,
we have performed a computation on a finer mesh that has more elements
near the constriction wall. In the direction perpendicular to the wall, the
smallest element size has been decreased by a factor of two, resulting in a
smallest element of Ωe = 8.2·10−4. This finer mesh contains 1352 quadrilateral
elements.

In all the simulations, we consider creeping flow, so that, in the absence of a
solvent viscosity, the characteristic dimensionless numbers are the Weissenberg
numbers for orientation and stretch. Here, we use the orientation Weissenberg
number We = τbU/H , where U is the average velocity at the smallest gap
width H . To evaluate the Doi–Edwards Q tensor, we have used Nu = 20 unit
vectors in all simulations presented in this paper. No significant changes were
observed with results of a calculation at We = 3 with Nu = 60. For the DEVSS
method, we take the auxiliary viscosity ηDEV SS = 6η0 = 6G0/τb. As for the
computations of the MGI model in [12], this high value was necessary to pre-
vent temporal fluctuations about the steady state regime at high Weissenberg
numbers. At low Weissenberg numbers and during start-up of the flow, the
results were identical to those obtained with ηDEV SS = η0.

To discretise the memory integral, the past time t′ ≤ t is divided into 10
intervals with increasing time increments. In all our calculations, we have taken
the following number of fields and corresponding time increments: 10×∆t, 7×
2∆t, 9×4∆t, 10×8∆t, 10×16∆t, 10×32∆t, 10×64∆t, 10×128∆t, 10×256∆t,
and 14× 512∆t. In previous calculations in [4] and [12] this discretisation has
been proven sufficient for obtaining accurate transient results. The total past
time spanned by this discretisation is T = 12.2, which is larger than the
maximum time of 10 after which we stop all calculations. For all simulations,
this is sufficient to reach a steady state.

The calculations were performed on a 667 MHz ev67 processor of a DEC
Alpha workstation. For the integral pom-pom models, the memory needed
to store the Nd = 100 deformation fields was 75 MB on the medium mesh.
Using Nu = 20 to approximate the Doi–Edwards Q tensor resulted in a CPU
time of 5.8 seconds per time step. Increasing the number of tube segments
to Nu = 60 more than doubled the CPU time to 14 seconds per time step.
Using the Currie approximation instead, reduced the CPU time by more than
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a factor three to 1.8 seconds per time step. The differential approximation
only contains one field instead of the 100 deformation and memory fields, so
needing considerably less memory (approximately 1 MB). The CPU time was
typically 0.4 seconds per time step. In all cases, we used a constant time step
∆t = 10−3.

6 Results

We first check the mesh convergence of the numerical results for the pom-pom
model with the Doi–Edwards Q tensor. Figure 6 shows the steady-state shear
stress and first normal stress difference along the horizontal line drawn through
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Fig. 6. Mesh convergence for pom-pom model with Doi–Edwards Q tensor at
We = 10 near constriction for shear stress Txy and first normal stress difference
N1 along the line y = 3/2.

points I and II in Fig. 5. The agreement is excellent, except perhaps in the close
vicinity of point II, at the downstream wall. The deviations near this point,
however, do not influence the solution elsewhere in the domain. The above
mesh convergence behaviour is typical of our simulations with the original
pom-pom model, its Currie approximation, and the MGI model. In all cases,
a stable steady-state regime was found starting from the rest state. The situa-
tion is drastically different for the differential approximation of the pom-pom
model. It was indeed found impossible to obtain stable and mesh-converged
results with this model, even at small Weissenberg number. (Remember that
no purely viscous stress is added.) We believe this is due at least in part to
the excessive shear thinning of the differential approximation.

A characteristic and rather sensitive feature of contraction flows is the appear-
ance of vortices. The different rheometrical responses at high Weissenberg
number of the pom-pom and MGI models, in particular the behaviour in
elongation, result in distinct flow patterns in contraction/expansion flows. In
Fig. 7, we display the steady-state streamlines and the vortex intensity. The
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We = 1 We = 3 We = 10

D

C

M

Iψ = 7.1 · 10−4 Iψ = 6.4 · 10−4 Iψ = 1.3 · 10−3

Iψ = 7.4 · 10−4 Iψ = 6.9 · 10−4 Iψ = 2.4 · 10−3

Iψ = 7.4 · 10−4 Iψ = 2.2 · 10−4 Iψ = 2.2 · 10−5

Fig. 7. Steady state streamlines and vortex intensities at various Weissenberg num-
bers We for pom-pom with Doi–Edwards Q (D), pom-pom with Currie Q (C), and
integral MGI model (M).

latter is defined as the ratio Iψ of the amount of fluid flowing in the vortex
region and in the main flow. Choosing the zero-value of the stream function
at the separating streamline gives

Iψ = −ψcen

ψax

, (18)

where ψcen and ψax denote the values of the stream function at the centre of
the vortex and the plane of symmetry, respectively.
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For the relatively small Weissenberg number of We = 1, i.e. when the rheo-
metrical responses are still very similar except for the normal stress ratio,
the flow patterns are practically identical. In fact, we essentially recover the
Newtonian limit (We = 0) for which the streamlines are symmetrical and
Iψ = 7.2 10−3. At higher Weissenberg number, the downstream vortex de-
creases monotonically in a similar fashion for all three models, even though
the rheometrical properties of the branched and linear polymers are very dif-
ferent. The upstream vortex, however, behaves very differently. For the MGI
model, it decreases in size and intensity similarly to the downstream vortex.
For the pom-pom models, however, the vortex intensity decreases slightly for
We = 3 while the size remains unaltered. At We = 10, a substantial increase
of both the vortex size and intensity is observed. This is in qualitative agree-
ment with experimental observation for branched polymer melts (see e.g. [15]).
The high Weissenberg flow is also the case where the differences between the
Doi–Edwards Q tensor and the Currie approximation become apparent. Both
the vortex size and intensity are significantly overpredicted by the latter.

A second important global quantity is the pressure drop. To eliminate the
influence of the length of the inlet and outlet regions, we define the pressure
drop in the constriction as ∆pc = ∆p−∆p0, where ∆p is the total pressure drop
in the flow and ∆p0 the pressure drop corresponding to a fully developed flow in
a channel without the constriction, i.e. of length 40H and width 4H . In Fig. 8,
we have non-dimensionalised ∆pc with the pressure drop ∆p0. Despite their

0 2 4 6 8 10
0.5

1

1.5
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2.5

3

3.5
Pompom/DE    
Pompom/Currie
MGI          

∆pc

∆p0

We

Fig. 8. Non-dimensional pressure drop ∆pc/∆p0 as a function of Weissenberg num-
ber for pom-pom and MGI models.

very different kinematic behaviour, the pom-pom and MGI models predict
practically the same pressure drop curve. It would thus seem that the steady-
state shear viscosity (Fig. 1) governs the pressure drop in this flow geometry.
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t = 0.1 t = 0.4 t = 10

We = 1

We = 10

λmax = 1.03 λmax = 1.25 λmax = 1.71

λmax = 2.24 λmax = 2.78 λmax = 2.29

λmin = 1 λmin = 0.97 λmin = 0.94

Fig. 9. Time evolution of stretch parameter λ at We = 1 and We = 10 for pom-pom
model with Doi–Edwards Q. Regions λ < 1 are shaded. In all cases, λmax occurs at
the constriction wall.

In fact, as shown in [12], a purely-viscous Carreau–Yasuda fit of the MGI shear
viscosity yields essentially the same pressure drop curve.

The final quantity we examine here is the stretch parameter λ, which is char-
acteristic of the pom-pom model. The temporal evolution of this parameter is
shown in Fig. 9 at We = 1 and 10. At low Weissenberg number, the stretch in-
creases monotonically until about t = 1.6 where a maximum of 1.75 is reached.
The maximum value at steady state is 1.71. At short times, the contour lines
are nearly symmetric around x = 0, while at steady state the global maxi-
mum at the wall and the local maximum at the centreline shift downstream.
At high Weissenberg number, elasticity results already at short times in a dis-
tinct asymmetry. Furthermore, a clear overshoot in the stretch is obtained, like
in simple shear flows [1]. Note that the stretch parameter λ becomes smaller
than unity downstream of the constriction. This apparently surprising result
can be made plausible by a simple analysis of Eq. (2). Assume that λ reaches
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t = 0.1 t = 0.4 t = 10

κ : Smin = −2.67 κ : Smin = −22.1 κ : Smin = −40.7

Fig. 10. Time evolution of regions with negative κ : S at Weissenberg number
We = 10 for pom-pom model with Doi–Edwards Q.

unity somewhere in the flow field. Then Eq. (2) reduces to

Dλ

Dt
= κ : S. (19)

Clearly, the further evolution of λ along a fluid trajectory will be such that
Dλ/Dt < 0 if κ : S is locally negative. As a result, λ will become smaller than
unity. The κ : S is indeed likely to change sign downstream of the constriction,
since κ changes sign there quite rapidly along the flow trajectories while the
orientation tensor S needs a finite relaxation process to change sign. Figure
10 displays contour lines for negative values of κ : S. It shows that only
when the magnitude of the negative κ : S is large enough (t = 0.4, t = 10),
the minimum value of λ falls below one (Fig. 9). Furthermore, due to the
finite relaxation time τs of the stretch parameter, the region λ < 1 does not
coincide with the region of negative κ : S, but is shifted downstream. Except
for this shift, the situation is similar to convective constraint release in the
MGI model where the overall relaxation time may become negative due to
a negative κ : S [12]. This made it necessary to include the maximum in
Eq. (13). For the stretch λ, the situation is not as dramatic, because it always
remains positive. This can easily be verified by substituting λ = 0 in the right-
hand side of Eq. (2), giving a positive derivative at λ = 0. However, to avoid
the unphysical situation λ < 1, the κ : S term should be replaced by a strictly
positive one.

7 Concluding remarks

We have shown results for transient simulations in complex flow of branched
polymer melts using integral pom-pom models. By using the Backward-tracking
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Lagrangian Particle Method in combination with the deformation field method,
we could obtain stable and mesh-convergent results at high Weissenberg num-
bers in a contraction/expansion flow without including any purely-viscous
”solvent” stress. The original pom-pom model with the Doi–Edwards orien-
tation tensor Q has been compared with an integral equation employing the
Currie approximation for Q, and with a differential equation based on a con-
figuration tensor.

We found that up to moderate Weissenberg numbers, the Currie Q tensor
is a good approximation of the Doi–Edwards tensor. At higher Weissenberg
number, however, the vortex upstream of the contraction/expansion grows
considerably faster, both in size and intensity. The differential approximation
fails to accurately represent the integral versions of the pom-pom model in fast
shearing flows. There it shows an excessive shear thinning, which prevented us
from obtaining mesh-converged solutions in complex flow. Comparison with
the MGI model for linear polymers, showed a very similar behaviour for the
pressure drop and the vortex downstream of the contraction/expansion. Up-
stream of the contraction, however, a large vortex develops for the pom-pom
models while it decreases for the MGI model.

In the complex flow simulations, we also observed an unphysical behaviour for
the pom-pom stretch parameter that cannot be observed in steady and start-
up rheometrical flows. Indeed, at high Weissenberg number, the stretch may
become smaller than unity when κ : S becomes negative, which is physically
unrealistic. This happens in flow regions where the velocity gradient changes
sign, as for example downstream of a contraction/expansion.
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