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Abstract 

 

The common approach for simulating the evolution of fiber orientation during flow in 

concentrated suspensions is to use an empirically modified form of Jeffery’s equation 

referred to as the Folgar-Tucker (F-T) model. Direct measurements of fiber orientation 

were performed in the startup of shear flow for a 30 wt % short glass fiber-filled 

polybutylene terephthalate (PBT-30); a matrix that behaves similar to a Newtonian fluid. 

Comparison between predictions based on the F-T model and the experimental fiber 

orientation show that the model over predicts the rate of fiber reorientation. Rheological 

measurements of the stress growth functions show that the stress overshoot phenomenon 

approaches a steady state at a similar strain as the fiber microstructure, at roughly 50 

units. However, fiber orientation measurements suggest that a steady state is not reached 

as the fiber orientation continues to slowly evolve, even up to 200 strain units. The 



addition of a “slip” parameter to the F-T model improved the model predictions of the 

fiber orientation and rheological stress growth functions.  

 

Key words: short glass fiber, fiber orientation, concentrated suspension, transient 

rheology 

 

1. Introduction 

 

Parts made from short glass fiber composite materials are typically produced in the 

melt state using injection or compression molding. During mold filling the macroscopic 

flow field generates a preferred orientation in the fiber microstructure which dramatically 

impacts the local mechanical, thermal and insulative properties of the part [1]. To 

optimize the mold design in relation to the desired part properties it is desirable to be able 

to simulate fiber orientation as a function of flow field and composite fluid rheological 

properties.  

The first theoretical framework describing the evolution of orientation of 

axisymmetric particles that is easily extendable to fibers is the work of Jeffery [2]. Jeffery 

showed that the motion of a single ellipsoidal particle suspended in a Newtonian fluid in 

a Stokes flow field will rotate around the vorticity axis. Blunt-ended particles, such as 

rigid rods or fibers, follow similar orbits that one can predict using Jeffery’s equation by 

defining an equivalent aspect ratio. This theory can be applied to dilute suspensions (φ << 

ar
-2, where φ is the volume fraction) of fibers where forces other than the macroscopic 

flow field do not affect the particle dynamics [3, 4]. 
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In the semidilute régime (ar
-2 << φ << ar

-1), inter-particle hydrodynamic interaction is 

the predominant phenomenon that can significantly affect or hinder periodic particle 

rotation [4]. Petrich et al. [5] studied the microstructure-stress relationship for various 

semidilute fiber suspensions in a Newtonian suspending medium using a concentric 

cylinder flow visualization apparatus and digital recorder. Comparison between their 

experimental results and dilute suspension theory showed good agreement for 

concentrations near the semidilute régime lower boundary. At concentrations in the 

semidilute régime near the upper boundary the period of rotation appeared to be 

influenced by inter-particle hydrodynamic interaction. In transient shear rheological 

measurements, shear stress oscillations have been observed and linked directly to the 

oscillating fiber orientation. However, the measured shear stress oscillations can dampen 

over time which is attributed to several interactions including boundary, particle-particle, 

hydrodynamic, or slight aspect ratio variations [6]. Other orientation states have been 

observed in and semidilute suspensions where fibers orient with the long axis in the 

vorticity and rotate referred to as “log-rolling”, a phenomenon which is dependent on the 

viscoelastic properties of the suspending medium [7]. In general, as the shear stress 

approaches a steady state, a pseudo-equilibrium fiber orientation state is reached, which, 

after a short period of time, may slowly change with time.  

In concentrated suspensions (φ > ar
-1) the distance between fibers is on the order of 

the fiber diameter or less, and multi-particle simulations show that under dynamic 

conditions fiber-fiber contact can severely affect the fiber motion [8, 9]. To our 

knowledge the dynamic behavior of fibers in a concentrated suspension has not been 

studied experimentally. However, rheological measurements in startup of flow suggest 
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that fibers reorient themselves from their initial orientation state to align themselves in 

the direction of the fluid streamlines [10]. 

In the first attempts of simulating fiber orientation in injection molding, Jeffery’s 

equation for infinitely long fibers was used [11]. Comparison between fiber orientation 

measurements of an injection molded part and simulation results suggested Jeffery’s 

equation over predicted the degree of alignment and the shear strain at which steady state 

was reached. As a result Folgar and Tucker [12] modified Jeffery’s theory to include a 

phenomenological term that prevented full alignment of fiber orientation, termed the 

Folgar-Tucker model (F-T). The F-T model improved the predictions of the steady state 

fiber orientation but had little effect on the strain at which the steady state orientation 

occurred [13]. As a result, Huynh [13] introduced the strain reduction factor using the 

argument that the fibers move in clusters and experience less strain than the bulk.  

Model predictions of the rheological stress growth functions using the F-T model 

compared to experimental results suggest that the rate of fiber reorientation is much 

slower than theory predicts [14, 15]. This was attributed to fiber-fiber contact reducing 

the rate of fiber orientation. As a result Sepehr et al. [14] introduced a “slip” parameter to 

the F-T model, effectively reducing the rate of fiber reorientation. In simple shear flow 

this is exactly the same as the strain reduction factor of Huynh [13]. The addition of the 

slip parameter improved the model predictions of the transient stresses compared to the 

measured values. We do note, however, that the stress growth experiments used in the 

comparison were performed in a rotational rheometer with parallel disk geometry in 

which there is a varying shear rate from the center of the plates to the rim. Recent results 

have suggested that the inhomogeneous shear field in the parallel disk geometry induces 
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excessive fiber-fiber interaction in concentrated fiber suspensions which can have a 

severe effect on the magnitude of the stress growth overshoot peak and width of the 

overshoot [16, 17]. 

The objective of this paper is to assess the ability of current theory for fiber 

orientation to predict the evolution of fiber orientation of a concentrated short glass fiber 

suspension of industrial significance in a well defined flow field. Donut shaped samples 

consisting of a 30 wt% short glass fiber filled polybutylene terephthalate (PBT-30) are 

subject to simple shear flow in a cone-and-plate device in which the sample geometry 

was designed to eliminate the interaction of the fiber with the plate walls [17]. At specific 

strains of interest in a shear stress growth vs. strain plot, the fiber orientation is 

determined experimentally using confocal laser microscopy. The experimental results are 

then compared to the F-T model with and without the addition of the slip parameter. The 

unique aspect of this work is the experimental confirmation of the fiber orientation 

evolution and its comparison to the predictions of theory for fiber orientation.  

 

2. Theory 

 

2.1. Orientation tensors 

 

The orientation of a single fiber can be described with a unit vector u along the fiber 

axis as shown in Fig. 1. The average orientation of a large number of fibers of similar 

length can be described using a distribution function, ( ), tψ u . A widely used and 

compact way to represent the average orientation state is with the second- and fourth-

 5



order orientation tensors which are defined as the second- and fourth-moments of the 

orientation distribution function [18], 

 

( ) ( )∫= uuuuA dtt ,ψ                                                       (1) 

 

( ) ( )4 ,t ψ= t d∫A uuuu u u                                                    (2) 

 

The trace of A is always equal to 1 and for a completely random orientation state A = 1/3 

I, where I is the unit tensor. In the limit that all the fibers are perfectly aligned in the x1 

direction the only non-zero component of A is A11 = 1.  

  

2.2. Evolution of fiber orientation 

 

The first theoretical work describing the evolution of high aspect ratio particle 

orientation that is easily extendable to rigid rods or fibers is that of Jeffery [2]. Jeffery’s 

analysis can be written in terms of the second- and fourth-order orientation tensors as 

follows [18],  

 

( ) ( 4
D 2 :
Dt

= ⋅ − ⋅ + λ ⋅ + ⋅ −
A W A A W D A A D D A )                         (3) 

 

where D/Dt is the material derivative, λ is a shape function λ = (ar
2 – 1)/ (ar

2 + 1), W = 

[(∇v)t - ∇v]/2 is the vorticity tensor, D = [ ∇v + (∇v)t]/2 is the rate of strain tensor and ∇v 

 6



= ∂vj/∂xi. For fibers it is common to assume the particle’s aspect ratio approaches infinity, 

in which case λ→1.  

For non-dilute suspensions Folgar and Tucker [12] modified Eq. (3) to include a 

phenomenological term to account for fiber interaction preventing complete fiber 

alignment referred to in this article as the F-T model [18]: 

 

( ) ( ) (4 I
D 2 : 2 3
D

C
t

γ= ⋅ − ⋅ + ⋅ + ⋅ − + −
A W A A W D A A D D A I A )           (4) 

 

where CI is a phenomenological parameter and γ  is the scalar magnitude of D. The last 

term on the right hand side of the equation is very similar to the isotropic diffusivity term 

in theories for Brownian rods [19]. The slip coefficient introduced by Sepehr et al. [14], 

discussed previously, can be incorporated into the F-T model, which we refer to as the F-

T-S model, as follows, 

 

( ) ( ) (4 I
D 2 : 2 3
D

C
t

γ⎡ ⎤= α ⋅ − ⋅ + ⋅ + ⋅ − + −⎣ ⎦
A W A A W D A A D D A I A)           (5) 

 

where the slip coefficient, α, is some value between 0-1. The addition of the slip 

parameter to the equations governing fiber motion results in a loss of material objectivity 

of the equation, see for example Tanner [20]. However, the physical aspects of the model 

are still valid in the case of simple shear flow, which is the focus of this paper.  

To solve equations Eqs. (3), (4) or (5) a closure approximation is needed to express 

the fourth-order tensor A4 in terms of A. Many closure approximations have been 

 7



proposed including the quadratic [19], hybrid [18], eigenvalue- [21] and invariant-based 

optimal fitted [22] to name a few. A good review of their accuracy can be found in the 

references [23, 24]. For this work we use the invariant-based orthotropic fitted (IBOF) 

closure approximation established by Chung and Kwon [22] because of its stability, 

accuracy, and computational efficiency. The IBOF begins with the most general form of 

the fourth-order tensor A4 as follows, 

 

( ) ( ) ( ) ( )
( ) ( )

ijkl 1 ij kl 2 ij kl 3 ij kl 4 ij km ml

5 ij km ml 6 im mj kn nl

A A A A

         A A A A A A A

S I I S I S S I

S S

β β β β

β β

= + + +

+

A A +
           (6) 

 

where the operator S indicates the symmetric part of its argument such as, 

 

( )ijkl ijkl jikl ijlk jilk klij lkij klji lkji

ikjl kijl iklj kilj jlik ljik jlki ljki

iljk lijk ilkj likj jkil kjil jkli kjli

1 (
24

                     

                     )

S T T T T T T T T T

T T T T T T T T

T T T T T T T T

= + + + + + + +

+ + + + + + + +

+ + + + + + +

+

                          (7) 

 

The IBOF assumes that the coefficients β1 to β6 are polynomial expansions of the second 

and third invariants of A. We use the fifth-order polynomial for which the polynomial 

coefficients can be found elsewhere [22]. 

 

2.3. Stress 
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Lipscomb et al. [25] proposed a stress equation for a dilute suspension of high aspect 

ratio particles following the work of Hand23 and Giesekus21 as, 

 

s 1 s s2 2 2p c N= − + η + φη φηI D D + D : A4σ                                (8) 

 

where σ is the total stress, p is pressure, ηs the suspending medium viscosity, c1 a 

constant, and N a dimensionless parameter that represents the coupling between 

hydrodynamic stress contribution and the fiber orientation. Lipscomb et al. give c1 to be 

equal to 2 for dilute suspensions, but we choose to use it as a fit parameter. Also, 

Lipscomb et al. give N to be a function of the particle aspect ratio. Semidilute suspension 

theories such as the Dinh and Armstrong [26], Shaqfeh and Fredrickson [27], or Phan-

Thien and Graham [28] can also be written in the form of Eq. (8) noting that some 

assume the third term is negligible or c1 = 0. These theories focus on an expression for N 

considering inter-particle hydrodynamics. For predicting the rheological behavior of 

concentrated suspensions N is frequently determined by fitting predictions to 

experimental results and this is the approach we use in this work. For the startup of shear 

flow, the shear stress growth coefficient, η+, and first normal stress difference growth 

function, N1
+, can be determined from Eq. (8) for simple shear flow kinematics (v1 = γ y 

and v2 = v3 = 0) as, 

 

+
12 s 1 s s 1212/ 2c Nσ γη = = η + η φ + η φ A                                       (9) 

 

( )1 s 1211 12222 A AN Nγ+ = φη −                                             (10) 
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where we define x1 as the flow direction, x2 as the direction of velocity gradient and x3 as 

the neutral direction.  

 

3. Experimental 

 

3.1. Materials 

 

For this work a commercially available 30 wt% (volume fraction, φ = 0.1766) short 

glass fiber filled polybutylene terephthalate (PBT-30) provided by GE Plastics under the 

trade name Valox 420 was used. Linear viscoelastic measurements confirmed that the 

matrix was Newtonian-like, the details of which have been published elsewhere [29]. To 

examine the effect of fiber concentration on the rheological behavior, PBT-30 was 

diluted to concentrations of 4.07, 8.42, 15, 20 and 25 wt%. Compounding was 

accomplished by passing dry blended amounts of PBT-30 and the neat matrix through the 

extruder section of an Arburg Alrounder 221-55-250 injection molder at an rpm of 200. 

The extrudate was collected before entering the runner of the mold and pelletized. The 

pellets were then compression molded for rheological testing to a cone-and-plate disk at 

260 oC. Precautions were taken to minimize the degree of thermo-oxidative degradation 

of the PBT matrix by drying the materials at 120 oC for a minimum of 12 hours in a 

vacuum oven at a pressure smaller than 0.4 in.Hg before sample extrusion, molding or 

testing [30]. 
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To characterize the glass fiber within the suspension, pyrolysis was performed on the 

PBT-30 pellets at 500 oC after extrusion to separate the fibers from the matrix. The 

average fiber length was determined by measuring the length of 1,000 randomly selected 

fibers. The number average and weight average fiber length of PBT-30 was found to be 

Ln = 0.3640 and Lw = 0.4388 mm, respectively, with a standard deviation of 0.17 mm. 

The same fiber length measurement was performed on all the diluted concentrations and 

was found to be within 0.3640 ≤ Ln ≤ 0.3740 and 0.4388 ≤ Lw ≤ 0.4578 mm. The fiber 

diameter, D, was determined directly from images taken of fiber cross sections using a 

confocal laser microscope, discussed later, and the average diameter of 1,000 fibers was 

found to be D = 12.9 μm with a standard deviation of 1.7 μm. This relates to a number 

average aspect ratio for PBT-30 of ar  ≅ 28.2. 

 

3.2. Rheological measurements 

 

All rheological measurements were performed on a Rheometrics Mechanical 

Spectrometer (RMS-800) at 260 oC. To minimize the degree of thermo-oxidative 

degradation, all experiments were performed in a nitrogen environment with a freshly 

loaded pre-formed sample. Rheological measurements on the PBT matrix were 

performed with a 25 mm cone-and-plate fixture with 0.1 radian cone angle. 

The common approach to characterizing the rheological behavior of short glass fiber 

filled polymer melts is to use a rotational rheometer with parallel disk geometry set to a 

gap where measurements are independent of gap height. However, recent results suggest 

that the inhomogeneous velocity gradient imposed by the parallel disk geometry can lead 
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to exaggerated measurements of the rheological material functions [17]. As a result, it 

was of primary importance to perform the experiments on the glass fiber-filled 

suspensions in a rheometer that imposes a homogeneous shear field such as the cone-and-

plate geometry [31]. For our measurements a 50 mm diameter cone-and-plate fixture was 

fabricated and used. The cone had a 0.1 radian cone angle and was truncated to allow for 

a gap of 50 μm at the center. To minimize the degree of fiber-boundary interaction 

Blankeney [32] and Attanasio [33] suggested that the rheometer gap be at least three 

times the length of the longest dimension of the suspension particle. Experimental results 

using parallel plate geometry with various rheometer gaps confirmed that for the PBT-30 

there is a negligible effect on the stress growth and steady state rheological behavior 

when the gap is roughly three times the number average fiber length [17]. The gap within 

the 50 mm cone and plate fixture varies linearly from 2.51 mm at the outer edge to 0.05 

mm at the center. To remove the excessive fiber-boundary interaction near the center, a 

25.4 mm diameter hole was drilled through the center of the pre-formed disks creating a 

donut shaped sample which we refer to as “donut” samples. A schematic drawing of the 

donut sample can be seen in Fig. 2. After each experiment the void space at the center 

was measured to account for sample loading as the gap is squeezed to proper dimensions. 

The hole diameter varied slightly, 23.8 ± 0.5 mm and was accounted for in calculating the 

stresses for each run. A comprehensive analysis and description of the donut sample can 

be found elsewhere [16, 17]. 

For measurements performed using the cone and plate fixtures, η+ and N1
+ were 

calculated as functions of torque, M(t), and normal force, F(t), from [34], 
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( ) ( ) ( 13 3
o i

3
/

2
M t

t Rσ γ
γ )R

−+ +η = = −
π

                                       (11) 

 

( ) ( ) ( 1z 2 2
1 o

2F t
N t R R )i

−+ = −
π

                                                  (12) 

 

where Ro and Ri are the outer and inner radius, respectively. The experimental 

reproducibility was found to be ± 5% for η+ and ± 7% for N1
+. 

 

3.3Measurement of fiber orientation 

 

The fiber microstructure was characterized using confocal laser microscopy in a 

similar approach to that proposed by Lee et al. [35]. Donut samples composed of PBT-30 

were sheared using the RMS-800 at γ  = 1 s-1 for a specified time relating to 

predetermined strain, γ = γ t. Immediately after deformation, and taking precaution not to 

disturb the sample melt, the temperature was lowered below the melt temperature 

“locking-in” the flow generated fiber microstructure. 

The samples were prepared by sanding embedded sections of the donut sample in 

epoxy to a specific plane depth, and then polishing the surface to a final abrasive particle 

size of 0.3 μm aluminum oxide (Al2O3) following standardized techniques [36]. Sample 

images were taken at four possible locations denoted by PD-1 through 4 and are depicted 

in Fig. 3 for clarification. Locations PD-1, PD-2 and PD-3 were located in the plane 

perpendicular to the φ-direction (flow-direction) at distances of 4.0, 6.25, and 8.5 mm, 

respectively, from the outer edge, and PD-4 was located in the plane perpendicular to the 

 13



r-direction (neutral-direction) at a depth of 4.0 mm. PD-1 and PD-4 can be considered 

mutually perpendicular planes of different sections of the donut sample.  

In total, the fiber orientation was measured for 11 samples which where deformed to 

strains of 0, 4, 7, 9, 12, 25, 50, 100 and 200. Samples deformed to strains 4, 25, 100 and 

200 were imaged at locations PD-1 and PD-4, all other samples were imaged at locations 

PD-1 thru PD-4 as depicted in Fig. 3. These experiments were designed to highlight 

structural features that correlated to the transient stresses. For instance, the fiber 

orientation at strains 4, 7, 9 and 12 were meant to characterize the fiber orientation during 

the overshoot region; 7 and 9 relate to the peaks of the η+ and N1
+ overshoot, respectively. 

The onset of steady state for η+ and N1
+ was characterized by strains 25 and 50, 

respectively, and the plateau region in which the stresses did not exhibit large changes by 

strains 100 and 200. A sample loaded into the rheometer but not sheared, strain 0, 

represents the initial fiber orientation within the rheological samples. 

The images were taken using a Zeiss LSM510 confocal laser scanning microscope 

fitted with a 40x water immersion objective lens and a laser excitation wavelength of 543 

nm. The final image was 230 x 230 μm with a resolution of 1024 x 1024 pixels. For each 

sample, sequential images were taken from the bottom to the top in the direction of the 

velocity gradient and at two planes of depth. In the image the cross section of each fiber 

appeared as circles or ellipse-like shapes. To process the image, the circumference of 

each fiber intersection was traced by hand in power point to improve the contrast between 

the fibers and the matrix and converted to a binary image. A computer program was 

written in combination with image analysis software in Matlab that measured the position 

of center of mass, the major and minor axis and local angle between a fixed coordinate 
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frame and the major axis of the ellipse. The components of u for each fiber were 

determined from the elliptical “footprint” at two cross sectional planes.  

With knowledge of u for each fiber the tensor, A can be constructed as follows:  

 

( )i j nn
ij n

n n

A ,     
u u F

nMF
F m

= =
∑

∑
                                     (13)                            

 

where Fn is a weighting factor, Mn is the major axis, and mn is the minor axis for the nth 

fiber [37]. The weighting function is based on the probability of a 2D plane intersecting 

the nth fiber. Meaning, a fiber aligned perpendicular to the plane is more likely to be 

severed than one aligned parallel. Using the weighting function, the larger the aspect ratio 

of the ellipse, the more that fiber is weighted. In the results and discussion section the 

orientation tensor A will be used to describe the average orientation state of the system. 

The reproducibility of the Aij component between different samples was found to be 

dependent on the magnitude of the Aij component with the maximum error being ± 12.4 

% for the component of smallest magnitude, the A22.

 

4. Experimental results and discussion 

 

In the first part of this section we show the stress growth behavior of PBT containing 

various concentrations of glass fiber to establish the interest in understanding the 

dynamic behavior of the PBT suspension containing the greatest fiber concentration, 

PBT-30, subject to startup of flow. The focus of this section is to define the technique 

used to characterize the orientation of the glass fiber within the rheometrical samples 
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consisting of PBT-30 during startup. A key aspect to our experimental scheme lies in the 

assumption that the fiber orientation is maintained during stress relaxation. To convince 

the reader that the fiber orientation does not change during stress relaxation and over 

quiescent periods we present interrupted stress growth/relaxation results. This is followed 

by a mathematical verification of the degree to which Brownian motion and 

sedimentation contribute to the change in fiber orientation. Finally, we discuss the 

technique used to measure the fiber orientation and briefly present the results. Further 

discussion of the experimental results for fiber orientation will be presented in the 

subsequent section on modeling of the fiber orientation. 

 

4.1. Transient rheology 

 

The stress growth behavior of the PBT containing various concentrations of fibers can 

be seen in Figs. 4 (a) and (b) for the shear stress growth coefficient, η+, and the first 

normal stress difference growth function, N1
+, respectively. In Fig. 4 (a) the 30 wt% 

exhibits a typical η+ of a concentrated short glass fiber-filled fluid. Initially, there is a 

large transient overshoot that reaches a maximum in approximately 7 strain units which 

decays towards a steady state. It is difficult to define exactly when a steady state is 

reached, but the majority of the overshoot occurs within 25 and 30 strain units and the 

stresses appear to approach a steady state at roughly 50 strain units. In comparing η+ 

exhibited by the different concentrations, the magnitude of the overshoot decreases with 

decreasing fiber concentration. For the 4.07 and 8.42 wt% η+ decays from the beginning 
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of flow toward a steady state and, as a result, there is no discernable overshoot. A fully 

developed overshoot appears to occur around 15 to 20 wt%. 

N1
+ is plotted vs. strain in Fig. 4 (b) for the various concentrations. Similar to η+, N1

+ 

for the 30 wt% exhibits a large initial overshoot that reaches a steady state around 50 

strain units. The overshoot peak is more than 8 times the steady state value. All the 

concentrations tested exhibited an overshoot which increased with increasing fiber 

concentration. However, there seemed to be a broadening of the overshoot and a 

significant increase in the magnitude that occurred at 15 wt%. The dramatic increase in 

the magnitude and broadening of the overshoot is believed to be a result of significant 

fiber contact at the higher concentrations. All but the lowest concentration is in the 

concentrated régime, but stress growth behavior of the 30 wt% exhibited the most 

dramatic behavior. Furthermore, for this work we were interested in studying the 

dynamic behavior of a concentrated suspension of industrial significance. As a result, the 

30 wt% was chosen for the fiber orientation experiments.  

During sample preparation for the fiber orientation measurements, it was assumed 

that the fibers maintained their orientation during stress relaxation. To reinforce this 

assumption, interrupted stress growth experiments were performed after the overshoot 

region and at the peak of the N1
+ overshoot, depicted in Figs. 5 (a) and (b), respectively. 

In Fig. 5 (a) the results of two interrupted tests on two different samples can be seen. 

Initially both samples were deformed for 100 s at a γ  = 1 s-1, after which the flow was 

stopped. For the first sample, the flow was reapplied after 50 s, and for the second the 

flow was reapplied after 200 seconds. In both cases the stresses grew to their previous 

value within the time resolution of the experiment, 0.5 s, and independent of the time 
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between flows. This test was performed up to a maximum wait time of 1,000 s and 

confirms that the overshoot region is not recoverable over span of time relevant to this 

work. A similar interrupted stress growth test was performed except the flow was 

removed at the peak of the N1
+ overshoot and can be seen in Fig. 5 (b). When the flow 

was reapplied the stresses immediately grew to their previous values. The behavior 

exhibited by PBT-30 in both Figs. 5 (a) and (b) suggests that the fibers do maintain their 

orientation during stress relaxation. If this assumption is correct, then even at very long 

times the fiber orientation should remain constant under static conditions if unaffected by 

external forces such as Brownian motion or gravity. 

 

4.2. Impact of Brownian motion and gravity 

 

The relative effect of Brownian motion on the orientation of the fibers within the 

suspension can be determined by considering the ratio of the experimental shear rate, γ , 

to the rotational diffusion constant, Dr, also known as the Péclet number, Pé = γ  / Dr. For 

a fiber Dr = 3kbT[ln(ar)-0.8]/πηsL3, where kb is Boltzmann’s constant, T is the 

temperature in Kelvin, ηs is the viscosity of the suspending medium and L is the fiber 

length [19]. For PBT-30 Pé ≈ 1013, and therefore, can be considered non-Brownian [38]. 

To estimate the relative effect of gravity on fiber orientation Chaouche and Koch [39] 

proposed an expression to estimate the relative time scale for sedimentation, ts, the time 

required for a fiber parallel to the vertical direction to sediment over its length, as ts = 

8ηsL/Δgρd2[ln(2ar)-0.72]. For an average fiber in PBT-30 ts ≈ 45 hrs and represents the 

minimum estimated time for a fiber to settle as fiber contact would act to increase ts. 
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4.3. Fiber orientation measurements 

 

The orientation of each fiber can be described in spherical coordinates using a unit 

vector, u, along the fiber axis depicted in Fig. 1. The zenith and azimuthal angles (θ and 

ϕ, respectively) defining the components of u for a each fiber can be calculated from the 

ratio of the minor and major axis of the elliptical footprint using Eq. (14) and the other 

angle can be measured directly from the image [35]. In Eq. (14) the subscript 1-2 refers to 

the x1 – x2 plane. 

 

1 2
cos m

M−
θ =                                                       (14) 

 

Figure 6 (a) depicts the elliptical footprint in the x1 – x2 plane and the angle ϕ measured 

directly from the image. The limitation of calculating the angle based on Eq. (14) is that 

the angle is always between 0 and π causing an inherent ambiguity. For example, in the x1 

– x2 plane it is impossible to distinguish between a fiber that is oriented at (θ1, ϕ1) or (π - 

θ1, ϕ1) because their cross sections are identical. Figure 6 (b) depicts two possible unit 

vectors u for the same elliptical footprint.  

To increase the accuracy of the 3D description of fiber orientation and reduce the 

inherent ambiguity in the method previously described, imaging was performed using a 

confocal laser microscope. This allowed for images to be taken at multiple depths parallel 

to the plane of interest and fully describe the 3D fiber orientation without ambiguity. 

Figure 6 (b) illustrates a fiber cross section with two possible unit vectors whose 
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orientation is the mirror image of each other. When only one plane is analyzed it is 

impossible to determine the correct vector u. However, when images from two depths are 

compared, the center of mass displacement confirms the appropriate u vector. This is 

slightly different from the work of Lee et al. [35] who calculated the angle based on the 

measured displacement. 

After processing the images relating to the experimental data, it was found that 

change in center of mass of the two elliptical footprints was only detectable when the 

aspect ratio of the ellipse was roughly greater than three or at an angle of greater than 

roughly 50o due to the limited depth of penetration of the laser. For the PBT-30 the 

maximum penetration was found to be 8 μm. For this reason we term our analysis 

“pseudo-3D” in that there is still a certain amount of ambiguity with the calculated angle 

for fibers which were mostly aligned in the direction perpendicular to the plane of 

interest. 

For the geometric analysis defined above to be valid it is assumed that the fibers are 

perfectly rigid circular cylinders. Forgacs and Mason [40] developed an equation to 

estimate the critical shear stress at which the shear-induced axial compression can cause a 

rotating fiber to buckle, τcritical = Ef[ln(2ar)-1.75]/2ar
4, where Ef is the flexural modulus. 

Assuming Ef ≈ 73 GPa for the glass fibers within the PBT-30 suspension [41], then τcritical 

≈ 1.3e105 Pa, and they can be considered rigid at γ  = 1 s-1. 

 

4.4. Fiber orientation  
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In the literature it is a common practice to assume the initial fiber orientation within 

rotational rheometer samples is, on average, random [14, 42]. As the initial orientation 

assumed in making the calculations can drastically influence the predictions, we directly 

measured the initial fiber orientation of the samples subjected to the startup of shear flow. 

The initial measured fiber orientation of the donut samples, represented using the 

orientation tensor A at strain 0 is shown in Eq. (15),  

 

0

0.517 0.075 0.058
0.075 0.035 0.035
0.058 0.035 0.448

γ =

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

A ⎟
⎟                                           (15) 

 

The experimental data represented in Eq. (15) shows that the majority of the fibers were 

initially oriented in the x1 and x3 directions with very few aligned in the x2 direction. This 

is attributed to the deformation history given to the sample during compression molding 

of the sample disk and while it is loaded into the rheometer. 

The experimentally determined Aii components as a function of strain can be seen in 

Fig. 7 (a). The A11 component increases with increasing strain while the A33 component 

decays at a similar rate. This shows that the fibers, whose initial orientation is mostly in 

the x1 - x3 plane, reorient to align in the x1 direction. The rate of fiber reorientation is 

fastest between strains 0 and 50; after a strain of 50 the rate dramatically decreases and 

relates to the onset of steady state exhibited by the N1
+ overshoot. The growth rate of the 

A11 component is nearly identical to the decay rate of the A33 component. Mathematically 

this growth/decay behavior can be described over the range of γ  using a slow 

logarithmic function of the form Aii = Aii_0 +/- κ *ln(γ ) where Aii_0 is Aii component at 
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γ  = 0, is a constant, and the + or – is for growth or decay behavior as in Aκ 11 and A33, 

respectively. The slow logarithmic function was fit to both A11 and A33 over the entire 

data set leading to a single function constant κ  = 0.06 with an R2 = 0.86 and can be seen 

in Fig. 7 (a). If you predict when the fiber would reach full alignment (A11 = 1) using this 

equation leads to a strain of 3150. It is difficult to draw an exact conclusion based on this 

general function because there are multiple solutions within the error bars of the data set. 

However, on average, the data suggest that the fiber orientation is still evolving even up 

to 200 strain units. 

In contrast to the A11 and A33 components, A22 exhibits an initial increase that decays 

slightly to what appears to be a statistical steady. This behavior is more readily quantified 

by normalizing the fiber orientation at the various strains by the initial orientation, 

A22_0/A22, which can be seen in Fig. 7 (b) along with A12_0/A12. The A22 and A12 

components increase to 1.8 and 2.8 times the initial value, respectively, but the peak 

occurs at a strain of 4 for A12 and a strain of 7 for A22. In addition, the apparent steady 

states occur at the different strains of 12 and 25 for A22 and A12, respectively, which 

correlates to the onset of steady state in η+. 

 

5. Simulations 

 

5.1. Numerical method 

 

Before making a comparison between experimental and predicted values of fiber 

orientation, a brief discussion of the numerical solution method is given. In all models 
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that contained A4, the IBOF closure approximation was used to express A4 in terms of A. 

Equations (4) and (5) were solved numerically using Gear’s implicit predictor-corrector 

method at a time step of 0.01 s. Model predictions were found to be independent of time 

step at smaller increments. The initial conditions and model parameters are discussed 

later.  

 

5.2. Effect of CI and α 

 

In Fig. 8 the effect of fiber interaction and slip through the parameters CI and α, 

respectively, on the predictions of the F-T and F-T-S models from an initial random 

orientation are shown. For increasing fiber interaction the steady state value of A11 

decreases, but has a negligible effect on the initial growth rate of A11 for the values of CI 

of practical interest, CI < 0.01. Predictions of the F-T model with a small degree of 

interaction, CI
 = 0.0001, are within 1% of the that predicted by Jeffery’s equation, Eq. (3), 

in the limit of λ = 1. In contrast to the effect of CI on the F-T model predictions, the 

addition of slip as in the F-T-S model results in a decrease in the growth rate of the A11 

component but has no effect on the steady state asymptote. The parameters CI and α 

allow one to independently adjust the steady state fiber orientation and the rate of fiber 

reorientation as predicted by Eq. (5). 

 

5.3. Model predictions 
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In Fig. 9 the experimentally determined Aii components vs. strain are compared to the 

F-T model with small fiber interaction CI = 0.0001, and CI = 0.006 which was determined 

by fitting the steady state model predictions to the experimental data at a strain of 200. 

The F-T model with small interaction drastically over predicts the Aii components rate of 

reorientation. The F-T model with CI = 0.006 also over predicts the Aii components 

reorientation rate at small strains but approaches the value at large strains. Furthermore, 

the F-T model with CI = 0.006 reaches a steady state in ~ 50 strain units, but as 

previously discussed the experimental data suggests that the fiber orientation is still 

evolving even up to the largest strain measured. The predictions of the Aii components 

using the F-T model shown in Fig. 9 are relatively accurate at the largest strain which is 

expected as the CI was parameter was adjusted to fit the F-T model predictions at that 

strain. However, the continuously evolving fiber orientation suggests that a correct value 

would be smaller than CI = 0.006.  

Model predictions of the F-T-S model compared to the experimentally determined Aii 

components are shown in Fig. 10. The slip parameter α was determined by fitting the F-

T-S predictions, with CI = 0.006, to the experimental A11 and A33 components over the 

whole strain range and was found to be α = 0.3. Values of α < 0.3 resulted in a loss of 

accuracy between the F-T-S model predictions and the experimental data at small strains, 

γ < 25, for all values of CI. For comparison purposes the F-T-S model with CI = 0.0001, 

and α = 0.3 was included in the figure. Predictions of the F-T-S model with small CI 

shows good agreement with the A11 and A33 components at small strains but over predicts 

the degree of orientation at large strains. The F-T-S model with CI = 0.006 shows good 

agreement with the A11 and A33 components for all strains tested. However, at a strain 
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150 the predictions reach a steady state. The F-T-S model predictions of the A22 does not 

show good agreement at small strains, γ < 25. Experimentally, the A22 component 

increases from strains 0 to 4 where it reaches a maximum and then decreases. The F-T-S 

model with small CI predicts the A22 component to decrease from its initial orientation 

state while the F-T-S model with small CI = 0.006 predicts the A22 component to increase 

the steady state value without exhibiting an overshoot. It is not exactly clear why the 

experimental A22 component increases and goes through a maximum, similar to an 

overshoot, but one possible contributing factor could be direct fiber contact. The 

overshoot in the A22 component occurs at small strains when there is a high degree of 

fiber reorientation. We believe the inability of the F-T-S model to predict the overshoot 

in the A22 component is a deficiency in the physical predictions of the model and not a 

result of the IBOF closure approximation. This was confirmed by performing a stochastic 

simulation of Eq. (5) in which no closure approximation was needed, see, for example 

Fan et al. [43]. The stochastic simulation of the A22 component did not exhibit an 

overshoot for the range of CI < 0.01 tested. 

F-T-S model predictions of the A12 component compared to the experimental values 

can be seen in Fig. 11. Similar to the A22 component there is a rise in the values of A12 

from γ = 0, passing through a maximum at γ = 7 and then decaying slowly with 

increasing strain. This is in contrast to the predicted A12 component which decays from 

the initial value. However, when the simulations begin from the experimental fiber 

orientation at a strain of 7, given in Eq. (16), the predictions show good agreement with 

the rate of decay. After which the experimental A12 component appears to reach a steady 

state of greater magnitude than the predicted value. 
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7

0.546 0.138 0.040
0.138 0.079 0.005
0.040 0.005 0.375

γ =

−⎛ ⎞
⎜= ⎜
⎜ ⎟− −⎝ ⎠

A ⎟− ⎟                                           (16) 

 

We now compare the predictions of the stress growth functions η+ and N1
+ vs. strain 

by way of Eqs. (9) and (10), in combination with the F-T-S model for fiber orientation to 

the experimental results. The stresses are directly linked to the fiber orientation through 

the hydrodynamic drag term in Eq. (8). In a similar manner to the A12 component, the F-

T-S model did not predict an overshoot in the A1212 component. As a result the predicted 

η+ did not exhibit an overshoot when the simulations of the stresses began from strain 0. 

For this reason the model predictions of η+ and N1
+ discussed subsequently begin from a 

strain of 7 using the experimental fiber orientation at that strain as the initial conditions. 

For the F-T-S model the same parameter values of CI and α that were used in the 

simulations of the fiber orientation are used to simulate the stresses, i.e., CI = 0.0001 and 

0.006 and α = 0.3. The model parameters c1 and N were determined through a visual best 

fit of the predicted η+ and N1
+ to the measured values of η+ and N1

+. The best fit 

parameter values using the F-T-S with CI = 0.0001 and CI = 0.006 were found to be c1 = 

1.5, N = 35, and c1 = 0, N = 35, respectively.  

The comparison of the experimental and predicted values of η+ can be seen in Fig. 12 

(a). Eq. (9) in combination with the F-T-S model with small CI produced the best fit; the 

model shows good agreement compared to the experimental results over the entire range 

of strain. In contrast, we were unable to fit the predictions of Eq. (9) in combination with 

the F-T-S model with CI = 0.006 to both the overshoot maximum and the steady state 
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values simultaneously. The experimental and predicted N1
+ vs. strain can be seen in Fig. 

12 (b). For both values of CI = 0.0001 and 0.006 in which the F-T-S model was used to 

predict the fiber orientation we were unable to fit the magnitude of the overshoot region. 

It is not directly clear why the model was unable to predict the magnitude of the 

overshoot. However, one plausible explanation is the Lipscomb stress equation does not 

account for direct fiber contact which could potentially contribute to the stresses.  

 

6. Conclusions 

The common approach to predicting the evolution of fiber orientation during 

simulation of processing flows such as injection molding is to use an empirically 

modified form of Jeffery’s equation, the F-T model. Direct measurement of fiber 

orientation in startup of flow of a concentrated composite fluid shows that the F-T model 

over predicts the rate of fiber reorientation. The addition of the slip parameter to the F-T 

model, which acted to slow the rate of fiber reorientation, improved the model 

predictions at all the strains examined. A linear fit to the A11 and A33 components of A at 

strains of 50, 100, and 200 suggest that the fiber orientation is still evolving even after 

200 strain units where the F-T and F-T-S models predict a steady state has been reached. 

It is unclear at what strain the fibers would reach a steady state, but the fiber orientation 

might continue to evolve to very large strains. 

In startup of flow, the experimental A22 and A12 components exhibited an overshoot 

behavior. The F-T and F-T-S models were unable to predict this phenomenon and we 

attribute it to fiber contact as the fiber reorients from a mostly planar orientation to align 

itself in the flow direction. As a result of the F-T-S model’s inability to predict the 
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increase in orientation in the x2 direction, the simulations of η+ beginning from the 

experimentally determined initial conditions did not predict the η+ overshoot. However, 

simulations of the stresses beginning from a strain of 7, the peak of the η+ overshoot, 

showed a qualitative agreement with the overshoot decay from a strain of 7.  
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Figure Captions 
 
Figure 1. Unit vector u describing the orientation state of a rod in spherical coordinates. 
 
Figure 2. Schematic drawing and cross-sectional profile of the donut sample. 
 
Figure 17. Schematic drawing of the polished and imaged planes perpendicular to the 
neutral, r, and flow, φ, directions. Images were taken at four positions: three positions 
perpendicular to the flow-direction at a distance of 4.0, 6.25, and 8.5 mm from the outer 
edge denoted by PD-1, PD-2, and PD-3, respectively, and one position perpendicular to 
the neutral direction denoted by PD-4. At all locations images were taken through the 
entire height of the sample. 
 
Figure 18. Stress growth behavior of PBT and PBT containing various concentrations of 
short glass fiber at γ  = 1 s-1. (a) Shear stress growth coefficient, η+, (b) first normal stress 
growth, N1

+, vs. strain. The symbols (x), (∆), (-), (o), (◊) and (■) represent fiber wt% 
4.07, 8.42, 15, 20, 25 and 30, respectively. The solid line depicts the neat PBT for 
comparison in both graphs. 
 
Figure 19. σ+ and N1

+ vs. strain, γ, for PBT-30 in interrupted flow experiments. All flow 
was performed at γ  = 1 s-1. (a) Two interrupted experiments were performed on two 
different samples. In one experiment the flow was removed for 50 s and in the other 
experiment flow was removed for 200 s. (b) An interrupted flow experiment where a 
fresh sample was subject to flow at γ  = 1 s-1 for 10 s, the flow was removed for 20 s, and 
then the flow was reapplied. 
 
Figure 20. (a) Elliptical “footprint” of fiber cross section where M is the major axis and 
m is the minor axis. (b) Two possible unit vectors, u, along the backbone of the fiber and 
depiction of the positive angle θ. 
 
Figure 21. The evolution of the fiber orientation determined experimentally during 
startup of flow represented through the Aij components. (a) The Aii components; the solid 
lines represent a slow logarithmic function fit to the A11 and A33 components. (b) The A12 
and A22 components normalized by the initial orientation A12_0 and A22_0, respectively. 
 
Figure 22. Effect of the slip constant, α, and the Folgar-Tucker constant, CI, on A11 as 
predicted by the Folgar-Tucker (F-T) model, and the Folgar-Tucker model with the 
addition of a slip term (F-T-S). The solid lines represent the F-T model, Eq. (4), and the 
broken lines represent the F-T-S model, Eq. (5). Decreasing α refers to values α = 0.75, 
0.5 and 0.25, and increasing CI refers to values of CI = 0.001, 0.005 and 0.01. The bold 
line represents the F-T model with CI = 0.0001. All simulations were performed at a γ  = 
1 s-1. 
 
Figure 23. Experimental and predicted fiber orientation represented through the Aii 
components in startup of simple shear flow at γ  = 1 s-1. The lines represent the 
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predictions of the Folgar-Tucker (F-T) model model with CI = 0.0001 (dashed line) and 
CI = 0.006 (solid line). 
 
Figure 24. Experimental and predicted fiber orientation represented through the Aii 
components in startup of simple shear flow at γ  = 1 s-1. The lines represent the 
predictions of the Folgar-Tucker model with the addition of a slip term (F-T-S) with α = 
0.3, CI = 0.0001 (dashed line) and CI = 0.006 (solid line). 
 
Figure 25. Experimental and predicted fiber orientation represented through the A12 
component in startup of simple shear flow at γ  = 1 s-1. The lines represent the predictions 
of the Folgar-Tucker model with the addition of a slip term (F-T-S) with CI = 0.0001 
(dashed line) and CI = 0.006 (solid line). Predictions were performed using 
experimentally determined initial conditions (IC) at a strain of 0 and 7 shown as IC γ = 0, 
and IC γ = 7, respectively, in the figure. 
 
Figure 26. Experimental and predicted stress growth functions using the Folgar-Tucker 
model with the addition of a slip term (F-T-S) in startup of simple shear flow at γ  = 1 s-1. 
The dashed and solid line depict model predictions for CI = 0.0001 and 0.006, and η+ and 
N1

+ were produced by means of Eqs. (9) and (10), respectively. (a) η+, (b) N1
+

 vs. strain. 
 
 
 
 
 
 

 33


