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Abstract

For the flow around a cylinder of an upper convected Maxwell or Oldroyd-B fluid,
thin stress boundary layers develop close to the cylinder wall and in the wake. Nu-
merical simulations of this flow problem already fail to converge at a Weissenberg
number of order unity. For the boundary layer and in the wake, high-Weissenberg
number stress scalings, using a given, Newtonian velocity field have been predicted
by Renardy (J. Non-Newtonian Fluid Mech. 90 (2000) 13–23). We develop a purely
Lagrangian technique that is able to resolve thin stress boundary layers in an ac-
curate and very efficient manner up to arbitrarily large Weissenberg numbers. This
is in sharp contrast with a traditional method which has severe difficulties in pre-
dicting the correct solution at relatively low Weissenberg numbers and suffers from
long computational times. With the purely Lagrangian technique, we observe nu-
merically the existence of thin regions with large stresses, just outside the boundary
layer along the cylinder and birefringent strand in the wake, just as predicted by
the asymptotic analysis. All theoretical scalings are observed at larger values of the
Weissenberg number than can be reached in the benchmark flow around a cylinder
with non-fixed kinematics. Around the cylinder, the asymptotic results already ap-
pear to be valid at moderate values of the Weisenberg number. In the wake very
large Weissenberg numbers are necessary to observe stresses that are proportional
to We5.
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1 Introduction

One of the classical benchmark flows in the numerical simulation of viscoelas-
tic fluids is the flow of an upper convected Maxwell (UCM) or Oldroyd-B fluid
around a cylinder confined between two parallel plates. The problem is well
suited as a benchmark problem for understanding the flow of viscoelastic liq-
uids in complex geometries. Near the cylinder both shearing and extensional
effects are present, near the channel walls and in the gap between the channel
walls and cylinders the flow is primarily a shear flow, and near the axis of sym-
metry the flow is dominated by extension. The geometry of this benchmark
problem is relatively simple and it has no singularities as for example the flow
through a contraction with sharp corner. However, producing converged and
accurate numerical results for stresses and velocities is a very challenging task
due to the presence of the upstream and downstream stagnation points, the
thin stress boundary layer near the cylinder, and the birefringent strand in the
wake of the cylinder. The maximum Weissenberg number (based on the aver-
age velocity and cylinder radius) at which numerical simulations are successful
is around 1. Despite the absence of singularities, these values of Weissenberg
numbers are the lowest of all benchmark flows. The flow around a cylinder
between parallel plates is, for example, numerically also more difficult than
the corresponding problem of a sphere in a tube, for which converged solutions
for Weissenberg numbers of We = 2 to We = 2.5 are reported.

Practically all usual grid-based methods have been applied to the flow around a
cylinder of the UCM and Oldroyd-B fluid, for example [1–8]. Various methods
now seem to predict similar drag factors on the cylinder wall and converged
solutions at a given mesh are reported up to approximately We ≈ 1 − 1.2. A
recent comparison of drag factors obtained with various numerical techniques
is given in Owens and Phillips [9]. As pointed out by several authors, for
example [10,2], the drag coefficient is a poor indicator of the quality of the
solution. Convergent drag factors do not imply that the numerical solution has
converged with mesh refinement on the whole flow domain. Most critical seems
to be the stress field in the wake of the cylinder where steep stress gradients
develop at relatively low Weissenberg numbers of about 0.7. Careful studies of
the stress profiles in the wake are, however, suspiciously rare [7]. We discuss
briefly the most recent findings on very refined meshes. Owens et al. [8] used
a spectral technique with local upwinding. They found a converging trend for
the stress in the wake of an Oldroyd-B fluid at We = 0.7 while for Weissenberg
numbers of 0.8 and higher such a trend could not be observed. These results
agree well with those of the Galerkin/least-square finite element method of Fan
et al. [2]. Furthermore, for the UCM fluid these authors observed a converging
trend for the stress in the wake at We = 0.6 while this trend was absent at
We = 0.75. Alves et al. [5] used a finite volume method in combination with
very refined meshes. They showed that only for the most refined mesh in the

2



wake of the cylinder, the stresses in the wake agree well with those of [2],
both for the UCM and the Oldroyd-B fluid. For the Oldroyd-B fluid, stress
profiles in the wake are given up to a Weissenberg number of 1 at which the
maximum stress has increased about a factor of three compared to We = 0.7.
Caola et al. [6] performed simulations for the Oldroyd-B fluid with a DEVSS-
G/DG finite element discretisation. They report convergence to a steady state
solution at We = 1 on a very refined mesh with a smallest element size of the
order of 10−3 near the rear stagnation point. Unfortunately, the authors of [5]
and [6] have not established whether the stress in the wake converges with
mesh refinement at We = 1. The longitudinal normal stress in the wake of the
cylinder found in [6] seems to be considerably lower than in [5].

The reason why numerical simulations of the benchmark flow of a UCM or
Oldroyd-B fluid around a cylinder (with non-fixed kinematics) fail to converge
is currently not well understood. All accurate numerical techniques currently
break down at Weissenberg numbers around 1. Fan et al. [2] and Owens et al.
[8], for example, speculated that numerical solutions for the flow of an Oldroyd-
B fluid at Weissenberg numbers higher than about 0.8 are probably numerical
artifacts. Caola et al. [6] used very fine meshes and couldn’t reach a steady
state for their simulations above We = 1. They suggested, however, that the
instability is numerical and that even their very refined meshes were not able
to resolve the steep stress gradients in the wake of the cylinder. Dou and Phan-
Thien [4] have suggested that the flow near the front stagnation point might
be a source of numerical difficulty. Whether solutions do not exist or whether
currently used meshes are not able to resolve the boundary layers is difficult
to establish from numerical simulations of the benchmark flow with non-fixed
kinematics. As long as little is known about the mathematical structure of
the boundary layers and current mathematical techniques fail to converge this
will remain an open question. This is unsatisfactory.

The flow of a UCM fluid around a cylinder is a very interesting benchmark
problem for a second reason. In case fixed, Newtonian kinematics are assumed,
there is no doubt about the existence of a solution, while the numerical com-
putation is still a challenging task. Asymptotical analysis [11] predicts a thin
stress boundary layer near the cylinder wall and a thin birefringent strand
in the wake, as observed in numerical simulations of the benchmark flow. On
the other hand the introduction of a fixed Newtonian velocity field introduces
of course quantitative differences with the benchmark flow around a cylinder.
The velocity field obtained for an Oldroyd-B fluid at maximum attainable
Weissenberg numbers of order unity [5] are, however, still very similar to the
Newtonian velocity field. More specifically, no recirculation zones are observed
and the most striking difference is a slight shift in the streamlines downstream
of the cylinder. For the stress boundary layers, only the streamlines that pass
close to the cylinder wall are relevant. For such streamlines, the only notice-
able difference is a small shift in the close vicinity of the rear stagnation point.
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Such streamline patterns will predict, in combination with the two stagnation
points, qualitatively similar stress boundary layers as in [11].

In this paper we present accurate numerical solutions for the flow around a
cylinder in a fixed, Newtonian-like velocity field, which we define in Section 2.
The computations are performed with a Lagrangian technique that we discuss
in Section 3 and validate in Section 4. Then, in Section 5 we establish numeri-
cally the range of Weissenberg numbers for which the asymptotical scalings are
valid. We show that using a Lagrangian technique, it is possible to observe all
high-Weissenberg number scalings predicted in [11]. Some scalings, however,
are only observed at very high Weissenberg numbers. Particularly the scalings
in the wake occur at much higher Weissenberg numbers than can currently be
attained in the benchmark flow with non-fixed kinematics. A comparison with
the asymptotic scalings at Weissenberg numbers of the order one as in [5,6] is
therefore useless. We show that the asymptotical scalings are only observed at
Weissenberg numbers that are 1 to 2 orders of magnitude higher, far beyond
the physical applicability of the UCM and Oldroyd-B model. In the discussion
in Section 6 we indicate how the flow around a cylinder with fixed kinematics
and the proposed Lagrangian numerical technique can be used by other com-
putational groups to verify and improve simulations for the benchmark flow
with non-fixed kinematics.

2 Problem description

A classical benchmark problem for viscoelastic flows is the flow around a cylin-
der in a confined geometry. The constitutive equation that is most frequently
considered is the upper-convected Maxwell (UCM) model. The UCM model in
non-dimensional form consists of an evolution equation for the configuration
tensor b which is related to the extra-stress tensor T by a simple algebraic
equation,

Db

Dt
= (∇v)T · b + b · ∇v − 1

We
(b − I) , (1)

T =
1

We
(b − I), (2)

where D/Dt represents the material derivative, ∇v the velocity gradient, and
I the unit tensor.

For the flow around a cylinder using a fixed velocity field that fulfills the es-
sential characteristics of a Newtonian velocity field, asymptotic scalings are
known for high Weissenberg numbers [11]. To perform the asymptotical anal-
ysis, the stress was expressed in a basis which is aligned with the velocity field
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with stress components λ, µ, and ν,

T =
1

We
(b − I) = λvvT + µ (vwT + wvT ) + νwwT , (3)

where w is a vector perpendicular to the velocity vector v = (u, v),

w =
(
− v

u2 + v2
,

u

u2 + v2

)
,

w · w =
1

u2 + v2
. (4)

The coefficients λ, µ and ν can be expressed in the components of the config-
uration tensor b by

λ =
1

We

(b11 − 1)u2 + 2b12uv + (b22 − 1)v2

(u2 + v2)2
,

µ =
1

We

(b22 − b11)uv + b12(u
2 − v2)

u2 + v2
,

ν =
1

We

[
(b11 − 1)v2 − 2b12uv + (b22 − 1)u2

]
. (5)

Asymptotical analysis predicts a thin boundary layer with large stresses near
the cylinder wall and a thin birefringent strand in the wake of the cylinder
where the stress component λ is of the order We3. Just outside the boundary
layer and birefringent strand, however, very thin regions develop where λ is
much larger. There, λ is of the order We5. Close to the cylinder, |v| is of the
order We−1 which results in viscoelastic stresses of order We3. In the wake,
however, |v| is of order 1 which results in viscoelastic stresses of order We5.
The scalings of the stress components λ, µ, and ν are summarized in Fig. 1.
The origin of these large stresses is in the stretching flow near the upstream
stagnation point. Henceforth, we will call these regions high stress regions to
distinguish them from the boundary layer and birefringent strand. The high
stress region along the cylinder and in the wake occurs at stream function
values of the order We−2.

The asymptotical analysis in [11] was performed using a fixed velocity field
that has the characteristics of a Newtonian velocity field. Rather than solving
the Newtonian velocity field numerically and using it to compute the stresses,
we construct a velocity field that fulfills the essential requirements near the
cylinder. This facilitates comparison of results obtained from numerical simu-
lations using the configuration tensor with the coefficients λ, µ, and ν used in
the asymptotical analysis. Since the denominator in Eq. (5) contains a term
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Fig. 1. Boundary layer, birefringent strand, and high-stress regions along the cylin-
der and in the wake with corresponding scalings of stress components λ, µ, and
ν.

(u2 +v2)2, small numerical errors can have a dramatic impact on the resulting
stress coefficient λ when the velocities are small.

A stream function that fulfills the necessary requirements near the cylinder is

ψ = y

(
1 − 1

x2 + y2

)2

. (6)

The streamlines obtained from Eq. (6) near the cylinder are depicted in Fig. 2.
Although these streamlines are not identical to those of the benchmark flow

Fig. 2. Streamlines near the cylinder obtained from Eq. (6); (a) stream function
values 10−2, 10−1, and 2 ·10−1 +2k ·10−1 for k = 0, . . . , 7, (b) zoom at the upstream
stagnation point with ψ = 10−3, 10−4, 10−5, 10−6

with non-fixed kinematics, they agree qualitatively with streamline patterns
up to the limiting Weissenberg number of 0.9 for an Oldroyd-B fluid (see
Fig. 19 in [5]). Both do not show vortices and for streamlines passing close to
the cylinder only small quantitative differences are apparent near the down-
stream stagnation point.
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The velocities corresponding to the stream function Eq. (6) are

u = 4y2x
2 + y2 − 1

(x2 + y2)3
+

(
1 − 1

x2 + y2

)2

,

v = −4xy
x2 + y2 − 1

(x2 + y2)3
(7)

and the velocity gradient has components

∂u

∂x
=

4x(x4 + 5y2 − 3y4 − x2(1 + 2y2))

(x2 + y2)4
,

∂u

∂y
=

4y(3x4 − y2(y2 − 3) + x2(2y2 − 3))

(x2 + y2)4
,

∂v

∂x
=

4y(3x4 + y2 − y4 + x2(2y2 − 5))

(x2 + y2)4
,

∂v

∂y
= −4x(x4 + 5y2 − 3y4 − x2(1 + 2y2))

(x2 + y2)4
. (8)

We note that for x → ±∞ the velocities reduce to u = 1 and v = 0. This
differs from the Poiseuille flow in the benchmark flow around a cylinder and
in the asymptotical analysis. As explained in [11], however, this difference is
not relevant for the asymptotic behaviour.

Henceforth, we will focus on the most interesting regions, the boundary layer
along the cylinder, the birefringent strand, and the high-stress regions close
to the cylinder and in the wake.

3 Computational method

To solve the system of differential equations, we integrate along the fluid tra-
jectories. The fluid trajectories are obtained by integrating ∂x/∂t = v with a
fourth-order Runge–Kutta method as in [12,13]. The advantage of the velocity
field, Eq. (7), is that it is known as at every location in the flow domain. This
makes a finite element interpolation to obtain velocities at a certain location is
unnecessary. Furthermore, an analytical expression for the velocity field makes
it easy to restrict the computational domain to a relatively small region where
steep stress gradients develop when we integrate along fluid trajectories.

The stresses are obtained by integrating the constitutive equation along a
streamline using a predictor-corrector method. Here, the velocity gradients are
calculated from Eq. (8). One major problem with viscoelastic computations
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is that the determinant of the configuration model may become negative due
to numerical errors. This may lead to spurious numerical results or blow-
up of the solutions. For the UCM model, it is not possible to correct negative
determinants in an ad hoc manner [14]. By using a transformation of variables
[15], however, positive definiteness of the configuration tensor b can be ensured.

Since very large stress gradients develop in the thin boundary layer along the
cylinder and birefringent strand in the wake, it is crucial to have a sufficient
resolution in both x and y-direction for plotting purposes. This means that we
need a sufficient number of fluid trajectories and a sufficient number of data
points on each trajectory.

In order to ensure an adequate number of data points along each trajectory,
we have defined a grid in the x-direction. When a trajectory passes a grid co-
ordinate in the x direction the stresses are recorded. We divide the x direction
in 6 regions. The first is the inflow region which only contains low stresses but
needs to be sufficiently long to prescribe zero stress boundary conditions at the
inlet. We found that specifying zero stresses at x = −50 did not significantly
change the results. In the inlet region, the solution is very smooth and the grid
can be very coarse. The second region is just before the upstream stagnation
point. Very close to the stagnation point very large stresses develop and a very
fine mesh is taken. Regions 3 spans the cylinder from the stagnation point to
the top of the cylinder. Since large gradients are present in this region, a fine
mesh is needed to accurately represent the solution. However, the mesh can
be gradually coarsened away from the stagnation point. Region 4 is the mirror
of region 3, so that we have a very fine grid near the downstream stagnation
point. Region 5 and 6 contain the wake of the cylinder. The grid is very fine
near the upstream stagnation point and is gradually coarsened towards the
exit, x = 50. This turns out to be sufficient to capture the gradients along
the trajectories. The outlet at x = 50 has been chosen in such a way that a
reasonable part of the birefringent strand and high-stress region in the wake
is covered by the computational domain. Since no boundary conditions need
to be specified at the exit, this has no impact on the obtained solution. Note
that this is in contrast to the full problem when the momentum equations are
solved simultaneously. Then a sufficient exit length has to be chosen in order
to apply boundary conditions for the velocity.

The details of the grid in the x-direction are given in Table 1. We want to
stress here that the above grid points in the x direction are only selected points
along the trajectories used for postprocessing. The actual points used for the
integration along a trajectory is much larger.

In order to guarantee a sufficient number of fluid trajectories in the thin regions
with large stresses without using an excessive number of fluid trajectories, we
define starting points of trajectories at the inlet by partitioning the range
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region I II III IV V VI

xstart -50 -2 -1 0 1 5

xend -2 -1 0 1 5 50

N 13 60 190 190 1200 200

lstart 1.67 · 101 1.0 · 10−1 2.0 · 10−4 2.5 · 10−2 2.0 · 10−4 1.5 · 10−2

lend 1.0 · 10−1 2.0 · 10−4 2.5 · 10−2 2.0 · 10−4 1.5 · 10−2 9.4 · 10−1

Table 1
Details of the grid in the x-coordinate for each region: x-coordinate of first point of
each region xstart, x-coordinate of last point of each region xend, number of intervals
per region N , length of first interval in each region lstart, length of last interval in
each region lend.

of y-coordinates using a logarithmic scale. Since the stream function value
is practically equal to the y coordinate at the inlet, this corresponds to the
values of the stream function ψ. We consider trajectories between ymin =
10−10 and ymax = 10−1, which correspond to ψmin ≈ 10−10 and ψmax ≈ 10−1.
The trajectories are defined by specifying equidistantly initial points of fluid
trajectories on the interval [log ymin, log ymax]. For the computations we find
that ymin = 10−10 and ymax = 10−1 is sufficient to identify the boundary layer,
birefringent strand, and high-stress regions.

4 Validation of the method

Even though the constitutive equations for the stress are solved for a given
velocity field, obtaining an accurate numerical solution is far from trivial. To
verify the accuracy of our numerical technique, we have performed additional
computations with Mathematica using a different numerical technique.

Before we validate the Lagrangian method described in Section 3, we want to
stress the non-trivial character of the flow around a cylinder in a Newtonian
velocity field by discussing the difficulties observed with the backward-tracking
Lagrangian particle method (BLPM) [13] for this flow. For BLPM, the stress at
a certain location is computed by tracking a fluid trajectory backwards in time
over a single time step ∆t, evaluating suitable initial values of the configuration
tensor at that point, and then integrating forwards the evolution equation
along the obtained trajectory. The main difference with the method discussed
in Section 3 is the initilization step for BLPM, which consists of a biquadratic
interpolation of stored nodal values at the previous time level. For the purely
Lagrangian method, we only need to specify initial values at the inlet where the
solution is very smooth. For both methods, we use a fourth-order Runge–Kutta
technique to determine a fluid trajectory and a predictor–corrector scheme to
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integrate the evolution equations along a trajectory. This requires the velocity
and velocity gradient to be known at a priori unknown locations. For BLPM
those quantities are obtained using a biquadratic interpolation from the nodal
values. For the purely Lagrangian technique, we used Eqs. (7) and (8) for the
velocity and velocity gradient, respectively.

Preliminary calculations with the real Newtonian velocity field, showed that,
at low Weissenberg numbers, BLPM was able to predict the correct stresses
at the cylinder wall and in the wake when the mesh was sufficiently fine. The
most refined mesh contained we used had over 14,000 elements. For the asymp-
totic scalings to be valid, stresses need to be convected around the cylinder.
Calculations performed using Mathematica for a single streamline revealed,
however, that Weissenberg number between 16 and 32 were needed, which
would require much finer meshes. In view of the significant simulation times
encountered already for the relatively low Weissenberg number flows, 1 to 2
days, we decided to proceed differently. We used a mesh of 1 element wide be-
tween two streamlines with stream function ψ = 2× 10−4 and ψ = 2.5× 10−4

and used the approximate Newtonian velocity field instead. Then, the mesh
between two streamlines can easily be constructed using Eq. (6). The first sig-
nificant differences appeared at We = 8. Two meshes were used with 800 and
over 1000 elements in the flow direction, with a minimum length of 6×10−4R
and 2 × 10−4R in the flow direction, respectively. For both meshes, BLPM
underpredicted the stress coefficient λ over a wide range of x-coordinates with
a maximum of about 10%. More disturbing was that results on the finer mesh
only differed slightly from those on the coarser mesh, which indicated that
even much finer meshes would be necessary for this and particularly for higher
Weissenberg numbers. Indeed we observed this when we performed calcula-
tions at Weissenberg numbers of 16 and 32. A mesh with 1700 elements and
a minimum length in the flow direction of 4 × 10−5R still overpredicted the
stress coefficient λ in the wake by almost a factor of 2. The reason for this
seems to be the interpolation step that is necessary to determine the initial
value at the start of a fluid trajectory corresponding to a single time step.
When steep gradients are present, an accurate initial value is only obtained
when element sizes are very small. The simulation time for the mesh with
1700 elements was of the order of a day to reach a steady-state solution. We
note in passing that these simulations are only between 2 streamlines that are
close to each other. In order to get a good view of the boundary layer, a large
number of such simulations between different streamlines would be necessary.
In combination with the much finer meshes that would be needed to obtain
a mesh converged solution (if at all possible, the stress λ was still almost a
factor two off on the most refined mesh at We = 16), this would imply months
or years of computational time. This was clearly not an option and instead we
developed the Lagrangian method described in Section 3. In sharp contrast
with BLPM, the computational time at We = 16 was only a couple of minutes
for the whole flow domain.

10



For the validation of our technique with Mathematica we use the stress com-
ponents λ, µ, and ν of [11], which evolve according to

Wev · ∇ν + ν =
|v|2
We

,

Wev · ∇µ+ µ = −Weν∇ · w,
Wev · ∇λ+ λ = −2Weµ∇ · w +

1

We|v|2 . (9)

By representing the constitutive equations in the stress components λ, µ, and
ν, the system of equations becomes decoupled. First we can solve the equation
for ν. Once we know ν, the equation for µ can be solved and with the obtained
µ we finally solve the equation for λ.

The solution of each of these equations is obtained by integration of the right-
hand sides along the streamlines,

τ =
1

We

∞∫
0

e−s/Wef(z(x, s)) ds, (10)

where z(x, s) is a point on the same streamline as x such that the fluid takes
the time s to move from z to x. The function f is one of the right-hand sides
in Eq. (9) and τ is the corresponding stress component ν, µ, or λ.

After computing the appropriate x and y coordinates of a streamline defined
by Eq. (6) for some specified value of the stream function ψ, the 3 stress inte-
grals are evaluated using a standard Mathematica routine (NIntegrate) for the
evaluation of the integrals. Figure 3 shows a comparison of the largest stress
component λ at a Weissenberg number of We = 32. The values of λ are taken
along a streamline through the region with large stresses along the cylinder
and in the wake (streamfunction value ψ = 2.5×10−4). Figure 3 shows that the
agreement between the two numerical techniques is excellent and that both
results are indistinguishable on the scale of the figures. Even the zoom around
the downstream stagnation point doesn’t show any noticeable difference near
the local minimum and maxima. Due to excessive computational times of the
Mathematica code (computing a result along 1 streamline takes at least two
orders of magnitude more than the results along all streamlines for the regular
C code), we have limited ourselves to We = 32.

For larger Weissenberg numbers, we have verified that the method converges
when the time step is refined. Figure 4 shows the largest stress component λ
along a trajectory in the thin high-stress region (logψ = −7.330018) for the
time steps ∆t = 4 × 10−4, ∆t = 2 × 10−4, and ∆t = 10−4. Even in the zoom
around the maximum value of λ, the three curves are indistinguishable at the
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Fig. 3. Comparison between Mathematica’s and our C code’s results for the stress
λ along the streamline with streamfunction value ψ = 2.5 × 10−4. Weissenberg
number is We = 32 and the x-coordinates −1 ≤ x ≤ 1 correspond to the cylinder.
(a) Around the cylinder and the start of the wake; (b) Zoom at the downstream
stagnation point at x = 1.
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Fig. 4. λ along streamline logψ = −7.330018 for ∆t = 4×10−4, 2×10−4, and 10−4;
(a) along the cylinder and in the wake, (b) zoom around the maximum around
x ≈ −0.72.

scale of the figure. For all results in the next sections, we used a time step of
10−4.

5 Asymptotic scalings at high Weissenberg numbers

We verify the high Weissenberg number asymptotic scalings of the stress com-
ponents λ and µ close to the cylinder and of λ in the wake of the cylinder.
Asymptotical analysis [11] predicts that when the Weissenberg number is in-
creased, the stress components λ and µ grow fastest in a region just outside
the boundary layer and birefringent strand. It is, however, not known at which
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values of the Weissenberg number the predictions are valid. For this we per-
formed simulations for Weissenberg numbers starting from We = 1 up to
We = 1024 where every consecutive Weissenberg number is taken two times
as large. The boundary layer and birefringent strand occur at stream func-
tion values of the order We−2, which corresponds to y-coordinate values of
order We−1. This will lead to very thin large-stress regions which are difficult
to detect in contour plots in the xy plane. Instead, we use contour plots in
the x-log(ψ) plane. In the resulting rectangular geometry a horizontal line
corresponds to the values along a trajectory.

5.1 λ close to the cylinder

In the wake, asymptotical analysis predicts a maximum λ in the high stress
region just outside the boundary layer. For this it is necessary that the stresses
are convected around the cylinder. For the ”low Weissenberg numbers” We =
1, 2, or 4, this is not the case. The first Weissenberg number for which the
stress λ does not completely decay is We = 8 as can be observed from Fig. 5.
The largest values of λ are near the cylinder wall. This is not surprising since
λ (not the viscoelastic stress T ) is singular when the velocity is zero. Another
region with large values of λ starts to develop, however, at values of the stream
function of ψ ≈ 10−3 to 10−4. This corresponds to coordinate values y ≈
10−1 to 10−2. This is what we called the ”high-stress region” just outside the
boundary layer along the cylinder wall in Section 2. Relaxation is not negligible
at these values of the Weissenberg numbers. The slightly larger values of λ
in this region than in the boundary layer lead therefore only to a small off-
centerline maximum just outside the birefringent strand in the wake.

The high-stress region along the cylinder becomes more pronounced when
the Weissenberg number is increased. At Weissenberg numbers We = 32 and
We = 64, λ is much larger in the high-stress region than near the edge of the
boundary layer along the cylinder. Although there is some relaxation, large
values of λ are convected around the cylinder. This results in a clearly ob-
servable high-stress region in the wake which we will discuss shortly. In the
x − log(ψ) plots it also becomes apparent that the boundary layer and high-
stress region shift towards the wall when the Weissenberg number increases.
At We = 64 it is centered around ψ ≈ 10−5 to 10−6, i.e. y ≈ 10−3. Further-
more, the width of the high-stress region, in terms of stream function values,
also decreases rapidly (note here the logarithm of the stream function on the
vertical axes). Combined with the rapidly increasing values of λ, this results
in very large derivatives perpendicular to the fluid trajectories.

At larger values of the Weissenberg numbers all trends continue as can be
observed from Fig. 6. Stresses in the high-stress region continue to grow very
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(a) We = 8 (b) We = 16

(c) We = 32 (d) We = 64

Fig. 5. Stress component λ close to cylinder and in initial part of wake for medium
values of the Weissenberg number.

fast and reach values of the order of 1016 for the highest Weissenberg number
we computed, We = 1024. Furthermore, the high stress region continues to
move closer and closer to the cylinder wall and continues to decrease in size.
At We = 1024, this region is at stream function values of ψ ≈ 10−8 (y ≈ 10−4)
and it spans approximately the range stream function values [10−6.5−10−9], i.e.
a width of approximately 10−3. We note in passing that the stress boundary
layer is no longer apparent at We = 1024. This is because it occurs at stream
function values even lower than 10−10. At We = 128, We = 256, and We =
512, however, the outer edge of the boundary layer is still visible.

The scalings Wek predicted in [11] and summarized in Fig. 1 are not easy to
read from the figures. Therefore, we also include tables to verify the various
powers k of these scalings quantitatively. Henceforth, the scaling of a quantity
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(a) We = 128 (b) We = 256

(c) We = 512 (d) We = 1024

Fig. 6. Stress component λ along cylinder and in initial part of wake for high values
of the Weissenberg number.

z at a certain Weissenberg number has been computed using the ratio of
the value z at this Weissenberg number and the value of z at the previous
Weissenberg number. For this, no scalings are reported for the lowest values.

In the high-stress region, asymptotical analysis predicts that λ ∼ We5 and
µ ∼ We2. We have verified these scalings by inspecting the largest value of µ
and λ in the high stress region at the cross section x = 0, i.e. above the top
of the cylinder.

Table 2 contains the scalings for the maximum λ in the high-stress region and
in the cross section at x = 0 together with the stream function value at which
this maximum occurs. It appears that the scalings approach the asymptotical
scalings from above. At the lower values of We the agreement is already fairly
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We λ scaling ψ scaling

8 2.86 · 106 2.68 · 10−4

16 1.13 · 108 5.30 5.44 · 10−5 -2.30

32 4.29 · 109 5.25 1.13 · 10−5 -1.96

64 1.50 · 1011 5.13 2.91 · 10−6 -1.96

128 5.06 · 1012 5.08 7.46 · 10−7 -1.96

256 1.66 · 1014 5.04 1.91 · 10−7 -1.97

512 5.40 · 1015 5.02 4.68 · 10−8 -2.03

1024 1.74 · 1017 5.01 1.19 · 10−8 -1.98
Table 2
Scalings for λ in the high-stress region along the cylinder: maximum value of λ at
cross section x = 0, scaling of λ with Weissenberg number, stream function value ψ
corresponding to maximum λ, and scaling of ψ with Weissenberg number.

good. For the highest values of We, the agreement with the asymptotic results
(k = 5) is excellent. Additionally, the scaling of the stream function values at
which these maxima appear correspond with the asymptotical value k = −2.
We remark in passing that the maximum values of λ appear at lower stream
function values than the maximum values of µ.

The local minima of λ at x = 0 close to the cylinder are given in Table 3.

We λ scaling ψ scaling

8 1.45 · 106 4.34 · 10−5

16 1.79 · 107 3.63 7.01 · 10−6 -2.63

32 1.90 · 108 3.41 1.47 · 10−6 -2.29

64 1.94 · 109 3.35 3.01 · 10−7 -2.29

128 1.88 · 1010 3.28 6.14 · 10−8 -2.29

256 1.75 · 1011 3.22 1.19 · 10−8 -2.37

512 1.67 · 1012 3.25 2.42 · 10−9 -2.30

1024 1.54 · 1013 3.21 6.18 · 10−10 -1.97
Table 3
Scaling of λ in the boundary layer along the cylinder: local minimum value of λ at
cross section x = 0, scaling of λ with Weissenberg number, stream function value ψ
corresponding to minimum λ, and scaling of ψ with Weissenberg number.
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5.2 µ close to the cylinder

Close to the cylinder, asymptotical analysis predicts that µ is of order unity
in the boundary layer along the cylinder and scales as We2 in the high-stress
region just outside the boundary layer. The contour plots corresponding to
the four largest Weissenberg numbers are displayed in Fig. 7. Indeed, in the

(a) We = 128 (b) We = 256

(c) We = 512 (d) We = 1024

Fig. 7. Stress component µ along cylinder and in early stages of the wake for various
values of the Weissenberg number.

boundary layer along the cylinder the value of µ is of order unity, smaller than
10, and does not seem to change when the Weissenberg number is increased.
In a region just outside the boundary layer, µ does increase with increasing
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Weissenberg number, although considerably slower than λ. As for λ, this region
shifts towards the cylinder as We increases, but the maximum seems to occur
at slightly larger values of the stream function. As for λ, the derivative along
the streamlines is very large near the upstream stagnation point and the large
values of µ continue into the wake where they decay to the equilibrium value.

To verify the scaling in the boundary layer and in the high-stress region we
examine the values of µ in the cross section x = 0. The value of µ at x = 0 at
the streamline closest to the cylinder are given in Table 4. For all Weissenberg

We µ scaling

8 8.00

16 8.00 0.00

32 7.99 0.00

64 7.98 0.00

128 7.94 -0.01

256 7.76 -0.03

512 7.99 0.04

1024 7.96 -0.01
Table 4
Scaling of µ in the boundary layer along the cylinder: value of µ at streamline closest
to cylinder at cross section x = 0 and scaling of µ with Weissenberg number.

numbers, µ ≈ 8 in the boundary layer along the cylinder. The predicted scaling
We0 is already valid for the lowest Weissenberg numbers considered here.

In order to verify the scalings in the high-stress region, we examine the maxi-
mum in the cross section at x = 0. Table 5 contains the scalings for µ together
with the stream function value at which this maximum occurs. At the lower
Weissenberg numbers, the scaling is slightly higher than the theoretical value
of k = 2, but for the largest Weissenberg numbers we find excellent agreement.
Additionally, the scaling of the stream function values at which these maxima
appear correspond with the asymptotical value k = −2.

5.3 λ in the wake of the cylinder

In order to observe the high Weissenberg number scalings for the wake, the
stress components need to be convected completely around the cylinder. If
this is the case, asymptotical analysis [11] predicts that λ is proportional to
We5 in a thin region just outside the birefringent strand where λ scales as
We3. When discussing the scaling of λ along the cylinder wall, we observed
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We µ scaling ψ scaling

8 5.95 · 101 8.37 · 10−4

16 2.89 · 102 2.28 2.13 · 10−4 -1.97

32 1.33 · 103 2.20 4.44 · 10−5 -2.26

64 5.77 · 103 2.12 1.13 · 10−5 -1.97

128 2.42 · 104 2.07 2.91 · 10−6 -1.96

256 9.93 · 104 2.04 7.46 · 10−7 -1.96

512 4.03 · 105 2.02 1.83 · 10−7 -2.03

1024 1.60 · 106 1.99 3.72 · 10−8 -2.29
Table 5
Scalings for µ in the high-stress region along the cylinder: maximum value of µ
in high stress region at cross section x = 0, scaling of µ with Weissenberg num-
ber, stream function value ψ corresponding to maximum µ, and scaling of ψ with
Weissenberg number.

already that the stresses did not completely decay for We ≈ 8. Here we focus
mainly on the high stress region in the wake.

Figure 8 shows that at the lowest Weissenberg number of 8, stresses are not
completely convected around the cylinder and only a minor off-centerline max-
imum appears at stream function values of ψ ≈ 10−3. From a Weissenberg
number of 16 on, a significant part of the large values of λ along the cylin-
der are convected around the cylinder and the high-stress region just outside
the birefringent strand becomes clearly visible. For these medium values of
the Weissenberg number, λ decays rather quickly in the wake. However, due
to the very large values of λ this regions extends far downstream and will
only approach its equilibrium value far outside the computational domain.
For increasing Weissenberg numbers, the high-stress region decreases in width
and shifts towards the centerline, similarly to the behaviour of λ close to the
cylinder.

Figure 9 shows the birefringent strand and high-stress region for λ in the wake
at Weissenberg numbers 128 to 1024. We observe that λ continues to increase
rapidly and the high-stress region becomes thinner and shifts further towards
the axis of symmetry. Since the magnitude of the velocity is one in this region,
the viscoelastic stress Txx has the same scaling as λ. This results in enormous
stress derivatives in the direction perpendicular to the fluid trajectories. We
note in passing that the high values of λ along the cylinder are convected far
downstream. The contour lines are nearly horizontal over the computational
range which is 49 radii behind the cylinder.

In order to verify the asymptotical scalings quantitatively, we examined the
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(a) We = 8 (b) We = 16

(c) We = 32 (d) We = 64

Fig. 8. Stress component λ in the wake for moderate values of the Weissenberg
number.

values of λ at the cross section x = 10 in the wake. Table 6 displays the
values of λ at x = 10 at the streamline closest to the centerline. At the
smaller Weissenberg numbers, the scaling is considerably larger than k = 3.
From We = 128 on, however, the scaling is approximately cubic and it slowly
approaches k = 3 when We is increased further.

The maximum values of λ at x = 10 in the high-stress region are given in
Table 7. At the lower values of the Weissenberg number, the scaling is again
considerably larger than the theoretical value k = 5. This is because λ is only
partially convected around the cylinder at those values of the Weissenberg
number. Then the part that is convected around the cylinder will be consid-
erably higher at the next Weissenberg number and result in higher values of
k. From We ≈ 128 on, however, the scaling is very close to the asymptotical

20



(a) We = 128 (b) We = 256

(c) We = 512 (d) We = 1024

Fig. 9. Stress component λ in wake for large values of the Weissenberg number.

value and it slowly approaches k = 5 when We is increased further.

6 Conclusions and discussion

In this paper, we have developed a numerical technique that is able to com-
pute thin stress boundary layers that occur in steady viscoelastic fluid flows
around a confined cylinder. The technique is both very efficient and accurate
and no severe numerical problems were observed in resolving extremely thin
stress boundary layers at any of the Weissenberg numbers that we used. This
is in sharp contrast with one of the currently used numerical techniques in vis-
coelastic fluid flow, the backward-tracking Lagrangian particle method. Even
in a narrow region between two streamlines, the method had severe problems
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We λ scaling

8 4.08 · 104

16 6.93 · 105 4.09

32 8.22 · 106 3.57

64 8.07 · 107 3.30

128 7.18 · 108 3.15

256 6.06 · 109 3.08

512 5.00 · 1010 3.04

1024 4.06 · 1011 3.02
Table 6
Scaling of λ in birefringent strand in the wake: λ in the cross section at x = 10 for
the streamline closest to the centerline and scaling of λ with Weissenberg number.

We λ scaling ψ scaling

8 4.95 · 104 6.67 · 10−4

16 3.43 · 106 6.11 1.70 · 10−4 -1.97

32 1.80 · 108 5.71 4.44 · 10−5 -1.94

64 7.62 · 109 5.40 1.13 · 10−5 -1.97

128 2.84 · 1011 5.22 2.91 · 10−6 -1.96

256 9.83 · 1012 5.11 7.46 · 10−7 -1.96

512 3.28 · 1014 5.06 1.83 · 10−7 -2.03

1024 1.07 · 1016 5.03 4.68 · 10−8 -1.97
Table 7
Scaling of λ in high-stress region in the wake: maximum λ in high-stress region in
the cross section at x = 10, scaling of λ with Weissenberg number, stream function
value ψ corresponding to maximum λ, and scaling of ψ with Weissenberg number.

in predicting the correct stresses for the lowest Weissenberg number we con-
sidered. At higher values of We, these problems increased and even meshes
with a minimum element size of 4 × 10−5 showed stresses that were off by a
factor of two. The main reason seemed to be the interpolation step required
in BLPM to determine suitable initial values at the starting point of a fluid
trajectory. Only for very refined meshes the biquadratic interpolation that we
used seemed to be sufficiently accurate when very steep gradients are present.
Additionally, these simulations required already significant computation times
of the order of one day for just a narrow region. For the Lagrangian technique
we developed, such problems were absent. No critical Weissenberg number
was encountered at which the method would have convergence problems. Ad-
ditionally, computation times reduced from one day for a narrow region to a
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couple of minutes for the whole flow domain. In view of these results for a fixed
Newtonian-like velocity field, it would not at all be surprising if solutions do
exist at Weissenberg numbers larger than unity for the UCM and Oldroyd-B
model and that current numerical techniques are simply not able to resolve
such thin boundary layers. Even the very fine meshes used in [6] with a small-
est element size of the order of 10−3 near the rear stagnation points could very
well be too coarse.

The new method is able to predict the theoretical scalings [11] for the stresses
in the flow around the cylinder using a fixed velocity field. In our numerical
simulations we could indeed observe the high-stress regions just outside the
boundary layer along the cylinder and birefringent strand in the wake. Along
the cylinder, we also found numerically that in the boundary layer the stress
component λ is proportional to We3, while µ remains of order unity. In a
thin region just outside this boundary layer the stress components λ and µ
grow much faster indeed. There λ is proportional to We5 and µ to We2. The
scalings for the stress components µ and λ are already close to the theoretical
values for the relatively low Weissenberg number We ≈ 16. At We = 1024,
the largest value of the Weissenberg number we considered, the agreement is
excellent.

To observe the theoretical scalings in the wake, the stresses need to be con-
vected around the cylinder. For which values of Weissenberg numbers this
occurs cannot be established from the asymptotical analysis. We found nu-
merically that the first Weissenberg number for which the stress component
λ does not decay completely along the the cylinder is We = 8. To observe a
good agreement with the theoretical scalings, the Weissenberg number needs
to be considerably larger, We ≈ 128. At the largest Weissenberg number
We = 1024, our numerical results showed again excellent agreement with the
theoretical scalings λ ∼ We3 in the birefringent strand and λ ∼ We5 in the
high-stress region just outside the birefringent strand. It is obvious that these
scalings cannot be observed for Weissenberg numbers of order unity that can
currently be attained in the benchmark flow around a cylinder using non-fixed
kinematics. For such values of the Weissenberg number, stresses are simply not
convected around the cylinder and the asymptotical analysis is not valid. A
comparison with the asymptotical scalings in the coupled flow problem as in
[5,6] is therefore useless. The scalings can only be observed at Weissenberg
numbers that are one to two orders of magnitude higher, far beyond the phys-
ical applicability of the UCM and Oldroyd-B model. Alves et al. [5] claim that
they observe the We5 scaling in the wake at Weissenberg numbers of order
unity. This is very curious indeed and certainly not related to the asymptotical
scalings of [11].

All simulations have been performed with a Newtonian-like velocity field that
fulfills the essential requirements near the cylinder. Such an analytical expres-
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sion facilitates comparison of numerical techniques for computing viscoelastic
stresses. Interestingly, the scalings of the viscoelastic stress components were
obtained nearly exactly using a relatively crude approximation to the New-
tonian velocity field. Apparently the scalings are not very sensitive to small
changes in the kinematics. This would suggest that it could be most impor-
tant to compute the viscoelastic stresses very precisely when the equations of
motion are included. A less accurate approximation of the kinematics could
be sufficient.

Compared to the benchmark flow around a cylinder with non-fixed kinematics,
numerical simulation in a fixed, Newtonian-like velocity field is easier since the
equations of motion do not need to be solved. The velocity field could also be
different from a Newtonian velocity field. However, in the vicinity of the cylin-
der and in the wake, where large stresses develop, the Newtonian-like velocity
field is qualitatively similar to the velocity field obtained for an Oldroyd-B fluid
at a Weissenberg number close to the limiting Weissenberg number of order
unity. As for the coupled flow problem, simulations using a Newtonian-like
velocity field are far from easy since thin regions with large stresses exist. Al-
though there will be quantitative differences in the stress fields, both problems
share the main difficulty concerning the numerical computation of the stress
field: thin regions with large stresses near the cylinder wall and the plane of
symmetry in the wake. The key advantage of the fixed-kinematics flow around
a cylinder is that a unique solution does exist for any Weissenberg number.
This makes the flow of a UCM fluid around a cylinder using the fixed Newto-
nian like velocity field a very good benchmark problem to test state-of-the-art
numerical techniques for viscoelastic flow computations. If a numerical tech-
nique with corresponding mesh fails to converge for the fixed kinematics case,
one can be certain that this is caused by the numerics. Additionally, such meth-
ods will off course fail to resolve similar stress boundary layers in the (harder)
coupled flow problem. The correct stresses in the stress boundary layers can
be obtained relatively easily with the Lagrangian numerical technique that we
developed. This opens the possibility to establish whether a certain numerical
technique, with a corresponding mesh, is able to accurately resolve the thin
stress boundary layers. If a method introduces too much artificial diffusion,
this can easily be detected. Before trying the coupled flow problem, it would
be a good idea if the fixed kinematics flow around a cylinder is tried first to
evaluate the numerical scheme used to resolve the viscoelastic stresses. Fur-
thermore, improvement and analyzing why a numerical scheme fails is much
easier in this case.

Now we have developed a numerical technique that can resolve thin stress
boundary layers in the flow around a cylinder with fixed kinematics, the main
challenge is to develop a numerical framework that can handle the coupled
flow problem. At Weissenberg numbers of the order unity at which current
numerical methods fail for the coupled flow problem, two possible solution
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techniques are eminent. First, one could use BLPM but then every fluid tra-
jectory needs to be integrated backwards in time until it reaches a region
upstream where the configuration tensor is sufficiently smooth. This will min-
imize the impact of interpolation errors in regions with steep stress gradients
which occur when the fluid motion is only tracked a single time step back-
wards in time. For the cylinder problem, this means that for streamlines that
pass far enough from the cylinder, integrating one single time step backwards
in time will probably be sufficient since no steep stress gradients develop in
these regions. For every location close to the cylinder surface and plane of
symmetry in the wake, however, the fluid motion has to be tracked up to
a region upstream of the cylinder where no large stresses are present. This
will lead to a significant increase in the computational cost since many of
the locations where stresses needs to be computed lie in these regions with
steep stress gradients. Parallelization is indispensable in this case. A second
option would be to use the purely Lagrangian technique in combination with,
for example, a finite element technique where elements are oriented along the
fluid trajectories. Although this requires some significant changes in the equa-
tions of motion, the efficient and accurate stress computations of the purely
Lagrangian scheme are retained and any interpolation of stresses or config-
uration tensors is explicitly avoided. Parallelization will not be necessary at
Weissenberg numbers of unity. Of course, the coupled flow problem also in-
troduces other issues such as the nonlinear coupling between the equations of
motion and the constitutive equations. Whether this leads to severe numerical
problems when stress boundary layers are resolved remains to be established.

The numerical technique we developed to integrate the stress equations can
also be useful for research groups that use other numerical techniques to simu-
late the flow around a cylinder or similar viscoelastic flow problems with thin
stress boundary layers. First, it can be used to establish an appropriate mesh
which is able to resolve the stress boundary layers at a given Weissenberg
number. Second, and more important, the Lagrangian technique can also be
used a posteriori to compute the correct stress field for the resulting steady
state velocity field of the coupled flow problem. In this way one can establish
whether thin stress boundary layers have been resolved properly. In case the
stresses in the wake do not converge or are inaccurate at very fine meshes, the
Lagrangian technique can be used to compute the correct stress fields which
can be used to analyze why the numerics fail. Of course, such an analysis is not
restricted to the UCM or Oldroyd-B model, but can equally well be applied
to more realistic viscoelastic models which show thin stress boundary layers
as well.
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