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Abstract 
In this paper we present a constitutive relation for 

predicting the rheology of short glass fibers suspended in 
a polymeric matrix.  The performance of the model is 
assessed through its ability to predict the steady-state and 
transient shear rheology as well as qualitatively predict 
the fiber orientation distribution of a short glass fiber (0.5 
mm, L/D < 30) filled polypropylene.  In this approach the 
total extra stress is equal to the sum of the contributions 
from the fibers (modified Doi theory), the polymer and 
the rod-polymer interaction (multi-mode viscoelastic 
constitutive relation). 
 

Introduction 
Adding high modulus and strength fibers to 

thermoplastics can significantly increase the mechanical 
properties of the neat matrix, especially when the fibers 
are aligned in the direction of mechanical interest [1].  
Therefore it is desirable to be able to predict the fiber 
orientation as a function of processing conditions to 
optimize mold design to maximize mechanical properties 
of the final part [2].  The overall goal of our research is to 
be able to accurately predict the fiber orientation in 
injection molded parts using a finite element analysis.  
The goal of this paper is to present a constitutive relation 
for modeling the suspension rheology and predicting the 
fiber orientation distribution in simple shear flows. 
 

The presence of fibers can significantly affect the 
rheology of the neat matrix, especially at the high fiber 
concentrations, and aspect ratio of industrial interest.  The 
composite rheology is thought to be influenced by the 
fiber orientation distribution, concentration, and aspect 
ratio of the fiber, the viscoelastic nature of the suspending 
medium, and the degree of fiber-matrix interaction [3].  
Due to the brief nature of this paper, our analysis and 
discussion will be limited to the general effect fiber and 
its orientation distribution has on the steady-state and 
transient rheology of polymer melts and the model’s 
ability to qualitatively predict the rheological behavior. 

 
Preceding the introduction of modeling glass fiber 

suspensions we believe it is pertinent to make a few 
general comments on the rheological behavior of fiber 

suspensions as it will aid in the explanation of the model 
development.  The first is regarding the steady-state 
rheology and the second regarding the transient rheology.  
Generally speaking, the steady-state viscosity vs. shear 
rate curve is similar in nature to what one would expect 
from a neat polymer.  When the steady-state rheology of a 
suspension is compared to its neat counterpart it typically 
has an enhanced Newtonian plateau and can exhibit a 
shear thinning behavior at lower shear rates than the neat 
resin.  At high shear rates the viscosity curves typically 
merge.  In some cases, typically at very high fiber 
loading, the suspensions can exhibit yield-like behavior 
[4].  Point being, the steady-state viscosity can be 
predicted with a number of shear rate dependent 
empiricisms, i.e. Carreau-Yasuda model.  Conversely, the 
transient shear rheology of fiber suspensions is typically 
easily distinguishable from that of a neat resin.  For 
example, when a sample with an isotropic fiber 
orientation is subjected to a stress growth upon inception 
of steady shear flow test, the sample will exhibit a large 
stress overshoot in both the shear stress and the normal 
stress differences.  This is believed to be a result of the 
fiber aligning itself in the principle flow direction.  Once 
aligned the stresses reach a steady-state [3].  Hence, the 
transient rheological behavior is coupled with the fiber 
orientation and being able to model the evolution of 
orientation is imperative to correctly predicting the 
rheology.   
 

Nearly all theoretical work on modeling the flow of 
fiber suspensions starts with the work of Jeffery [5] who 
investigated the motion of a single elliptically shaped 
particle in a Newtonian suspending medium.  Effort has 
been made in extending the idea of a single particle to that 
of a distribution of fiber orientations in a suspension [6, 
7].   Further work has been done to extend the theory into 
more concentrated fiber regimes where hydrodynamic 
interaction becomes an increasing factor [8, 9].  However, 
these theories are all based on Newtonian suspensions 
and, therefore, are, in general, incapable of capturing the 
non-Newtonian behavior of polymeric suspensions.  With 
respect to modeling the fiber orientation in an injection 
molded part, the majority of work has been accomplished 
by using an approach that decouples the fiber orientation 
with the flow field.  Hence the rheology of the suspension 



is taken as that of a generalized Newtonian fluid to predict 
the flow field and then a modified Jefferey’s equation is 
used to post calculate the fiber orientation [10]. 
 

To capture both the effects of the fiber and the non-
Newtonian suspending medium in an approach where the 
flow is coupled with the fiber orientation we propose an 
additive scheme, where the total extra stress is equal to a 
sum of contributions from the fiber, the suspending 
medium and the interaction between the fiber and the 
suspending medium.  In the model, the contribution of the 
fiber is calculated using a special form of the Doi theory 
for concentrated rigid rod molecules.  As a note, because 
the Doi theory was developed for rigid rods we will 
synonymously use the term rods to refer to glass fibers in 
our real system.  The contribution from the suspending 
medium is captured using a viscoelastic constitutive 
relation, and the interaction between the fiber and the 
polymer is captured by expanding the viscoelastic 
constitutive relation into its multi-mode form and fitting 
the long relaxation times of the suspension, which is 
believed to be influenced by the presence of the fiber.   

 
Theory 

We begin with the simple framework that the total 
extra is equal to the sum of the contribution to the stress 
tensor from the rods, the matrix, and the interaction 
between the rods and the matrix as follows: 
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Rod contribution: 

The starting point for the development of the 
contribution of the rods to the extra stress is Doi’s 
molecular theory for mono-disperse rod-like molecules 
suspended in a Newtonian fluid.   The theory begins with 
the dilute solution case where a rod is free to rotate and 
translate without interacting with other rods.  It was then 
extended to concentrated systems which spontaneously 
become anisotropic after a critical concentration without 
the presence of any external fields due to excluded 
volume effects [11].   

 
The Doi theory for rod-like molecules consists of two 

components.  The first, calculating the rod orientation 
distribution and its evolution under external forces.  The 
second, post calculating the stress tensor which is a 
function of the rod orientation.  In both, the quadratic 
closure approximation is used.  The rod orientation within 
the system is characterized by the deviatoric form of the 
orientation order parameter tensor ( S ), and is defined as: 
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where u is a unit vector parallel to the axis of a rod, δ  is 

the unit tensor, and the brackets •  represent the 
ensemble average over the distribution function.   
 

In simple shear flow the time evolution of S  is equal 

to the contributions from Brownian motion, ( )SF , plus the 

contribution from the macroscopic flow field, ( )SvG ,∇ : 
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The Brownian motion contribution is prevalent in the case 
of rod-like molecules or in the case where the rods are on 
the length scale where the effect of Brownian motion is a 
contributing factor and is defined by:  
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where U  is a phenomenological parameter representing 
the interaction potential of the system, and rD  is the 
average rotational diffusivity.  The ( )SF  quantity acts as a 

randomizing potential and is most easily understood by 
using the model to predict interrupted stress growth 
behavior.  During stress relaxation ( )SF  causes the rod 

orientation to relax or randomize, as one would expect for 
suspensions of rod-like molecules.  However, recent 
studies suggest that fibers retain their orientation during 
stress relaxation.  Our first modification manifests itself 
here because the Brownian motion contribution to glass 
fibers in polymeric suspensions of interest (L > .25 mm) 
is small in an absolute sense.  This can be easily verified 
by calculating the rotary Peclet number, which is on the 
order of magnitude of 1014 in the case of our short glass 
fiber, and is defined as the ratio of the shear rate to the 
rotational diffusivity [12].  Also, rD  α 1/L3, so the 
relative magnitude of ( )SF  decreases with increasing 

fiber length.  For these reasons we neglect the Brownian 
motion contribution such that: 
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The ( )SvG ,∇  component is defined by: 
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where v∇  is the velocity gradient.  Equations (5, 6) 
represent six coupled ordinary differential equations that 
can be solved numerically for the time evolution of 
orientation for a known velocity profile. 
   

The Doi theory states that the stress contribution 
from the rods is equal to the sum of an elastic component 
(

E
τ ) and a viscous component (

V
τ ): 
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E
τ  comes entirely from the Brownian potential and leads 

us to our second modification.  Using the same arguments 
stated previously for neglecting the ( )SF  term in 

computing the evolution of orientation we neglect 
E

τ .  

We are left with the total rod contribution to the stress 
equal to the viscous dissipation of energy of the rods; 
given by: 
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A is a constant theoretically equal to ckbT/2Dr, where c is 
the concentration of rods, kb is Boltzman’s constant, and T 
is temperature in Kelvin.  For modeling purposes we 
choose to fit the parameter A to transient stress growth 
data.   
 
Contribution of the matrix and rod-matrix 
interaction: 

The concept behind the model is that the contribution 
from the rods to the stress primarily occurs while the rods 
are changing their orientation.  After the rods have 
reached a steady-state in their orientation their 
contribution to the stress is at a minimum.  However the 
enhanced steady-state rheology and the viscoelastic 
properties can be predict by superimposing the rod 
contribution onto a viscoelastic constitutive relation fit to 
the bulk steady-state rheology. 
 

 In this approach the contribution to the extra stress 
of the matrix and the rod-matrix interaction is captured 
using a multi-mode viscoelastic constitutive relation.  For 
the model predictions in the paper, we chose to use the 
Phan-Thien Tanner equation (PTT) [13].  The ability to 
indirectly capture the rod-matrix interaction is based on 
the presence of the fiber retarding the long relaxation 

times of the matrix.  Currently, we are unable to make the 
profound statement that this is always true but our 
preliminary results allude to this behavior.  The enhanced 
relaxation times are then captured by fitting the multi-
mode constitutive equation to the suspension steady-state 
shear rheology including the low shear rates.  

 
Experimental Procedure 

Rheology: 
All tests were performed on a short glass fiber (L ~ 

0.5mm), 30 wt% filled polypropylene (PP).  Rheological 
tests in the low shear rate region (0.001-1 s-1) were 
performed on a Rheometrics Mechanical Spectrometer 
(RMS-800) fitted with cone and plate geometry (diameter 
25mm) to supply a constant shear rate within the gap.  As 
a note, we must mention that some level of boundary 
effect was likely using the cone and plate geometry.  
These effects would have been most prevalent in the 
transient experiments where there is an evolving fiber 
orientation whose characteristic length changes depending 
on its orientation state.  For this reason, we make the 
statement that any analysis is purely qualitative.  In the 
future we hope to resolve this issue using a sliding plate 
rheometer.  In the low shear rate region two tests were 
performed, steady shear flow and transient interrupted 
stress growth.  For a further explanation of the test the 
reader is referred to Bird et. al. [14].  For high steady 
shear rate analysis (10-2000 s-1) a Göttfert Rheograph 
2001 capillary rheometer was used.   
 
Model: 

With respect to the rod contribution to the extra 
stress, Gears implicit predictor-corrector method for stiff 
differential equations was used to solve Equations 5 and 6 
for the evolution of fiber orientation at a constant velocity 
gradient.  The stress tensor was then post calculated using 
a value of A=12,000 that best fit the transient stress 
growth overshoot (see Results and Discussion).  The 
matrix and rod-matrix interaction contribution to the extra 
stress was accomplished by fitting a 7-mode PPT to the 
bulk steady-state rheology from 0.001-2000 s-1 as can be 
seen in Figure 1.  The fit was accomplished using non-
linear least squared regression in Matlab resulting in 
parameter values of ε = 0 (exponential factor), ξ = 1.48 
and λi and ηi can be found in Table 1. 

 
Results and Discussion 

Rod contribution to stress: 
The modified Doi theory equations that make up the 

rod contribution to the total extra stress (equations 5, 6, 
and 8) are similar in structure and in what they predict to 
Dinh and Armstrong [9].  The model predicts 0→

rods
τ  

at long times or at steady-state.  However the model 
predicts a transient stress contribution when the initial 
orientation of S  is different from the steady-state value of 



S .  This can be seen graphically in Figure 2, for a random 

initial S  at a shear rate of 1 s-1.   

 
Suspension rheology vs. model prediction: 

The model predicts the steady-state shear rheology to 
the degree of accuracy of the multi-mode PTT model.  
This is an obvious result of fitting the multi-mode PTT to 
the bulk viscosity vs. shear rate data.  Figure 1 is a graph 
of the 7 mode PTT fit to the steady shear viscosity vs. 
shear rate flow curve.   

 
The ability of the model to predict the transient shear 

rheology of a suspension is generally summarized in 
Figure 3.  Figure 3 is a graph of the experimental data for 
the short glass fiber filled PP in an interrupted stress 
growth test.  Beginning with an isotropic fiber orientation 
the sample was subject to a constant rate of deformation, 
1 s-1.  After 150 seconds the flow was stopped and the 
stresses were allowed to relax.  After another 75 seconds 
the flow was reapplied and the stresses were recorded.  As 
expected, initially the sample exhibited a large stress 
overshoot that decayed to a steady-state.  As previously 
mentioned this is believed to be a result of the rods 
rotating to align themselves in the principle flow 
direction.  Subsequent to the overshoot a steady-state in 
the stresses was reached which is believed to coincide 
with a steady-state in the rod orientation [3].  When the 
flow is removed the stresses relax.  However, when the 
flow is reapplied at the same shear rate the overshoot does 
not reoccur.  This is a typical result where particles, for 
which Brownian motion can be neglected, are suspended 
in a fluid in which particle sedimentation is negligible.  It 
is believed to be a result of the rods maintaining their 
orientation during the stress relaxation.  Hence, when the 
flow is reapplied the stress immediately grows to its 
previous value because the rod orientation has not 
changed.  When the model is set to the same test 
conditions, i.e. initial random fiber orientation subject to 
interrupted stress growth shear flow, it predicts the 
transient response fairly well.  First it can predict the 
magnitude of the stress overshoot but slightly under 
predicts the breadth of time the overshoot takes to decay.  
The steady-state plateau and the relaxation dynamics are 
dominated by the multi-mode PTT model resulting in a 
good model prediction.  Interestingly, when the flow is 
reapplied in the model, it also does not predict a 
reoccurring overshoot.  This is because during the stress 
relaxation there is no driving force to randomize the rod 
orientation that is found in models containing a Brownian 
or Brownian-like term.   

 
The normal stress differences, specifically, the 

primary normal stress difference (N1) exhibits a similar 
behavior to the shear stress.  The model is capable of 
predicting the steady-state N1 to the degree of accuracy of 
the multi-mode PTT model.  The model prediction of the 

transient shear stress can be seen in Figure 4, which is 
graph of N1 vs. time for the short glass fiber PP 
suspension at a shear rate of 1s-1.  N1 initially exhibits a 
large overshoot that decays to a steady-state.  The model 
does predict an overshoot in N1 but not of the magnitude 
seen experimentally. 
 

Summary 
Glass fiber suspensions cannot be characterized by 

their steady-state shear rheology alone.  Their transient 
rheology must also be characterized.  Similarly, fiber 
suspension models must be able to predict both the 
steady-state and transient rheology of fiber suspensions.  
Our scheme to modeling the rheology and rod orientation 
distribution involves an additive approach where the total 
extra stress is the sum of the contributions from the rods 
(modified Doi theory), the matrix and rod-matrix 
interaction (multi-mode viscoelastic constitutive 
equation).  Using this approach we are able to, at least 
qualitatively predict the steady-state and transient shear 
stress of a short glass fiber filled PP.  We are unable to 
predict the large primary normal stress growth overshoot 
exhibited by the suspension. 
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Figure 1. 7 mode PTT model fit to the bulk steady-state 
viscosity vs. shear rate curve of a short glass fiber filled 
PP.  Rheological tests were performed at 200 C.  
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Figure 2. Modified Doi theory prediction for the 
contribution of the rods to the extra stress.  Prediction is 
for a shear rate of 1s-1. 
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Figure 3. The shear stress vs. time for an interrupted 
stress growth test.  SGF PP data is the experimental data 
for a short glass fiber filled PP.  PTT and Doi are the 
separate model predictions for the 7-mode PPT and the 
modified Doi theory respectively.  The PTT+Doi is the 
addition of the three stress contributions.  Prediction is for 
a shear rate of 1s-1. 
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Figure 4. The primary normal stress difference vs. time for a 
stress growth/relaxation test.  PTT and Doi are the separate 
model predictions for the 7-mode PPT and the modified Doi 
theory respectively.  The PTT+Doi is the addition of the three 
stress contributions.  Prediction is for a shear rate of 1s-1. 

Table 1. The multi-mode PTT fit parameters lamda (λi) 
and eta (ηi). 
Mode 1 2 3 4 5 6 7 

λi 0.001 0.01 0.1 1.0 10 100 1000 

ηi 181.5 691.0 74.6 1776.6 514.7 0 1036.9 

 


