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Abstract 
 

In this paper we investigate the transient shear 
rheology of a polypropylene containing long fibers (2.75 
to 11 mm, L/D > 150) and short fibers (1 mm, L/D < 50).  
The objectives of this work are to determine the 
relationship between stress growth and relaxation 
behavior of fiber orientation and determine the feasibility 
of extending Doi’s theory for the rheology of rod-like 
molecules to fiber reinforced materials.   

 
 

Introduction 
 

Adding high modulus and strength fibers to 
thermoplastics increases their mechanical properties 
including strength and stiffness [1].  However, their 
addition significantly changes the processing performance 
of the matrix.  The performance is altered by the 
orientation of the fiber and fiber interactions, which lead 
to changes in the rheological properties of the matrix.  In 
modeling the flow behavior of the composites it is desired 
to be able to predict the fiber orientation as a function of 
processing conditions; this will determine the stiffness, 
strength, and warpage of the final part [2-4]. 

 
Previous work on modeling fiber orientation has 

mostly been accomplished by using a decoupling method, 
where the kinematics are calculated using a purely 
viscous constitutive equation and then the fiber 
orientation is post-calculated with the known velocity 
field [5].  Tucker showed using scaling arguments that for 
simple geometries with small gaps this decoupling 
approximation is accurate [6].  However, Libscomb et al. 
showed that in complex geometries, specifically, 
contractions, the presence of fiber can have a major effect 
on the kinematics of the flow, as well as the size and 
strength of vortices at the contraction region [7]. 

 
The overall aim of our research is to be able to 

predict and compare the fiber orientation in an injection 
molded part using the finite element method by 
incorporating a constitutive equation that couples the 
orientation of the fiber with the velocity field of the fluid, 

and includes viscoelastic effects.  For this we propose to 
extend the molecular theory proposed by Doi [8].  The work 
presented in this paper investigates the ability of Doi’s 
theory for rigid rod molecules in a concentrated solution to 
be extended to long (2.75-11mm), and short (1mm) glass 
fibers suspended in a polypropylene matrix.  The model’s 
validity will be determined by its ability to predict the 
transient shear rheology of the system.   

 
Theory 

 
Doi’s molecular theory was originally formulated for a 

solution of isotropic rod-like polymers with a monodisperse 
molecular weight.  He then extended the theory to 
concentrated systems which spontaneously become 
anisotropic after a critical concentration without the 
presence of any external fields due to excluded volume 
effects.   

 
In the Doi theory for concentrated solutions the 

orientation order tensor
αβS , which describes the anisotropic 

molecular orientation of the system, is defined as: 
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where αu is the unit vector parallel to the rod back bone, 

αβδ is the Kronecker Delta, and the brackets represent the 
average over the distribution function.  By using a closure 
approximation, the time evolution of the orientation order 
tensor is given by: 
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αβF  represents the contribution due to the Brownian motion 

and the interaction potential of the system and is defined by:  
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where U is the phenomenological parameter representing 
the interaction potential of the system, rD  is the average 
rotational diffusivity given by: 
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and rD  is the lumped rotational diffusivity of the system.  

αβG  represents the contributions of the macroscopic flow 
field and is defined by: 
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where αβv  is the velocity gradient.  Equations (2, 3, and 
5) represent six coupled ordinary differential equations 
which can be solved numerically for the time evolution of 
orientation for a known velocity field.  The stresses are 
then calculated using equation (6), where it is assumed 
that the stresses arise solely from the free energy 
associated with the anisotropic distribution of rods. 
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In equation (6) c  is the concentration of the rods, bk  is 

Boltzmann’s constant, and T  is the temperature in 
Kelvin.  It is noted that the stress here is formulated for 
small deformation rates.  Doraiswamy and Metzner [9] 
modified the equations to incorporate a solvent 
contribution to the stress (neglected by Doi in his 
derivation for small deformation rates) which becomes a 
significant contribution at high shear rates.  The solvent 
contribution term which is simply added to equation (6) is 

( )βααβ ννηη +sr , were rη is the ratio of the viscosity of the 

suspension to that of the solvent and sη is the viscosity of 
the solvent.  Because the suspending medium in our 
system is a non-Newtonian fluid, srηη is replaced by the 
Carreau-Yasuda model (equation 7): 
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In this model 0η is the zero-shear viscosity, ∞η is infinite-

shear viscosity, λ  is a time constant, n is the “power-law 
exponent”, γ is the shear-rate, and a  is a dimensionless 
parameter describing the transition region between the zero-
shear-rate and power-law region [10].  Parameters were 
found by least-square regression of a full flow curve 
incorporating steady shear, dynamic, and capillary 
measurements.  The Carreau-Yasuda model constants for 
the short glass fiber sample was found to be 0η = 3,999 
(Pa.s), ∞η = 0 (Pa.s), λ  = .903 s, n = .66, a = .41. 

 
 

Experimental Procedure 
 
Rheology: 

Two fiber filled polypropylene samples were used in 
this work.  The first, a glass fiber filled polypropylene 
pellet, was formed by pultrusion and then cut into 2.75mm, 
5.5mm and 11mm fiber length samples allowing for the 
evaluation of fiber length on rheology.  The other sample, a 
glass fiber filled polypropylene,  was prepared by melt 
compounding with short glass fibers and then pelletized 
with an average fiber length of 1mm.  The two samples had 
different matrix viscosities due to molecular weight 
differences. 

 
Rheological testing in the low shear rate region       

(0.1-1s-1) and dynamic frequency region (0.1-100 rad/s) was 
performed on a Rheometrics Mechanical Spectrometer 
(RMS-800) fitted with parallel plate geometry (diameter 
25mm), which allows for gap control.  A Göttfert 
Rheograph 2001 capillary rheometer was used for high 
shear rate data (10-2000 s-1).  Samples were pre-formed for 
all parallel plate measurements (thickness ~ 1mm).  A pre-
shear of 1s-1 was performed for 40s on all the pultruded 
samples.   
 
Model: 

It was found that the theoretical calculation of U  and 
rD  gave unrealistic results and, hence, for modeling 

purposes rD  was replaced by D , and Tckb3  (term in front 
of stress equation 6) was replaced by A .  This follows the 
same method used by Doraiswamy and Metzner [9], except 
U  was also varied and not calculated   In total the model 
has three constants, A , U , and D .  

 
 

Results and Discussion 
 
Dynamic oscillatory measurements were used to asses 

the influence of fiber length on complex viscosity, and 



validate the necessary step of pre-shearing (1s-1 for 40 s) 
the pultruded fiber filled polypropylene samples.  It was 
found that when no pre-shear was performed on the 
pultruded samples of increasing length 2.75, 5.5, and 
11mm their complex viscosity overlapped, the value of 
which is believed to be an enhanced matrix viscosity.  
Figure 1 shows that after a pre-shear was performed the 
effect of fiber length on the complex viscosity is 
distinguishable, and although the steady state values of 
the shear measurements did oscillate over time (figure 2) 
the overall values were more constant and consistent after 
the pre-shear.  It was determined that the pre-shear was 
necessary to disperse the fibers, which were initially 
concentrated at the center of the pellet.  This creates a 
more uniform stress contribution.   

 
Steady shear measurements were performed in 

parallel plate geometry (25mm diameter), allowing for 
gap control.  The geometry added a certain degree of 
uncertainty in the validity of the transient experiments.  
The first was the varying shear rate from the center to the 
outside diameter of the plate.  The second is the length of 
the fiber in the long fiber samples compared to the 
diameter of the plate.  It appeared that the fibers tried to 
align themselves in the flow (theta) direction but could 
not, due to their large size compared to the plate radius, 
and in doing so protruded from the plate gap.  As a note, 
fibers protruding from the gap were only an issue for the 
long fiber samples.  The short fiber sample remained in 
the gap, and measurements were very consistent and 
reproducible.  In the future the transient tests on the long 
fibers will be reproduced and validated with a sliding 
plate rheometer where these complications should not be 
an issue.  Because of the uncertainties in the experimental 
data, in this paper we only investigate some of the 
interesting transient response to shear of fiber filled 
systems to see if Doi’s theory can predict the same trends. 

 
Figure 2 represents transient steady shear data for all 

samples.  The short fiber sample exhibited a large stress 
overshoot which relaxed over a time period of roughly 
60s, at which steady state was reached.  At time t = 450s 
the steady shear was removed and the stresses relaxed 
completely in about 10s.  The large stress overshoot is 
attributed to the initial random orientation of the small 
fibers in the sample, which aligned in the flow direction 
over a time period proportional to the relaxation time of 
the stress overshoot.  The long fiber samples were subject 
to a pre shear, allowed to relax for 100s, and then subject 
to a constant shear of 1s-1.  No stress overshoot was 
observed for these samples.  This was attributed to all the 
fibers being in the plane parallel to the rheometer plates, 
and being unable to align themselves completely in the 
flow direction, moving from a higher stress state to a 
lower one.  At time t = 450s, the constant shear was 
removed and the stresses relaxed over a much larger time 

period than the short fiber sample to some asymptotic value, 
resulting in a residual stress.   

 
The model’s prediction of transient stress response to 

constant shear with varying D  can be seen in figure 3.  The 
values for the model parameters ( A  = 30,000 Pa, U  = 3.2) 
where chosen to give steady state stress predictions of the 
same magnitude as the experimental results.  The initial 
conditions for 

αβS  were set equal to zero, representing a 
random orientation state.  From the graph one can see that 
the model does predict stress overshoot that relaxes to a 
steady state value over a much shorter time than is seen 
experimentally.  When steady shear is removed, the model 
does predict a certain relaxation time, and by varying the 
different model constants, specifically D , a large range of 
relaxation times can be accomplished 

 
Doi theory was originally developed for small 

deformation rates; the applicable range seems to be 
proportional to D .  At higher shear rates the stresses 
saturate, and plateau.  As previously mentioned, by 
incorporating a term for the solvent contribution one can 
predict a full shear rate range.  Figure 4 shows the model 
prediction both for Doi’s original theory and with the 
solvent contribution term.  Model parameters and conditions 
were held constant at A  = 30,000 Pa, U  = 3.2, and D = .1s-

1, while varying the shear rate. 
 
 

Summary 
 
The Doi theory for rigid rods in a Newtonian solution in 

its original form was able to predict some of the interesting 
phenomena exhibited by glass fiber filled polypropylene 
systems.  This includes stress overshoot, which is dependent 
on the initial fiber orientation of the system that relaxes to 
some steady state value, and a relaxation spectrum that can 
be controlled to include residual stresses.  By including a 
solvent contribution term, as shown by Doraiswamy and 
Metzner, the theory was able to hold over a large shear rate 
range. 
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Figure 1. Dynamic oscillatory (after pre-shear) and 
capillary rheology master curve of glass fiber filled 
polypropylene, and polypropylene matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Transient stress of the four different glass filled 
polypropylene systems at a steady shear rate of 1s-1.  Long 
fiber samples were pre-sheared at 1s-1 for 40s. 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Model’s prediction of the transient stress, 
compared to experimental result.  Model parameters and 
conditions were held constant at shear rate = 1s-1,               
A  = 30,000 Pa, and U  = 3.2, while 
varying D (representative value of rD ).   
 

 
 
 
 
 

1

10

100

1000

10000

100000

1000000

10000000

0.001 0.01 0.1 1 10 100 1000 10000
Shear Rate, Frequency (1/s, rad/s)

S
he

ar
 S

tr
es

s 
(P

a)

Exp
Doi
Dor, Met

 
Figure 4. Pure Doi theory model, and Doraiswamy Metzner 
modified model prediction of steady state stress compared 
to experimental results for the short glass fiber system.  
Model parameters and conditions were held constant at A  = 
30,000 Pa, U  = 3.2, and D = .1s-1, while varying the shear 
rate. 
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