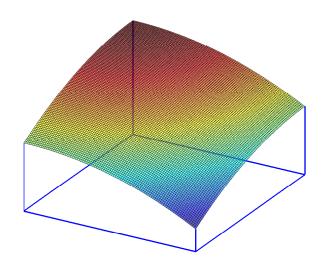
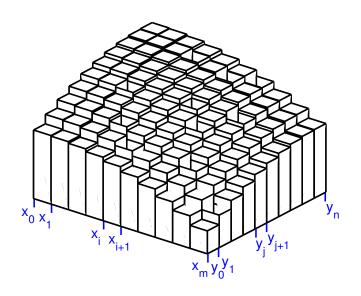
5.1:
$$\iint_R f(x,y) dA$$





- Interpretation: Volume under surface z = f(x, y).
- $\blacksquare \text{Limit definition: } \iint_R f(x,y) \, \, \mathrm{d}A = \lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} f(x_i^*,y_j^*) \Delta A_{ij}$
 - $\Delta A_{ij} = \Delta x_i \Delta y_j = (x_{i+1} x_i)(y_{j+1} y_j)$: Area of a subregion
 - ullet (x_i^*,y_j^*) : Sample point on subregion $[x_i,x_{i+1}] imes [y_j,y_{j+1}]$.

5.3/5.5: Double and Triple Integrals

■ Applications of double integrals

• Area of a lamina:
$$A = \iint_D 1 \, dA$$

$$ullet$$
 Mass of a lamina: $M=\iint_D \delta(x,y) \; \mathrm{d}A$ Density $\delta(x,y)$

• Volume of a solid:
$$V = \iint_D h(x,y) \; \mathrm{d}A$$
 Height $h(x,y)$

■ Applications of triple integrals

$$ullet$$
 Volume of a solid: $V = \iiint_E 1 \ \mathrm{d}V$

$$ullet$$
 Mass of a solid: $M = \iiint_E \delta(x,y,z) \; \mathrm{d}V$ Density $\delta(x,y,z)$

5.3/5.4/6.2: Double Integrals

- lacksquare Procedure to set up double integrals $\iint_D f \ \mathrm{d}A$
 - \bullet Make a sketch of D and determine easiest set up
 - Find integral bounds using sketch
 - Find points of intersection
 - ullet Integrate from low to high x and y
- \blacksquare Choosing dx dy or dy dx order may give
 - Easier setup: Look for a setup with only one double integral
 - Easier evaluation: Change order if evaluation of integrals is hard
- Changing to polar coordinates may give
 - Easier setup: Look for circular regions
 - Easier evaluation: functions with $\sqrt{x^2+y^2}=r$ or $x^2+y^2=r^2$

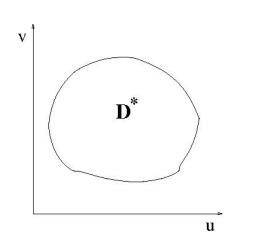
5.5/6.2: Triple Integrals

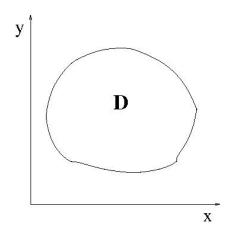
- $lacktriangleq ext{Procedure to set up triple integrals} \iiint_E f \; \mathrm{d}V$
 - \bullet Make a sketch of solid E and determine easiest set up
 - Look for one upper and one lower surface
 - Look for an easy projection: circular, triangular, rectangular
 - Find integral bounds using sketch
 - Find curves and points of intersection
 - Integrate from low to high x, y, and z
- Choosing a different order dx dy dz, dz dx dy etc. may give
 - Easier setup: Look for a setup with only one triple integral
 - Easier evaluation: Change order if evaluation of integrals is hard

5.5/6.2: Triple Integrals

- Changing to cylindrical coordinates may give
 - Easier setup: Look for circular cross-sections in xy
 - Easier evaluation: functions with $\sqrt{x^2+y^2}=r$ or $x^2+y^2=r^2$
- Changing to spherical coordinates may give
 - Easier setup: Look for (parts of) spheres
 - Easier evaluation: functions with $\sqrt{x^2+y^2+z^2}=\rho$ or $x^2+y^2+z^2=\rho^2$

6.1/6.2: Change of Variables Theorem





How to write $\iint_D dx dy$ as $\iint_{D^*} du dv$?

- Three main parts
 - Mapping $\underline{T}(u, v)$: How to map D^* to D?
 - Properties of $\underline{T}(u, v)$: Can mapping be used?
 - Change of Variables Theorem: How are $\iint_{D^*} du dv$ and $\iint_{D} dx dy$ related?

6.2: Applications of Change of Variables

- Evaluate otherwise hard/impossible integrals
 - Easier evaluation: Look for simpler integrand
 - Easier setup: Typically not a sufficient reason
- Numerical approximation of integrals (quadrature)
 - Idea: Map to an easy region. Example: D^* a unit square
 - Advantage: Sample points used for integration are well defined Example: Midpoint is well defined for a unit square.
 - Solving Partial Differential Equations numerically: Finite Element Method

6.2: Change of Variables Theorem

■ Triple integrals Change of Variables Theorem

$$\iiint_E f(x,y,z) \;\mathrm{d}x \;\mathrm{d}y \;\mathrm{d}z = \iiint_{E^*} f\Big(x(u,v,w),y(u,v,w),z(u,v,w)\Big) \;|J| \;\mathrm{d}u \;\mathrm{d}v \;\mathrm{d}w$$

• Jacobian determinant:
$$J=egin{array}{c|c} \partial x/\partial u & \partial x/\partial v & \partial x/\partial w \\ \partial y/\partial u & \partial y/\partial v & \partial y/\partial w \\ \partial z/\partial u & \partial z/\partial v & \partial z/\partial w \\ \end{array}$$

- |J|: absolute value of J
- The change of variables theorem holds when
- (1) \underline{T} is of class C^1
- (2) \underline{T} is one-to-one on the interior of D^*
- (3) T is onto D
- (4) $J \neq 0$ on the interior of D^*