4.1: Differentiation Rules for Paths

For paths $\underline{b}(t)$ and $\underline{c}(t)$ of class C^1 and scalar functions q(t) of class C^1

• Sum rule:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\underline{b} + \underline{c} \right] = \frac{\mathrm{d}\underline{b}}{\mathrm{d}t} + \frac{\mathrm{d}\underline{c}}{\mathrm{d}t}$$

• Product rule:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[q \ \underline{c} \right] = \frac{\mathrm{d}q}{\mathrm{d}t} \ \underline{c} \ + \ q \ \frac{\mathrm{d}\underline{c}}{\mathrm{d}t}$$

• Chain rule:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\underline{c}(q(t)) \right] \ = \ D \left(\underline{c} \circ q \right) \ = \ \frac{\mathrm{d}\underline{c}}{\mathrm{d}t} (q(t)) \, \frac{\mathrm{d}q}{\mathrm{d}t} (t)$$

Note: Specific case of chain rule in Sec. 2.5.

• Dot product rule:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\underline{b} \cdot \underline{c} \right] = \frac{\mathrm{d}\underline{b}}{\mathrm{d}t} \cdot \underline{c} + \underline{b} \cdot \frac{\mathrm{d}\underline{c}}{\mathrm{d}t}$$

• Cross product rule:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\underline{b} \times \underline{c} \right] = \frac{\mathrm{d}\underline{b}}{\mathrm{d}t} \times \underline{c} + \underline{b} \times \frac{\mathrm{d}\underline{c}}{\mathrm{d}t}$$

4.4: Identities of Vector Analysis

For f and g scalar functions of class C^1 and c constant

1.
$$\underline{\nabla}(f + g) = \underline{\nabla}f + \underline{\nabla}g$$

2.
$$\underline{\nabla}(cf) = c\underline{\nabla}f$$

3.
$$\underline{\nabla}(fg) = f\underline{\nabla}g + g\underline{\nabla}f$$

4.
$$\underline{\nabla}\left(\frac{f}{g}\right) = \frac{g\underline{\nabla}f - f\underline{\nabla}g}{g^2}$$
 at points where $g(\underline{x}) \neq 0$.

4.4: Identities of Vector Analysis

For \underline{F} and \underline{G} vector fields of class C^1 and f a scalar function of class C^1

5.
$$\nabla \cdot (\underline{F} + \underline{G}) = \nabla \cdot \underline{F} + \nabla \cdot \underline{G}$$

6.
$$\nabla \times (\underline{F} + \underline{G}) = \nabla \times \underline{F} + \nabla \times \underline{G}$$

7.
$$\nabla \cdot (f\underline{F}) = f\underline{\nabla} \cdot \underline{F} + \underline{F} \cdot \underline{\nabla} f$$

8.
$$\underline{\nabla} \cdot (\underline{F} \times \underline{G}) = \underline{G} \cdot (\underline{\nabla} \times \underline{F}) - \underline{F} \cdot (\underline{\nabla} \times \underline{G})$$

10.
$$\underline{\nabla} \times (f\underline{F}) = f\underline{\nabla} \times \underline{F} + (\underline{\nabla}f) \times \underline{F}$$

4.4: Identities of Vector Analysis

For f and g scalar functions of class C^2 and \underline{F} a vector field of class C^2

9.
$$\nabla \cdot (\nabla \times \underline{F}) = 0$$
 Compare $\underline{v} \cdot (\underline{v} \times \underline{w}) = 0$.

11.
$$\nabla \times (\nabla f) = \underline{0}$$
 Compare $\underline{v} \times \underline{v} = \underline{0}$.

12.
$$\underline{\nabla}^2(fg) = f\underline{\nabla}^2g + g\underline{\nabla}^2f + 2\underline{\nabla}f\cdot\underline{\nabla}g$$

13.
$$\underline{\nabla} \cdot (\underline{\nabla} f \times \underline{\nabla} g) = 0$$

14.
$$\underline{\nabla} \cdot (f\underline{\nabla}g - g\underline{\nabla}f) = f\underline{\nabla}^2g - g\underline{\nabla}^2f$$